1
|
He J, Guo Y, Chen J, Xu J, Zhu X. Exploring the correlation between UVB sensitivity and SLE activity: Insights into UVB-driven pathogenesis in lupus erythematosus. J Autoimmun 2025; 153:103393. [PMID: 40147218 DOI: 10.1016/j.jaut.2025.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Lupus erythematosus (LE) comprises various autoimmune inflammatory diseases, with significant overlap between cutaneous LE (CLE) and systemic LE (SLE). A key feature of both CLE and SLE is UV photosensitivity, particularly in UV-exposure-related skin inflammation. Despite this, reliable and objective UVB photosensitivity indicators closely correlating with LE activity have yet to be identified, and the underlying cellular and molecular mechanisms linking UVB sensitivity with LE onset and progression remain unclear. We discovered that ultraviolet B minimal erythema dose (UVB-MED), a quantitative photosensitivity measure, is a significant and independent risk factor for SLE activity, demonstrating a negative correlation with SLEDAI (r = -0.58, P < 0.0001). Comprehensive transcriptomic analyses of large-scale CLE and SLE samples (5918 in discovery and 7242 in validation datasets) revealed more pronounced and extensive UVB-response gene dysregulation in skin tissues compared to blood. Additionally, 14 lupus activity-correlated, UVB-response genes (UVBACGs) were identified, including eight type I interferon-stimulated genes (IRF7, ISG20, ISG15, IFI44, IFITM1, MX1, LY6E, OASL) and others (JUN, PTTG1, HLA-F, CAV1, HOPX, RPL3), with dysregulation evident in skin, blood, and affected organs (e.g., kidney and synovium). Immunocytes serve as the primary carriers of this dysregulation. Conventional LE therapies and type I interferon-targeted therapies were found to be associated with these genes and can potentially regulate them, thereby contributing to therapeutic effects. These findings highlight the role of UVB in triggering autoimmune inflammation in the skin, which may subsequently spread to systemic inflammation via immune cells and factors. UVBACGs play a critical role in this process and may serve as targets for precise therapies, providing insight into the link between UVB photosensitivity and LE pathogenesis.
Collapse
Affiliation(s)
- Jiayu He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanning Guo
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Jiamin Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
3
|
Wang Y, Zhang S, Kang N, Dong L, Ni H, Liu S, Chong S, Ji Z, Wan Z, Chen X, Wang F, Lu Y, Hou B, Tong P, Qi H, Xu MM, Liu W. Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells. Immunity 2024; 57:2547-2564.e12. [PMID: 39476842 DOI: 10.1016/j.immuni.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Shaocun Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Lihui Dong
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichen Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Siankang Chong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengpeng Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, College of life Sciences, University of Chinese Academy of Sciences, Beijing, P.R.China
| | - Pei Tong
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Chen M, Zhang Y, Shi W, Song X, Yang Y, Hou G, Ding H, Chen S, Yang W, Shen N, Cui Y, Zuo X, Tang Y. SPATS2L is a positive feedback regulator of the type I interferon signaling pathway and plays a vital role in lupus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1659-1672. [PMID: 39099414 PMCID: PMC11693870 DOI: 10.3724/abbs.2024132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024] Open
Abstract
Through genome-wide association studies (GWAS) and integrated expression quantitative trait locus (eQTL) analyses, numerous susceptibility genes ("eGenes", whose expressions are significantly associated with common variants) associated with systemic lupus erythematosus (SLE) have been identified. Notably, a subset of these eGenes is correlated with disease activity. However, the precise mechanisms through which these genes contribute to the initiation and progression of the disease remain to be fully elucidated. In this investigation, we initially identify SPATS2L as an SLE eGene correlated with disease activity. eSignaling and transcriptomic analyses suggest its involvement in the type I interferon (IFN) pathway. We observe a significant increase in SPATS2L expression following type I IFN stimulation, and the expression levels are dependent on both the concentration and duration of stimulation. Furthermore, through dual-luciferase reporter assays, western blot analysis, and imaging flow cytometry, we confirm that SPATS2L positively modulates the type I IFN pathway, acting as a positive feedback regulator. Notably, siRNA-mediated intervention targeting SPATS2L, an interferon-inducible gene, in peripheral blood mononuclear cells (PBMCs) from patients with SLE reverses the activation of the interferon pathway. In conclusion, our research highlights the pivotal role of SPATS2L as a positive-feedback regulatory molecule within the type I IFN pathway. Our findings suggest that SPATS2L plays a critical role in the onset and progression of SLE and may serve as a promising target for disease activity assessment and intervention strategies.
Collapse
Affiliation(s)
- Mengke Chen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Yutong Zhang
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Weiwen Shi
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Xuejiao Song
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
| | - Yue Yang
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
- Department of PharmacyChina-Japan Friendship HospitalBeijing100029China
| | - Guojun Hou
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Huihua Ding
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Sheng Chen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| | - Wanling Yang
- of Paediatrics and Adolescent MedicineThe University of Hong KongHong Kong 999077China
| | - Nan Shen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200032China
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnati OH 45229USA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnati OH 45229USA
| | - Yong Cui
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
| | - Xianbo Zuo
- Department of DermatologyChina-Japan Friendship HospitalBeijing100029China
- Department of PharmacyChina-Japan Friendship HospitalBeijing100029China
| | - Yuanjia Tang
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200001China
| |
Collapse
|
5
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
6
|
Papachristodoulou E, Kyttaris VC. New and emerging therapies for systemic lupus erythematosus. Clin Immunol 2024; 263:110200. [PMID: 38582250 DOI: 10.1016/j.clim.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Systemic Lupus Erythematosus (SLE) and lupus nephritis treatment is still based on non-specific immune suppression despite the first biological therapy for the disease having been approved more than a decade ago. Intense basic and translational research has uncovered a multitude of pathways that are actively being evaluated as treatment targets in SLE and lupus nephritis, with two new medications receiving FDA approval in the last 3 years. Herein we provide an overview of targeted therapies for SLE including medications targeting the B lymphocyte compartment, intracellular signaling, co-stimulation, and finally the interferons and other cytokines.
Collapse
Affiliation(s)
- Eleni Papachristodoulou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Kerns S, Owen KA, Schwalbe D, Grammer AC, Lipsky PE. Examination of the shared genetic architecture between multiple sclerosis and systemic lupus erythematosus facilitates discovery of novel lupus risk loci. Hum Genet 2024; 143:703-719. [PMID: 38609570 DOI: 10.1007/s00439-024-02672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.
Collapse
Affiliation(s)
- Sophia Kerns
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA.
- The RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Katherine A Owen
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Dana Schwalbe
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, VA, 22902, USA
- The RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
8
|
Shen L, Han M, Luo X, Zhang Q, Xu H, Wang J, Wei N, Liu Q, Wang G, Zhou F. Exacerbating effects of circadian rhythm disruption on the systemic lupus erythematosus. Lupus Sci Med 2024; 11:e001109. [PMID: 38599669 PMCID: PMC11015241 DOI: 10.1136/lupus-2023-001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Circadian rhythm disruption (CRD) has been associated with inflammation and immune disorders, but its role in SLE progression is unclear. We aimed to investigate the impact of circadian rhythms on immune function and inflammation and their contribution to SLE progression to lupus nephritis (LN). METHODS This study retrospectively analysed the clinical characteristics and transcriptional profiles of 373 samples using bioinformatics and machine-learning methods. A flare risk score (FRS) was established to predict overall disease progression for patients with lupus. Mendelian randomisation was used to analyse the causal relationship between CRD and SLE progression. RESULTS Abnormalities in the circadian pathway were detected in patients with SLE, and lower enrichment levels suggested a disease state (normalised enrichment score=0.6714, p=0.0062). The disruption of circadian rhythms was found to be closely linked to lupus flares, with the FRS showing a strong ability to predict disease progression (area under the curve (AUC) of 5-year prediction: 0.76). The accuracy of disease prediction was improved by using a prognostic nomogram based on FRS (AUC=0.77). Additionally, Mendelian randomisation analysis revealed an inverse causal relationship between CRD and SLE (OR 0.6284 (95% CI 0.3630 to 1.0881), p=0.0485) and a positive causal relationship with glomerular disorders (OR 0.0337 (95% CI 1.634e-3 to 6.934e-1), p=0.0280). CONCLUSION Our study reveals that genetic characteristics arising from CRD can serve as biomarkers for predicting the exacerbation of SLE. This highlights the crucial impact of CRD on the progression of lupus.
Collapse
Affiliation(s)
- Luping Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mo Han
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuan Luo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Wang
- Jiangsu Renocell Biotech Co Ltd, Nanjing, China
| | - Ning Wei
- Jiangsu Renocell Biotech Co Ltd, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co Ltd, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Zhang S, Chang M, Zheng L, Wang C, Zhao R, Song S, Hao J, Zhang L, Wang C, Li X. Deep analysis of skin molecular heterogeneities and their significance on the precise treatment of patients with psoriasis. Front Immunol 2024; 15:1326502. [PMID: 38495878 PMCID: PMC10940483 DOI: 10.3389/fimmu.2024.1326502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Background Psoriasis is a highly heterogeneous autoinflammatory disease. At present, heterogeneity in disease has not been adequately translated into concrete treatment options. Our aim was to develop and verify a new stratification scheme that identifies the heterogeneity of psoriasis by the integration of large-scale transcriptomic profiles, thereby identifying patient subtypes and providing personalized treatment options whenever possible. Methods We performed functional enrichment and network analysis of upregulated differentially expressed genes using microarray datasets of lesional and non-lesional skin samples from 250 psoriatic patients. Unsupervised clustering methods were used to identify the skin subtypes. Finally, an Xgboost classifier was utilized to predict the effects of methotrexate and commonly prescribed biologics on skin subtypes. Results Based on the 163 upregulated differentially expressed genes, psoriasis patients were categorized into three subtypes (subtypes A-C). Immune cells and proinflammatory-related pathways were markedly activated in subtype A, named immune activation. Contrastingly, subtype C, named stroma proliferation, was enriched in integrated stroma cells and tissue proliferation-related signaling pathways. Subtype B was modestly activated in all the signaling pathways. Notably, subtypes A and B presented good responses to methotrexate and interleukin-12/23 inhibitors (ustekinumab) but inadequate responses to tumor necrosis factor-α inhibitors and interleukin-17A receptor inhibitors. Contrastly, subtype C exhibited excellent responses to tumor necrosis factor-α inhibitors (etanercept) and interleukin-17A receptor inhibitors (brodalumab) but not methotrexate and interleukin-12/23 inhibitors. Conclusions Psoriasis patients can be assorted into three subtypes with different molecular and cellular characteristics based on the heterogeneity of the skin's immune cells and the stroma, determining the clinical responses of conventional therapies.
Collapse
Affiliation(s)
- Shengxiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Minjing Chang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Leilei Zheng
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Can Wang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiawei Hao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lecong Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofeng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Leventhal EL, Daamen AR, Grammer AC, Lipsky PE. An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients. iScience 2023; 26:108042. [PMID: 37860757 PMCID: PMC10582499 DOI: 10.1016/j.isci.2023.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene expression data. However, phenotype prediction using ML has often relied on identifying important genes without a systems biology context. To address this, we created an interpretable ML approach based on blood transcriptomics to predict phenotype in systemic lupus erythematosus (SLE), a heterogeneous autoimmune disease. We employed a sequential grouped feature importance algorithm to assess the performance of gene sets, including immune and metabolic pathways and cell types, known to be abnormal in SLE in predicting disease activity and organ involvement. Gene sets related to interferon, tumor necrosis factor, the mitoribosome, and T cell activation were the best predictors of phenotype with excellent performance. These results suggest potential relationships between the molecular pathways identified in each model and manifestations of SLE. This ML approach to phenotype prediction can be applied to other diseases and tissues.
Collapse
Affiliation(s)
- Emily L. Leventhal
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC, and the RILITE Research Institute, Charlottesville, VA 22902, USA
| |
Collapse
|
11
|
Hubbard EL, Bachali P, Kingsmore KM, He Y, Catalina MD, Grammer AC, Lipsky PE. Analysis of transcriptomic features reveals molecular endotypes of SLE with clinical implications. Genome Med 2023; 15:84. [PMID: 37845772 PMCID: PMC10578040 DOI: 10.1186/s13073-023-01237-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is known to be clinically heterogeneous. Previous efforts to characterize subsets of SLE patients based on gene expression analysis have not been reproduced because of small sample sizes or technical problems. The aim of this study was to develop a robust patient stratification system using gene expression profiling to characterize individual lupus patients. METHODS We employed gene set variation analysis (GSVA) of informative gene modules to identify molecular endotypes of SLE patients, machine learning (ML) to classify individual patients into molecular subsets, and logistic regression to develop a composite metric estimating the scope of immunologic perturbations. SHapley Additive ExPlanations (SHAP) revealed the impact of specific features on patient sub-setting. RESULTS Using five datasets comprising 2183 patients, eight SLE endotypes were identified. Expanded analysis of 3166 samples in 17 datasets revealed that each endotype had unique gene enrichment patterns, but not all endotypes were observed in all datasets. ML algorithms trained on 2183 patients and tested on 983 patients not used to develop the model demonstrated effective classification into one of eight endotypes. SHAP indicated a unique array of features influential in sorting individual samples into each of the endotypes. A composite molecular score was calculated for each patient and significantly correlated with standard laboratory measures. Significant differences in clinical characteristics were associated with different endotypes, with those with the least perturbed transcriptional profile manifesting lower disease severity. The more abnormal endotypes were significantly more likely to experience a severe flare over the subsequent 52 weeks while on standard-of-care medication and specific endotypes were more likely to be clinical responders to the investigational product tested in one clinical trial analyzed (tabalumab). CONCLUSIONS Transcriptomic profiling and ML reproducibly separated lupus patients into molecular endotypes with significant differences in clinical features, outcomes, and responsiveness to therapy. Our classification approach using a composite scoring system based on underlying molecular abnormalities has both staging and prognostic relevance.
Collapse
Affiliation(s)
- Erika L Hubbard
- AMPEL BioSolutions, LLC, 250 W. Main St. #300, Charlottesville, VA, 22902, USA.
- RILITE Research Institute, Charlottesville, VA, 22902, USA.
| | - Prathyusha Bachali
- AMPEL BioSolutions, LLC, 250 W. Main St. #300, Charlottesville, VA, 22902, USA
- RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Kathryn M Kingsmore
- AMPEL BioSolutions, LLC, 250 W. Main St. #300, Charlottesville, VA, 22902, USA
- RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Yisha He
- Altria, Richmond, VA, 23230, USA
| | | | - Amrie C Grammer
- AMPEL BioSolutions, LLC, 250 W. Main St. #300, Charlottesville, VA, 22902, USA
- RILITE Research Institute, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, 250 W. Main St. #300, Charlottesville, VA, 22902, USA
- RILITE Research Institute, Charlottesville, VA, 22902, USA
| |
Collapse
|
12
|
Angelakis A, Soulioti I, Filippakis M. Diagnosis of acute myeloid leukaemia on microarray gene expression data using categorical gradient boosted trees. Heliyon 2023; 9:e20530. [PMID: 37860531 PMCID: PMC10582309 DOI: 10.1016/j.heliyon.2023.e20530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
We define an iterative method for dimensionality reduction using categorical gradient boosted trees and Shapley values and created four machine learning models which potentially could be used as diagnostic tests for acute myeloid leukaemia (AML). For the final Catboost model we use a dataset of 2177 individuals using as features 16 probe sets and the age in order to classify if someone has AML or is healthy. The dataset is multicentric and consists of data from 27 organizations, 25 cities, 15 countries and 4 continents. The performance of our last model is specificity: 0.9909, sensitivity: 0.9985, F1-score: 0.9976 and its ROC-AUC: 0.9962 using ten fold cross validation. On an inference dataset the perormance is: specificity: 0.9909, sensitivity: 0.9969, F1-score: 0.9969 and its ROC-AUC: 0.9939. To the best of our knowledge the performance of our model is the best one in the literature, as regards the diagnosis of AML using similar or not data. Moreover, there has not been any bibliographic reference which associates AML or any other type of cancer with the 16 probe sets we used as features in our final model.
Collapse
Affiliation(s)
- Athanasios Angelakis
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam Public Health Research Institute, University of Amsterdam Data Science Center, Netherlands
| | - Ioanna Soulioti
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
13
|
Santos GDM, Saldanha A, Orsi FA. Should we be targeting type 1 interferons in antiphospholipid syndrome? Clin Immunol 2023; 255:109754. [PMID: 37678720 DOI: 10.1016/j.clim.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Systemic autoimmune diseases are characterized by increased production of type I interferon (IFN-1) and upregulation of IFN-1-inducible genes, suggesting an important role of the IFN-1 pathway in their pathogenesis. Recent studies have demonstrated increased IFN-1 expression in both primary and secondary antiphospholipid syndrome (APS), along with increased toll-like receptor type 9 activity and plasmacytoid dendritic cell function. The increasing knowledge of the association between IFN-1 and APS pathology may provide a rationale for conducting clinical trials to assess the efficacy of IFN-1-targeting drugs in reducing APS-related complications. In this narrative review, we summarize the current knowledge on the role of IFN-1 in APS pathogenesis, explore its clinical implications, and examine the existing evidence regarding therapeutic options that have been investigated to date.
Collapse
Affiliation(s)
- Gabrielle de Mello Santos
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; HEMORIO - State Institute of Hematology "Arthur de Siqueira Cavalcanti", Brazil
| | - Artur Saldanha
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; HEMOAL - Hematology and Hemotherapy Center of Alagoas, Brazil
| | - Fernanda Andrade Orsi
- Hospital das Clinicas of University of São Paulo Medical School (HCFMUSP), Brazil; Department of Pathology, Faculty of Medical Sciences of the University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
14
|
Monaghan KA, Hoi A, Gamell C, Tai TY, Linggi B, Jordan J, Cesaroni M, Sato T, Ng M, Oon S, Benson J, Wicks I, Morand E, Wilson N. CSL362 potently and specifically depletes pDCs invitro and ablates SLE-immune complex-induced IFN responses. iScience 2023; 26:107173. [PMID: 37456846 PMCID: PMC10338305 DOI: 10.1016/j.isci.2023.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with significant morbidity and mortality. Type I interferon (IFN) drives SLE pathology and plasmacytoid dendritic cells (pDCs) are potent producers of IFN; however, the specific effects of pDC depletion have not been demonstrated. We show CD123 was highly expressed on pDCs and the anti-CD123 antibody CSL362 potently depleted pDCs in vitro. CSL362 pre-treatment abrogated the induction of IFNα and IFN-induced gene transcription following stimulation with SLE patient-derived serum or immune complexes. RNA transcripts induced in pDCs by ex vivo stimulation with TLR ligands were reflected in gene expression profiles of SLE blood, and correlated with disease severity. TLR ligand-induced protein production by SLE patient peripheral mononuclear cells was abrogated by CSL362 pre-treatment including proteins over expressed in SLE patient serum. These findings implicate pDCs as key drivers in the cellular activation and production of soluble factors seen in SLE.
Collapse
Affiliation(s)
| | - Alberta Hoi
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia
- Monash Health, Clayton, VIC 3168, Australia
| | - Cristina Gamell
- Research and Development, CSL Limited, Melbourne, VIC 3010, Australia
| | - Tsin Yee Tai
- Research and Development, CSL Limited, Melbourne, VIC 3010, Australia
| | - Bryan Linggi
- Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Jarrat Jordan
- Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Matteo Cesaroni
- Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Takahiro Sato
- Janssen Research and Development LLC, Spring House, PA 19477, USA
| | - Milica Ng
- Research and Development, CSL Limited, Melbourne, VIC 3010, Australia
| | - Shereen Oon
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- The University of Melbourne Parkville, Parkville, VIC 3010, Australia
| | | | - Ian Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- The University of Melbourne Parkville, Parkville, VIC 3010, Australia
| | - Eric Morand
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia
- Monash Health, Clayton, VIC 3168, Australia
| | - Nicholas Wilson
- Research and Development, CSL Limited, Melbourne, VIC 3010, Australia
| |
Collapse
|
15
|
Felten R, Mertz P, Sebbag E, Scherlinger M, Arnaud L. Novel therapeutic strategies for autoimmune and inflammatory rheumatic diseases. Drug Discov Today 2023; 28:103612. [PMID: 37164306 DOI: 10.1016/j.drudis.2023.103612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Drugs of unknown mechanisms of action are no longer being developed because we have largely capitalized on our improved understanding of the immunopathogenesis of immune-mediated inflammatory diseases (IMIDs) to develop therapeutic monoclonal antibodies (mAbs) and targeted treatments. These therapies have profoundly revolutionized the care of IMIDs. However, because of the heterogeneity of IMIDs and the redundancy of the targeted molecular pathways, some patients with IMIDs might not respond to a specific targeted drug or their disease might relapse secondarily. Therefore, there is much at stake in the development of new therapeutic strategies, which include combinations of mAbs or bispecific mAbs (BsMAbs), nanobodies and nanoparticles (NPs), therapeutic vaccines, small interfering RNA (siRNA) interference, autologous hematopoietic stem cell transplantation (aHSCT), or chimeric antigen receptor (CAR)-T cells. With the broad pipeline of targeted treatments in clinical development, the therapeutic paradigm is rapidly evolving from whether new drugs will be available to the complex selection of the most adequate targeted treatment (or treatment combination) at the patient level. This paradigm change highlights the need to better characterize the heterogeneous immunological spectrum of these diseases. Only then will these novel therapeutic strategies be able to fully demonstrate their potential to treat IMIDs.
Collapse
Affiliation(s)
- Renaud Felten
- Centre d'Investigation Clinique, Inserm 1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Immunopathologie et Chimie Thérapeutique, CNRS UPR 3572, IBMC, Strasbourg, France; Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Philippe Mertz
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eden Sebbag
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marc Scherlinger
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Strasbourg, France
| | - Laurent Arnaud
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Strasbourg, France.
| |
Collapse
|
16
|
Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 2022; 18:575-590. [PMID: 36097207 DOI: 10.1038/s41584-022-00826-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
17
|
Killian M, Colaone F, Haumont P, Nicco C, Cerles O, Chouzenoux S, Cathébras P, Rochereau N, Chanut B, Thomas M, Laroche N, Forest F, Grouard-Vogel G, Batteux F, Paul S. Therapeutic Potential of Anti-Interferon α Vaccination on SjS-Related Features in the MRL/lpr Autoimmune Mouse Model. Front Immunol 2021; 12:666134. [PMID: 34867938 PMCID: PMC8635808 DOI: 10.3389/fimmu.2021.666134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sjögren’s syndrome (SjS) is a frequent systemic autoimmune disease responsible for a major decrease in patients’ quality of life, potentially leading to life-threatening conditions while facing an unmet therapeutic need. Hence, we assessed the immunogenicity, efficacy, and tolerance of IFN-Kinoid (IFN-K), an anti-IFNα vaccination strategy, in a well-known mouse model of systemic autoimmunity with SjS-like features: MRL/MpJ-Faslpr/lpr (MRL/lpr) mice. Two cohorts (with ISA51 or SWE01 as adjuvants) of 26 female MRL/lpr were divided in parallel groups, “controls” (not treated, PBS and Keyhole Limpet Hemocyanin [KLH] groups) or “IFN-K” and followed up for 122 days. Eight-week-old mice received intra-muscular injections (days 0, 7, 28, 56 and 84) of PBS, KLH or IFN-K, emulsified in the appropriate adjuvant, and blood samples were serially collected. At sacrifice, surviving mice were euthanized and their organs were harvested for histopathological analysis (focus score in salivary/lacrimal glands) and IFN signature evaluation. SjS-like features were monitored. IFN-K induced a disease-modifying polyclonal anti-IFNα antibody response in all treated mice with high IFNα neutralization capacities, type 1 IFN signature’s reduction and disease features’ (ocular and oral sicca syndrome, neuropathy, focus score, glandular production of BAFF) improvement, as reflected by the decrease in Murine Sjögren’s Syndrome Disease Activity Index (MuSSDAI) modelled on EULAR Sjögren’s Syndrome Disease Activity Index (ESSDAI). No adverse effects were observed. We herein report on the strong efficacy of an innovative anti-IFNα vaccination strategy in a mouse model of SjS, paving the way for further clinical development (a phase IIb trial has just been completed in systemic lupus erythematosus with promising results).
Collapse
Affiliation(s)
- Martin Killian
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- Internal Medicine Department, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | | | - Carole Nicco
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Olivier Cerles
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Sandrine Chouzenoux
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Pascal Cathébras
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- Internal Medicine Department, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Nicolas Rochereau
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
| | - Blandine Chanut
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
| | - Mireille Thomas
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1059-Sainbiose, Université de Lyon, Saint Priest en Jarez, France
| | - Norbert Laroche
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1059-Sainbiose, Université de Lyon, Saint Priest en Jarez, France
| | - Fabien Forest
- Department of Pathology, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | - Frédéric Batteux
- Team Stress Oxydant, Prolifération Cellulaire et Inflammation, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1016 Institut Cochin, Paris, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie (CIRI), Team Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, Saint-Etienne, France
- *Correspondence: Stéphane Paul,
| |
Collapse
|
18
|
Shen L, Lan L, Zhu T, Chen H, Gu H, Wang C, Chen Y, Wang M, Tu H, Enghard P, Jiang H, Chen J. Identification and Validation of IFI44 as Key Biomarker in Lupus Nephritis. Front Med (Lausanne) 2021; 8:762848. [PMID: 34760904 PMCID: PMC8574154 DOI: 10.3389/fmed.2021.762848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Lupus nephritis (LN) is a common and severe organ manifestation of systemic lupus erythematosus (SLE) and is a major cause of SLE related deaths. Early diagnosis is essential to improve the prognosis of patients with LN. To screen the potential biomarkers associated with LN, we downloaded the gene expression profile of GSE99967 from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was utilized to construct a gene co-expression network and identify gene modules associated with LN. Gene Ontology (GO) analysis was also applied to explore the biological function of genes and identify the key module. Differentially expressed genes (DEGs) were identified and Maximal Clique Centrality (MCC) values were calculated to screen hub genes. Furthermore, we selected promising biomarkers for real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) validation in independent cohorts. Our results indicated that five hub genes, including IFI44, IFIT3, HERC5, RSAD2, and DDX60 play vital roles in the pathogenesis of LN. Importantly, IFI44 may considered as a key biomarker in LN for its diagnostic capabilities, which is also a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hongjun Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Haifeng Gu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Minmin Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haiyan Tu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
19
|
Ramaswamy M, Tummala R, Streicher K, Nogueira da Costa A, Brohawn PZ. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int J Mol Sci 2021; 22:11286. [PMID: 34681945 PMCID: PMC8540355 DOI: 10.3390/ijms222011286] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic success in treating patients with systemic lupus erythematosus (SLE) is limited by the multivariate disease etiology, multi-organ presentation, systemic involvement, and complex immunopathogenesis. Agents targeting B-cell differentiation and survival are not efficacious for all patients, indicating a need to target other inflammatory mediators. One such target is the type I interferon pathway. Type I interferons upregulate interferon gene signatures and mediate critical antiviral responses. Dysregulated type I interferon signaling is detectable in many patients with SLE and other autoimmune diseases, and the extent of this dysregulation is associated with disease severity, making type I interferons therapeutically tangible targets. The recent approval of the type I interferon-blocking antibody, anifrolumab, by the US Food and Drug Administration for the treatment of patients with SLE demonstrates the value of targeting this pathway. Nevertheless, the interferon pathway has pleiotropic biology, with multiple cellular targets and signaling components that are incompletely understood. Deconvoluting the complexity of the type I interferon pathway and its intersection with lupus disease pathology will be valuable for further development of targeted SLE therapeutics. This review summarizes the immune mediators of the interferon pathway, its association with disease pathogenesis, and therapeutic modalities targeting the dysregulated interferon pathway.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Raj Tummala
- Respiratory, Inflammation & Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Katie Streicher
- Translational Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Andre Nogueira da Costa
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| | - Philip Z. Brohawn
- Translational Science and Experimental Medicine, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (A.N.d.C.); (P.Z.B.)
| |
Collapse
|
20
|
Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat Methods 2021; 18:1181-1191. [PMID: 34594031 PMCID: PMC8493809 DOI: 10.1038/s41592-021-01274-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Cytokines are critical for intercellular communication in human health and disease, but the investigation of cytokine signaling activity has remained challenging due to the short half-lives of cytokines and the complexity/redundancy of cytokine functions. To address these challenges, we developed the Cytokine Signaling Analyzer (CytoSig; https://cytosig.ccr.cancer.gov/ ), providing both a database of target genes modulated by cytokines and a predictive model of cytokine signaling cascades from transcriptomic profiles. We collected 20,591 transcriptome profiles for human cytokine, chemokine and growth factor responses. This atlas of transcriptional patterns induced by cytokines enabled the reliable prediction of signaling activities in distinct cell populations in infectious diseases, chronic inflammation and cancer using bulk and single-cell transcriptomic data. CytoSig revealed previously unidentified roles of many cytokines, such as BMP6 as an anti-inflammatory factor, and identified candidate therapeutic targets in human inflammatory diseases, such as CXCL8 for severe coronavirus disease 2019.
Collapse
|
21
|
Hou P, Lin Y, Li Z, Lu R, Wang Y, Tian T, Jia P, Zhang X, Cao L, Zhou Z, Li C, Gu J, Guo D. Autophagy receptor CCDC50 tunes the STING-mediated interferon response in viral infections and autoimmune diseases. Cell Mol Immunol 2021; 18:2358-2371. [PMID: 34453126 PMCID: PMC8484562 DOI: 10.1038/s41423-021-00758-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
DNA sensing and timely activation of interferon (IFN)-mediated innate immunity are crucial for the defense against DNA virus infections and the clearance of abnormal cells. However, overactivation of immune responses may lead to tissue damage and autoimmune diseases; therefore, these processes must be intricately regulated. STING is the key adaptor protein, which is activated by cyclic GMP-AMP, the second messenger derived from cGAS-mediated DNA sensing. Here, we report that CCDC50, a newly identified autophagy receptor, tunes STING-directed type I IFN signaling activity by delivering K63-polyubiquitinated STING to autolysosomes for degradation. Knockout of CCDC50 significantly increases herpes simplex virus 1 (HSV-1)- or DNA ligand-induced production of type I IFN and proinflammatory cytokines. Ccdc50-deficient mice show increased production of IFN, decreased viral replication, reduced cell infiltration, and improved survival rates compared with their wild-type littermates when challenged with HSV-1. Remarkably, the expression of CCDC50 is downregulated in systemic lupus erythematosus (SLE), a chronic autoimmune disease. CCDC50 levels are negatively correlated with IFN signaling pathway activation and disease severity in human SLE patients. CCDC50 deficiency potentiates the cGAS-STING-mediated immune response triggered by SLE serum. Thus, our findings reveal the critical role of CCDC50 in the immune regulation of viral infections and autoimmune diseases and provide insights into the therapeutic implications of CCDC50 manipulation.
Collapse
Affiliation(s)
- Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ruiqing Lu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xi Zhang
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liu Cao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongwei Zhou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jieruo Gu
- Division of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
22
|
Cui M, Li T, Yan X, Wang C, Shen Q, Ren H, Li L, Zhang R. Blood Genomics Identifies Three Subtypes of Systemic Lupus Erythematosus: "IFN-High," "NE-High," and "Mixed". Mediators Inflamm 2021; 2021:6660164. [PMID: 34305454 PMCID: PMC8270691 DOI: 10.1155/2021/6660164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Systemic lupus erythematosus (SLE) is a systemic and multifactorial autoimmune disease, and its diverse clinical manifestations affect molecular diagnosis and drug benefits. Our study was aimed at defining the SLE subtypes based on blood transcriptome data, analyzing functional patterns, and elucidating drug benefits. METHODS Three data sets were used in this paper that were collected from the Gene Expression Omnibus (GEO) database, which contained two published data sets of pediatric and adult SLE patients (GSE65391, GSE49454) and public longitudinal data (GSE72754) from a cohort of SLE patients treated with IFN-α Kinoid (IFN-K). Based on disease activity scores and gene expression data, we defined a global SLE signature and merged three clustering algorithms to develop a single-sample subtype classifier (SSC). Systematic analysis of coexpression networks based on modules revealed the molecular mechanism for each subtype. RESULTS We identified 92 genes as a signature of the SLE subtypes and three intrinsic subsets ("IFN-high," "NE-high," and "mixed"), which varied in disease severity. We speculated that IFN-high might be due to the overproduction of interferons (IFNs) caused by viral infection, leading to the formation of autoantibodies. NE-high might primarily result from bacterial and fungal infections that stimulated neutrophils (NE) to produce neutrophil extracellular traps (NETs) and induced individual autoimmune responses. The mixed type contained both of these molecular mechanisms and showed an intrinsic connection. CONCLUSIONS Our research results indicated that identifying the molecular mechanism associated with different SLE subtypes would benefit the molecular diagnosis and stratified therapy. Moreover, repositioning of IFN-K based on subtypes also revealed an improved therapeutic effect, providing a new direction for disease treatment and drug development.
Collapse
Affiliation(s)
- Mintian Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Taotao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xinwei Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qi Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Hongbiao Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liangshuang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
23
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
24
|
Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol 2021; 17:349-362. [PMID: 33907323 PMCID: PMC8077192 DOI: 10.1038/s41584-021-00606-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNβ) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun 2021; 12:2574. [PMID: 33976140 PMCID: PMC8113315 DOI: 10.1038/s41467-021-22834-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is characterized by elevated levels of IgE antibodies, type 2 cytokines such as interleukin-4 (IL-4) and IL-13, airway hyperresponsiveness (AHR), mucus hypersecretion and eosinophilia. Approved therapeutic monoclonal antibodies targeting IgE or IL-4/IL-13 reduce asthma symptoms but require costly lifelong administrations. Here, we develop conjugate vaccines against mouse IL-4 and IL-13, and demonstrate their prophylactic and therapeutic efficacy in reducing IgE levels, AHR, eosinophilia and mucus production in mouse models of asthma analyzed up to 15 weeks after initial vaccination. More importantly, we also test similar vaccines specific for human IL-4/IL-13 in mice expressing human IL-4/IL-13 and the related receptor, IL-4Rα, to find efficient neutralization of both cytokines and reduced IgE levels for at least 11 weeks post-vaccination. Our results imply that dual IL-4/IL-13 vaccination may represent a cost-effective, long-term therapeutic strategy for the treatment of allergic asthma as demonstrated in mouse models, although additional studies are warranted to assess its safety and feasibility. Asthma is caused by hyperreactivity to benign antigens, with humoral immunity orchestrated by interleukin-4 (IL-4) and IL-13 being the key etiological factor. Here the authors show, in humanized mouse models, that dual vaccination against IL-4 and IL-13 induces their durable suppression ameliorate experimental asthma, and to hint clinical translation.
Collapse
|
26
|
Chasset F, Dayer JM, Chizzolini C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021; 12:633821. [PMID: 33986670 PMCID: PMC8112244 DOI: 10.3389/fphar.2021.633821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.
Collapse
Affiliation(s)
- François Chasset
- Department of Dermatology and Allergology, Faculty of Medicine, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Jean-Michel Dayer
- Emeritus Professor of Medicine, School of Medicine, Geneva University, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
27
|
Duguet F, Ortega-Ferreira C, Fould B, Darville H, Berger S, Chomel A, Leclerc G, Kisand K, Haljasmägi L, Hayday AC, Desvaux E, Nony E, Moingeon P, De Ceuninck F. S95021, a novel selective and pan-neutralizing anti interferon alpha (IFN-α) monoclonal antibody as a candidate treatment for selected autoimmune rheumatic diseases. J Transl Autoimmun 2021; 4:100093. [PMID: 33748735 PMCID: PMC7972961 DOI: 10.1016/j.jtauto.2021.100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Increased interferon-α (IFN-α) production is a critical component in the pathophysiology of systemic lupus erythematosus (SLE) and other rheumatic autoimmune diseases. Herein, we report the characterization of S95021, a fully human IgG1 anti-IFN-α monoclonal antibody (mAb) as a novel therapeutic candidate for targeted patient populations. S95021 was expressed in CHOZN GS-/- cells, purified by chromatography and characterized by using electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry. High purity S95021 was obtained as a monomeric entity comprising different charge variants mainly due to N-glycosylation. Surface plasmon resonance kinetics experiments showed strong association rates with all IFN-α subtypes and estimated KDs below picomolar values. Pan-IFN-α-binding properties were confirmed by immunoprecipitation assays and neutralization capacity with reporter HEK-Blue IFN-α/β cells. S95021 was IFN-α-selective and exhibited superior potency and broader neutralization profile when compared with the benchmark anti-IFN-α mAbs rontalizumab and sifalimumab. STAT-1 phosphorylation and the type I IFN gene signature induced in human peripheral blood mononuclear cells by recombinant IFN-α subtypes or plasmas from selected autoimmune patients were efficiently reduced by S95021 in a dose-dependent manner. Together, our results show that S95021 is a new potent, selective and pan IFN-α-neutralizing mAb. It is currently further evaluated as a valid therapeutic candidate in selected autoimmune diseases in which the IFN-α pro-inflammatory pathway is dysregulated.
Collapse
Affiliation(s)
- Fanny Duguet
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Céline Ortega-Ferreira
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Benjamin Fould
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Hélène Darville
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Sylvie Berger
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Agnès Chomel
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Grégory Leclerc
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu, 50411, Estonia
- ImmunoQure AG, Königsallee 90, 2012, Düsseldorf, Germany
| | - Liis Haljasmägi
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu, 50411, Estonia
| | - Adrian C. Hayday
- ImmunoQure AG, Königsallee 90, 2012, Düsseldorf, Germany
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, The Francis Crick Institute, London, UK
| | - Emiko Desvaux
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Emmanuel Nony
- Center of Biotechnological Expertise, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Philippe Moingeon
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| | - Frédéric De Ceuninck
- Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy sur Seine, France
| |
Collapse
|
28
|
Tanaka Y, Tummala R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: an overview from clinical trials. Mod Rheumatol 2020; 31:1-12. [PMID: 32814461 DOI: 10.1080/14397595.2020.1812201] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic activation of the type I interferon (IFN) pathway plays a critical role in systemic lupus erythematosus (SLE) pathogenesis. Anifrolumab is a human monoclonal antibody to the type I IFN receptor subunit 1, which blocks the action of type I IFNs. Two phase 3 studies (TULIP-1 and TULIP-2) and a phase 2b study (MUSE) provide substantial evidence for the efficacy and safety of anifrolumab for moderately to severely active SLE. In all three studies, monthly intravenous anifrolumab 300 mg was associated with treatment differences >16% compared with placebo at Week 52 in British Isles Lupus Assessment Group-based Composite Lupus Assessment response rates. The combined data across a range of other clinically significant endpoints (e.g. oral corticosteroid reduction, improved skin disease, flare reduction) further support the efficacy of anifrolumab for SLE treatment. The safety profile of anifrolumab was generally similar across all studies; serious adverse events occurred in 8-16% and 16-19% of patients receiving anifrolumab and placebo, respectively. Herpes zoster incidence was greater with anifrolumab (≤7%) vs placebo (≤2%). Evidence from these clinical trials suggests that in patients with active SLE, anifrolumab is superior to placebo in achieving composite endpoints of disease activity response and oral corticosteroid reduction.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Raj Tummala
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
29
|
Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs 2020; 29:1025-1041. [PMID: 32700979 PMCID: PMC7924012 DOI: 10.1080/13543784.2020.1797677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a severe chronic and incurable autoimmune disease. Treatment includes glucocorticoids and immunosuppressants which typically result in partial responses, and hence there is a great need for new therapies. The type I interferon (IFN) pathway is activated in more than 50% of SLE patients, and it is strongly implicated as a pathogenic factor in SLE. AREAS COVERED We searched the literature using 'SLE and interferon antagonists' as search terms. This identified a number of therapeutics that have entered clinical development targeting type I IFN in SLE. These include monoclonal antibodies against type I IFN cytokines and a kinoid vaccination strategy to induce anti-IFN antibodies. EXPERT OPINION Type I IFN antagonists have had some success, but many molecules have not progressed to phase III. These varied results are likely attributed to the multiple concurrent cytokine abnormalities present in SLE, the imprecise nature of the IFN signature as a readout for type I IFN and difficulties with clinical trials such as background medication use and diffuse composite disease activity measures. Despite these challenges, it seems likely that a type I IFN antagonist will come to clinical utility for SLE given the large unmet need and the recent phase III success with anifrolumab.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| |
Collapse
|
30
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
31
|
Shores LS, Kelly SH, Hainline KM, Suwanpradid J, MacLeod AS, Collier JH. Multifactorial Design of a Supramolecular Peptide Anti-IL-17 Vaccine Toward the Treatment of Psoriasis. Front Immunol 2020; 11:1855. [PMID: 32973764 PMCID: PMC7461889 DOI: 10.3389/fimmu.2020.01855] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Current treatments for chronic immune-mediated diseases such as psoriasis, rheumatoid arthritis, or Crohn's disease commonly rely on cytokine neutralization using monoclonal antibodies; however, such approaches have drawbacks. Frequent repeated dosing can lead to the formation of anti-drug antibodies and patient compliance issues, and it is difficult to identify a single antibody that is broadly efficacious across diverse patient populations. As an alternative to monoclonal antibody therapy, anti-cytokine immunization is a potential means for long-term therapeutic control of chronic inflammatory diseases. Here we report a supramolecular peptide-based approach for raising antibodies against IL-17 and demonstrate its efficacy in a murine model of psoriasis. B-cell epitopes from IL-17 were co-assembled with the universal T-cell epitope PADRE using the Q11 self-assembling peptide nanofiber system. These materials, with or without adjuvants, raised antibody responses against IL-17. Exploiting the modularity of the system, multifactorial experimental designs were used to select formulations maximizing titer and avidity. In a mouse model of psoriasis induced by imiquimod, unadjuvanted nanofibers had therapeutic efficacy, which could be enhanced with alum adjuvant but reversed with CpG adjuvant. Measurements of antibody subclass induced by adjuvanted and unadjuvanted formulations revealed strong correlations between therapeutic efficacy and titers of IgG1 (improved efficacy) or IgG2b (worsened efficacy). These findings have important implications for the development of anti-cytokine active immunotherapies and suggest that immune phenotype is an important metric for eliciting therapeutic anti-cytokine antibody responses.
Collapse
Affiliation(s)
- Lucas S Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kelly M Hainline
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jutamas Suwanpradid
- Department of Dermatology, Duke University School of Medicine, Durham, NC, United States
| | - Amanda S MacLeod
- Department of Dermatology, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
32
|
De Groof A, Ducreux J, Aleva F, Long AJ, Ferster A, van der Ven A, van de Veerdonk F, Houssiau FA, Lauwerys BR. STAT3 phosphorylation mediates the stimulatory effects of interferon alpha on B cell differentiation and activation in SLE. Rheumatology (Oxford) 2020; 59:668-677. [PMID: 31504941 DOI: 10.1093/rheumatology/kez354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type I IFNs play a well-known role in the pathogenesis of SLE, through activation of CD4 T and antigen-presenting cells. Here, we investigated the effects of IFN alpha (IFNα) on SLE B cell activation and differentiation. METHODS Peripheral blood mononuclear cells (PBMCs) and purified total or naïve B cells were obtained from healthy controls and SLE patients. The effects of IFNα on B cell differentiation were studied by flow cytometry. The role of STAT3 in B cell responses to IFNα was studied using pharmacological inhibitors and PBMCs from STAT3-deficient individuals. RESULTS Incubation of normal PBMCs with IFNα induces a B cell differentiation pattern as observed spontaneously in SLE PBMCs. IFNα displays direct stimulatory effects on purified naïve B cells from healthy individuals, as evidenced by a significant induction of cell surface CD38 and CD95 in the presence of the cytokine. In purified naïve B cells, IFNα also induces STAT3 phosphorylation. IFNα-induced naïve B cell differentiation in total PBMCs is significantly inhibited in the presence of STAT3 inhibitors, or in PBMCs from individuals with STAT3 loss of function mutations. Spontaneous levels of STAT3, but not STAT1, phosphorylation are significantly higher in total B cells from SLE patients compared with controls. Pharmacological STAT3 inhibition in SLE PBMCs inhibits naïve B cell activation and differentiation. CONCLUSION IFNα displays direct stimulatory effects on B cell differentiation and activation in SLE. STAT3 phosphorylation mediates the effects of IFNα stimulation in naïve B cells, an observation that opens new therapeutic perspectives in SLE.
Collapse
Affiliation(s)
- Aurélie De Groof
- Pôle de pathologies rhumatismales inflammatoires et systémiques, Institut de Recherche Expérimentale et Cliniques, Université catholique de Louvain, Brussels, Belgium
| | - Julie Ducreux
- Pôle de pathologies rhumatismales inflammatoires et systémiques, Institut de Recherche Expérimentale et Cliniques, Université catholique de Louvain, Brussels, Belgium
| | - Floor Aleva
- Department of General Internal Medicine, Radboud University, Nijmegen, The Netherlands
| | - Andrew J Long
- Department of Pharmacology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Alina Ferster
- Service d'Onco-Hématologie, Hôpital Reine Fabiola, Brussels, Belgium
| | - Andre van der Ven
- Department of General Internal Medicine, Radboud University, Nijmegen, The Netherlands
| | - Frank van de Veerdonk
- Department of General Internal Medicine, Radboud University, Nijmegen, The Netherlands
| | - Frédéric A Houssiau
- Pôle de pathologies rhumatismales inflammatoires et systémiques, Institut de Recherche Expérimentale et Cliniques, Université catholique de Louvain, Brussels, Belgium.,Service de Rhumatologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bernard R Lauwerys
- Pôle de pathologies rhumatismales inflammatoires et systémiques, Institut de Recherche Expérimentale et Cliniques, Université catholique de Louvain, Brussels, Belgium.,Service de Rhumatologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
33
|
Udhaya Kumar S, Thirumal Kumar D, Siva R, George Priya Doss C, Younes S, Younes N, Sidenna M, Zayed H. Dysregulation of Signaling Pathways Due to Differentially Expressed Genes From the B-Cell Transcriptomes of Systemic Lupus Erythematosus Patients - A Bioinformatics Approach. Front Bioeng Biotechnol 2020; 8:276. [PMID: 32426333 PMCID: PMC7203449 DOI: 10.3389/fbioe.2020.00276] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that is clinically complex and has increased production of autoantibodies. Via emerging technologies, researchers have identified genetic variants, expression profiling of genes, animal models, and epigenetic findings that have paved the way for a better understanding of the molecular and genetic mechanisms of SLE. Our current study aimed to illustrate the essential genes and molecular pathways that are potentially involved in the pathogenesis of SLE. This study incorporates the gene expression profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between the B-cell transcriptomes of SLE patients and healthy controls were screened using the GEO2R web tool. The identified DEGs were subjected to STRING analysis and Cytoscape to explore the protein-protein interaction (PPI) networks between them. The MCODE (Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the significant pathways that were enriched. For integrative analysis, we used GeneGo MetacoreTM, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and enriched pathways between the datasets. Our study identified 4 upregulated and 13 downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed the pathways that were statistically significant, including pathways involving T-cell costimulation, lymphocyte costimulation, negative regulation of vascular permeability, and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway. Additionally, potentially enriched pathways, such as the signaling pathways induced by oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen receptor activation pathway, were identified from the DEGs that were mainly associated with the immune system. Four genes (EGR1, CD38, CAV1, and AKT1) were identified to be strongly associated with SLE. Our integrative analysis using a multitude of bioinformatics tools might promote an understanding of the dysregulated pathways that are associated with SLE development and progression. The four DEGs in SLE patients might shed light on the pathogenesis of SLE and might serve as potential biomarkers in early diagnosis and as therapeutic targets for SLE.
Collapse
Affiliation(s)
- S. Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - D. Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - R. Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C. George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nadin Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mariem Sidenna
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
34
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
35
|
Houssiau FA, Thanou A, Mazur M, Ramiterre E, Gomez Mora DA, Misterska-Skora M, Perich-Campos RA, Smakotina SA, Cerpa Cruz S, Louzir B, Croughs T, Tee ML. IFN-α kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis 2020; 79:347-355. [PMID: 31871140 DOI: 10.1136/annrheumdis-2019-216379] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of the immunotherapeutic vaccine interferon-α kinoid (IFN-K) in a 36-week (W) phase IIb, randomised, double-blind, placebo (PBO)-controlled trial in adults with active systemic lupus erythematosus (SLE) despite standard of care. METHODS Patients with SLE (185) with moderate to severe disease activity and positive interferon (IFN) gene signature were randomised to receive IFN-K or PBO intramuscular injections (days 0, 7 and 28 and W12 and W24). Coprimary endpoints at W36 were neutralisation of IFN gene signature and the BILAG-Based Composite Lupus Assessment (BICLA) modified by mandatory corticosteroid (CS) tapering. RESULTS IFN-K induced neutralising anti-IFN-α2b serum antibodies in 91% of treated patients and reduced the IFN gene signature (p<0.0001). Modified BICLA responses at W36 did not statistically differ between IFN-K (41%) and PBO (34%). Trends on Systemic Lupus Erythematosus Responder Index-4, including steroid tapering at W36, favoured the IFN-K and became significant (p<0.05) in analyses restricted to patients who developed neutralising anti-IFN-α2b antibodies. Attainment of lupus low disease activity state (LLDAS) at W36 discriminated the two groups in favour of IFN-K (53% vs 30%, p=0.0022). A significant CS sparing effect of IFN-K was observed from W28 onwards, with a 24% prednisone daily dose reduction at W36 in IFN-K compared with PBO (p=0.0097). The safety profile of IFN-K was acceptable. CONCLUSIONS IFN-K induced neutralising anti-IFN-α2b antibodies and significantly reduced the IFN gene signature with an acceptable safety profile. Although the clinical coprimary endpoint was not met, relevant secondary endpoints were achieved in the IFN-K group, including attainment of LLDAS and steroid tapering. TRIAL REGISTRATION NUMBER NCT02665364.
Collapse
Affiliation(s)
- Frederic A Houssiau
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Service de Rhumatologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aikaterini Thanou
- Oklahoma Medical Research Foundation Arthritis and Clinical Immunology Research Program, Oklahoma, Oklahoma, USA
| | - Minodora Mazur
- Department of Internal Medicine, State Medical and Pharmaceutical University 'Nicolae Testemitanu', Chisinau, Republic of Moldova
| | - Edgar Ramiterre
- Section of Rheumatology, Department of Internal Medicine, Southern Philippines Medical Center, Davao, Philippines
| | | | | | - Risto Alfredo Perich-Campos
- Rheumatology Department, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru
- Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Svetlana A Smakotina
- Therapy Department of Kemerovo, Kemerovo State Medical University, Kemerovo, Russian Federation
| | - Sergio Cerpa Cruz
- Rheumatology Department, Hospital Civil de Guadalajara 'Fray Antonio Alcalde', Guadalajara, Mexico
| | - Bassem Louzir
- Department of Internal Medicine, Military hospital of Tunis, Tunis, Tunisia
| | | | - Michael Lucas Tee
- Department of Physiology, College of Medicine, University of the Philippines Manila and ManilaMed, Manila, Philippines
| |
Collapse
|
36
|
Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol 2020; 15:403-412. [PMID: 31165780 DOI: 10.1038/s41584-019-0235-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The failure of many new, mostly biologic, drugs to meet their primary end points in double-blind clinical trials in patients with systemic lupus erythematosus (SLE) has caused a profound sense of disappointment among both physicians and patients. Arguably, the success of B cell depletion with rituximab in open-label clinical trials, the approval of belimumab (which blocks B cell-activating factor (BAFF)) for use in patients with lupus nephritis in the USA and in difficult-to-treat patients with SLE in the UK and the recognition that clinical trial design can be improved have given some cause for hope. However, changes to therapies in current use and the development of new approaches are urgently needed. The results of the latest studies investigating the use of several new approaches to treating SLE are discussed in this Review, including: fully humanized anti-CD20 and anti-CD19 monoclonal antibodies; inhibition of tyrosine-protein kinase BTK; CD40 ligand blockade; interfering with the presentation of antigen to autoreactive T cells using a peptide approach; a receptor decoy approach using an analogue of Fcγ receptor IIB; dual blockade of IL-12 and IL-23; and inhibition of Janus kinases.
Collapse
Affiliation(s)
- Grainne Murphy
- Department of Rheumatology, Cork University Hospital, Cork, Ireland
| | - David A Isenberg
- Centre for Rheumatology/Division of Medicine, University College London, London, UK.
| |
Collapse
|
37
|
Haynes WA, Haddon DJ, Diep VK, Khatri A, Bongen E, Yiu G, Balboni I, Bolen CR, Mao R, Utz PJ, Khatri P. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020; 5:122312. [PMID: 31971918 DOI: 10.1172/jci.insight.122312] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.
Collapse
Affiliation(s)
- Winston A Haynes
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| | - D James Haddon
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Vivian K Diep
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Avani Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Erika Bongen
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Gloria Yiu
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Imelda Balboni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Rong Mao
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection.,Division of Immunology and Rheumatology, Department of Medicine, and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection.,Division of Biomedical Informatics Research
| |
Collapse
|
38
|
Goroshchuk O, Vidarsdottir L, Björklund AC, Hamil AS, Kolosenko I, Dowdy SF, Palm-Apergi C. Targeting Plk1 with siRNNs in primary cells from pediatric B-cell acute lymphoblastic leukemia patients. Sci Rep 2020; 10:2688. [PMID: 32060361 PMCID: PMC7021816 DOI: 10.1038/s41598-020-59653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) accounts for nearly one fifth of all childhood cancers and current challenges in B-ALL treatment include resistance, relapse and late-onset side effects due to the chemotherapy. To overcome these hurdles, novel therapies need to be investigated. One promising target is Polo-like kinase 1 (Plk1), a key regulator of the cell cycle. In this study, the Plk family expression is investigated in primary peripheral blood and bone marrow mononuclear cells from ten pediatric B-ALL patients. For the first time, short interfering RiboNucleic Neutrals (siRNNs) that enter cells without a transfection reagent are used to target Plk1 mRNA in primary cells from pediatric B-ALL patients. Our results show that the expression of Plk1 and Plk4 is significantly higher in pediatric B-ALL patients compared to healthy donors. Moreover, treatment of primary peripheral blood and bone marrow mononuclear cells from pediatric B-ALL patients, cultured ex vivo, with Plk1-targeting siRNNs results in cleavage of Plk1 mRNA. Importantly, the Plk1 knockdown is specific and does not affect other Plk members in contrast to many small molecule Plk1 inhibitors. Thus, Plk1 is a potential therapeutic target in pediatric B-ALL and selective targeting of Plk1 can be achieved by the use of siRNNs.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Björklund
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Alexander S Hamil
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Steven F Dowdy
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
39
|
Rostami-Nejad M, Yazdi MH, Nikfar S, Rezaie A, Abdollahi M. Potential Vaccines for Treating Crohn's Disease. IRANIAN BIOMEDICAL JOURNAL 2020; 24:1-14. [PMCID: PMC6900481 DOI: 10.29252/ibj.24.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
CD is an inflammatory disease of the GIT and can affect several parts of the digestive system. There is a relationship between impaired mucosal barrier in the GIT of IBD patients and the role of bacteria such as MAP in CD. Apart from different therapeutic approaches for treating CD, development of a vaccine is a novel modality. In the present article, most available therapeutic opportunities in the last decade, especially the possibility of vaccines against CD, are reviewed. According to the search, availability of a new generation of vaccines against CD is expected specially tolerogenic ex vivo -derived DC-based vaccines. Regarding different locations of the challenge and the variety of clinical manifests of CD and also the type of resident antigen-presenting cells and their traffic in different parts of GIT, the results of immunotherapy with DC-based vaccines may vary case by case.
Collapse
Affiliation(s)
- Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rezaie
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Howe HS, Leung BPL. Anti-Cytokine Autoantibodies in Systemic Lupus Erythematosus. Cells 2019; 9:E72. [PMID: 31892200 PMCID: PMC7016754 DOI: 10.3390/cells9010072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Cytokine dysregulation is characteristic of systemic lupus erythematosus (SLE), a systemic autoimmune disease of considerable heterogeneity. Insights gained about the cytokine dysregulation in SLE have the potential for identifying patient subsets before the onset of clinical disease and during established disease. Clustering patients by cytokine and disease activity subsets is more informative than isolated cytokine studies, as both pro inflammatory and immunoregulatory cytokines contribute to the cytokine dysregulated state in SLE. Endogenous anti-cytokine autoantibodies (ACAAs) may be involved in the regulation of cytokine biology by reducing excessive production or by prolonging their half-life in the circulation through the formation of cytokine-antibody immune complexes. Although endogenous ACAAs may have deleterious effects such as contributing to immunodeficiency states, their role in the pathophysiology of autoimmune conditions such as SLE has yet to be clearly elucidated. The aim of the present article is to provide a focused review of the current knowledge of ACAAs in SLE.
Collapse
Affiliation(s)
- Hwee Siew Howe
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Bernard Pui Lam Leung
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
41
|
Yang F, Zhai Z, Luo X, Luo G, Zhuang L, Zhang Y, Li Y, Sun E, He Y. Bioinformatics identification of key candidate genes and pathways associated with systemic lupus erythematosus. Clin Rheumatol 2019; 39:425-434. [PMID: 31673979 DOI: 10.1007/s10067-019-04751-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/13/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and multi-system involvement, but the etiology is largely unclear. This study aimed to elucidate candidate genes and pathways involved in SLE. METHODS Three original datasets GSE72509, GSE20864, and GSE39088 were downloaded from Gene Expression Omnibus (GEO) and the data were further integrated and analyzed. Subsequently, differentially expressed genes (DEGs) between SLE patients and healthy people were identified. And then we performed gene ontology (GO) function and pathway enrichment analyses of common DEGs, and constructed a protein-protein interaction (PPI) network with STRING database. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was carried out to validate the expression levels of candidate genes in blood samples from SLE patients and healthy controls. RESULTS In total, 321 common DEGs were identified in SLE patients compared with healthy controls, including 231 upregulated and 90 downregulated genes. GO function analysis revealed that 321 common DEGs were mainly enriched in innate immune response, defense response, cytokine-mediated signaling pathway, response to interferon-alpha, and I-kappaB kinase/NF-kappaB signaling. Additionally, pathway enrichment analysis indicated that DEGs were mainly enriched in several signaling pathways associated with immune system and apoptosis, including RIG-I-like receptor signaling pathway, antigen processing and presentation, and p53 signaling pathway. The expression levels of candidate genes RPL26L1, FBXW11, FOXO1, and SMAD7 were validated by RT-qPCR analysis. CONCLUSIONS The four hub genes including RPL26L1, FBXW11, FOXO1, and SMAD7 may play key roles in the pathogenesis and development of SLE. RIG-I-like receptor signaling pathway, antigen processing and presentation pathway, and p53 signaling pathway may be closely implicated in SLE pathogenesis. Collectively, these results may provide valuable novel markers or targets for the diagnosis and treatment of SLE.Key Points• Integrated bioinformatics analysis of three profile datasets based on SLE patients and healthy controls was performed and 321 common DEGs were identified.• The 321 common DEGs were mainly enriched in biological processes related to immune responses and inflammatory responses, including innate immune response, defense response, cytokine-mediated signaling pathway, response to interferon-alpha, I-kappaB kinase/NF-kappaB signaling, whereas the three most significant cellular components were oxidoreductase complex, AIM2 inflammasome complex, and ubiquitin ligase complex.• KEGG pathway enrichment analysis indicated that common DEGs were mainly enriched in several signaling pathways associated with immune system and apoptosis, including RIG-I-like receptor signaling pathway, antigen processing and presentation, and p53 signaling pathway.• Candidate genes RPL26L1, FBXW11, FOXO1, and SMAD7 may be closely involved in the pathogenesis and development of SLE and may provide valuable novel markers or targets for the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Xiaoqing Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yanan Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, China.
| |
Collapse
|
42
|
Smith MA, Henault J, Karnell JL, Parker ML, Riggs JM, Sinibaldi D, Taylor DK, Ettinger R, Grant EP, Sanjuan MA, Kolbeck R, Petri MA, Casey KA. SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus. Sci Rep 2019; 9:14433. [PMID: 31594956 PMCID: PMC6783423 DOI: 10.1038/s41598-019-50231-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) impacts multiple organ systems, although the causes of many individual SLE pathologies are poorly understood. This study was designed to elucidate organ-specific inflammation by identifying proteins that correlate with SLE organ involvement and to evaluate established biomarkers of disease activity across a diverse patient cohort. Plasma proteins and autoantibodies were measured across seven SLE manifestations. Comparative analyses between pathologies and correlation with the SLE Disease Activity Index (SLEDAI) were used to identify proteins associated with organ-specific and composite disease activity. Established biomarkers of composite disease activity, SLE-associated antibodies, type I interferon (IFN), and complement C3, correlated with composite SLEDAI, but did not significantly associate with many individual SLE pathologies. Two clusters of proteins were associated with renal disease in lupus nephritis samples. One cluster included markers of infiltrating leukocytes and the second cluster included markers of tissue remodelling. In patients with discoid lupus, a distinct signature consisting of elevated immunoglobulin A autoantibodies and interleukin-23 was observed. Our findings indicate that proteins from blood samples can be used to identify protein signatures that are distinct from established SLE biomarkers and SLEDAI and could be used to conveniently monitor multiple inflammatory pathways present in different organ systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Michelle A Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kerry A Casey
- AstraZeneca, Gaithersburg, MD, USA.
- Allen Institute for Immunology, 615 Westlake Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
43
|
Multi-study reanalysis of 2,213 acute myeloid leukemia patients reveals age- and sex-dependent gene expression signatures. Sci Rep 2019; 9:12413. [PMID: 31455838 PMCID: PMC6712049 DOI: 10.1038/s41598-019-48872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
In 2019 it is estimated that more than 21,000 new acute myeloid leukemia (AML) patients will be diagnosed in the United States, and nearly 11,000 are expected to die from the disease. AML is primarily diagnosed among the elderly (median 68 years old at diagnosis). Prognoses have significantly improved for younger patients, but as much as 70% of patients over 60 years old will die within a year of diagnosis. In this study, we conducted a reanalysis of 2,213 acute myeloid leukemia patients compared to 548 healthy individuals, using curated publicly available microarray gene expression data. We carried out an analysis of normalized batch corrected data, using a linear model that included considerations for disease, age, sex, and tissue. We identified 974 differentially expressed probe sets and 4 significant pathways associated with AML. Additionally, we identified 375 age- and 70 sex-related probe set expression signatures relevant to AML. Finally, we trained a k nearest neighbors model to classify AML and healthy subjects with 90.9% accuracy. Our findings provide a new reanalysis of public datasets, that enabled the identification of new gene sets relevant to AML that can potentially be used in future experiments and possible stratified disease diagnostics.
Collapse
|
44
|
An update on the role of type I interferons in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2019; 30:471-481. [PMID: 29889694 DOI: 10.1097/bor.0000000000000524] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share several clinical and laboratory features, including an overexpression of type I interferon (IFN) regulated genes. The genetic background to this IFN signature and the role of the type I IFN system in the disease process have been partly clarified. Here, we summarize the latest information concerning the type I IFN system in both diseases. RECENT FINDINGS A number of gene variants in the type I IFN signalling pathways associate with an increased risk for both SLE and pSS in several ethnicities. The function of some risk gene variants has been elucidated, as well as the importance of epigenetic changes in type I IFN regulated genes. MicroRNA-451 and miR-302d have been shown to target IFN regulatory factor 8 and 9, suggesting that noncoding RNAs can control the IFN system. A prominent type I IFN activation is related to several disease manifestations, and in SLE to a more severe disease phenotype. Phase II studies in SLE suggest beneficial effects of blocking the type I IFN receptor. SUMMARY The activated type I IFN system in SLE and pSS has a strong genetic component, is important in the disease etiopathogenesis and can be targeted.
Collapse
|
45
|
Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lancet 2019; 393:2344-2358. [PMID: 31180031 DOI: 10.1016/s0140-6736(19)30546-x] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
The heterogeneity of systemic lupus erythematosus (SLE), long recognised by clinicians, is now challenging the entire lupus community, from geneticists to clinical investigators. Although the outlook for patients with SLE has greatly improved, many unmet needs remain, chief of which is the development of safer and more efficacious therapies. To develop innovative therapies, a far better understanding of SLE pathogenesis as it relates to the array of clinical phenotypes is needed. Additionally, to efficiently achieve these goals, the lupus community needs to refine existing clinical research tools and better adapt them to overcome the obstacles created by the heterogeneity of manifestations. Here, we review progress towards the ultimate goal of safely reducing disease activity and preventing damage accrual and death. We discuss the new classification criteria from the European League Against Rheumatism and American College of Rheumatology, novel definitions of remission and low lupus disease activity, and new proposals for the histological classification of lupus nephritis. Recommendations for the treatment of SLE and novel approaches to drug development hold much promise to further enhance SLE outcomes.
Collapse
Affiliation(s)
- Thomas Dörner
- Department of Medicine and Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Center (DRFZ), Berlin, Germany.
| | - Richard Furie
- Division of Rheumatology Northwell Health and Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| |
Collapse
|
46
|
Taroni JN, Grayson PC, Hu Q, Eddy S, Kretzler M, Merkel PA, Greene CS. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Syst 2019; 8:380-394.e4. [PMID: 31121115 PMCID: PMC6538307 DOI: 10.1016/j.cels.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Most gene expression datasets generated by individual researchers are too small to fully benefit from unsupervised machine-learning methods. In the case of rare diseases, there may be too few cases available, even when multiple studies are combined. To address this challenge, we utilize transfer learning to extract coordinated expression patterns and use learned patterns to analyze small rare disease datasets. We trained a pathway-level information extractor (PLIER) model on a large public data compendium comprising multiple experiments, tissues, and biological conditions and then transferred the model to small datasets in an approach we call MultiPLIER. Models constructed from the public data compendium included features that aligned well to known biological factors and were more comprehensive than those constructed from individual datasets or conditions. When transferred to rare disease datasets, the models describe biological processes related to disease severity more effectively than models trained only on a given dataset.
Collapse
Affiliation(s)
- Jaclyn N Taroni
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Childhood Cancer Data Laboratory, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiwen Hu
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, USA
| | - Peter A Merkel
- Division of Rheumatology and the Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey S Greene
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Childhood Cancer Data Laboratory, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA; Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute of Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Felten R, Scher F, Sagez F, Chasset F, Arnaud L. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1535-1543. [PMID: 31190735 PMCID: PMC6514126 DOI: 10.2147/dddt.s170969] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Previous reports have described the appearance of systemic lupus erythematosus (SLE) cases following interferon-α (IFN-α) therapy, IFN-regulated gene expression is significantly increased in SLE, and an association between SLE and gene variants belonging to IFN downstream pathways has been shown. Based on this, targeting of IFN and of their signaling pathways has appeared to be interesting developments within the field of SLE therapy. Different specific type I IFN antagonists have been studied in clinical trials and some of those have already reached Phase III. A potential approach would be to target IFN receptors rather than IFN themselves. Anifrolumab (previously MEDI-546) is a fully human monoclonal antibody (Ab) that binds to subunit 1 of the type I IFN receptor (IFNAR1), blocking the action of different type I IFNs (IFN-α, IFN-β and IFN-ω). This drug has been assessed in 11 clinical studies: 9 in SLE, 1 in systemic sclerosis and 1 in rheumatoid arthritis. In SLE, clinical development reached Phase I for 1 study and Phases II and III for 5 and 3 trials, respectively. The Phase IIb, randomized control trial (RCT), double-blind, placebo-controlled study of adults with moderate-to-severe SLE (MUSE trial) showed positive results on the composite primary endpoint SRI-4. Greater efficacy was seen in patients with high baseline IFN gene signature compared with those with low baseline IFN gene signature. Anifrolumab also demonstrated promising results on cutaneous and arthritic manifestations, especially among patients with a high IFN gene signature. The pivotal Treatment of Uncontrolled Lupus via the Interferon IFN Pathway (TULIP 1 and 2 studies are now completed. In August 2018, the promoter announced that the TULIP 1 Phase III trial did not reach its primary endpoint. The release of the completed but not yet published Phase II studies and of the TULIP pivotal trials results will further inform us on the actual therapeutic potential of anifrolumab.
Collapse
Affiliation(s)
- Renaud Felten
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France.,Immunology Laboratory, "Immunopathologie et Chimie Thérapeutique", Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, F-67000, France
| | - Florence Scher
- Pharmacy-Sterilisation Department, University Hospital of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Flora Sagez
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France
| | - François Chasset
- Faculty of Medicine at Sorbonne University, AP-HP, Dermatology and Allergology Department, Tenon Hospital, Sorbonne University, Paris, F-75020, France
| | - Laurent Arnaud
- Rheumatology Department, University Hospital of Strasbourg, Université de Strasbourg, Strasbourg, F-67000, France.,National Reference Centre for Rare Systemic and Autoimmune Diseases East South-West (RESO), Strasbourg, France.,Immuno-Rheumatology Laboratory, "Laboratoire d'ImmunoRhumatologie Moléculaire", INSERM UMR_S1109, Strasbourg, F-67000, France
| |
Collapse
|
48
|
Rigolet M, Hou C, Baba Amer Y, Aouizerate J, Periou B, Gherardi RK, Lafuste P, Authier FJ. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. RMD Open 2019; 5:e000811. [PMID: 30886734 PMCID: PMC6397431 DOI: 10.1136/rmdopen-2018-000811] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/08/2018] [Indexed: 12/28/2022] Open
Abstract
Objective The role of interferons (IFN) in the pathophysiology of primary inflammatory and dysimmune myopathies (IDM) is increasingly investigated, notably because specific neutralisation approaches may constitute promising therapeutic tracks. In present work we analysed the muscular expression of specific IFNα/β and IFNγ-stimulated genes in patients with various types of IDM. Methods 39 patients with IDM with inclusion body myositis (IBM, n=9), dermatomyositis (DM, n=10), necrotising autoimmune myopathies (NAM, n=10) and antisynthetase myositis (ASM, n=10), and 10 controls were included. Quantification of expression levels of IFNγ, ISG15, an IFNα/β-inducible gene and of six IFNγ-inducible genes (GBP2, HLA-DOB, HLA-DPB, CIITA, HLA-DRB and HLA-DMB) was performed on muscle biopsy samples. Results DM usually associated with strong type I IFNα/β signature, IBM and ASM with prominent type II IFNγ signature and NAM with neither type I nor type II IFN signature. Immunofluorescence study in ASM and IBM showed myofibre expression of major histocompatibility class 2 (MHC-2) and CIITA, confirming the induction of the IFNγ pathway. Furthermore, MHC-2-positive myofibres were observed in close proximity to CD8+ T cells which produce high levels of IFNγ. Conclusion Distinct IFN signatures allow a more distinct segregation of IDMs and myofibre MHC-2 expression is a reliable biomarker of type II IFN signature.
Collapse
Affiliation(s)
- Muriel Rigolet
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France
| | - Cyrielle Hou
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France
| | - Yasmine Baba Amer
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France
| | - Jessie Aouizerate
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France.,Reference Center for Neuromuscular Diseases, Henri Mondor University Hospitals, Paris, France
| | - Baptiste Periou
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France
| | - Romain K Gherardi
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France.,Reference Center for Neuromuscular Diseases, Henri Mondor University Hospitals, Paris, France
| | - Peggy Lafuste
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France
| | - François Jérôme Authier
- IMRB, Inserm U955-Team 10, Paris Est-Creteil University, Paris, France.,Reference Center for Neuromuscular Diseases, Henri Mondor University Hospitals, Paris, France
| |
Collapse
|
49
|
Bodewes ILA, Björk A, Versnel MA, Wahren-Herlenius M. Innate immunity and interferons in the pathogenesis of Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:2561-2573. [PMID: 30770713 DOI: 10.1093/rheumatology/key360] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
Primary SS (pSS) is a rheumatic disease characterized by an immune-mediated exocrinopathy, resulting in severe dryness of eyes and mouth. Systemic symptoms include fatigue and joint pain and a subset of patients develop more severe disease with multi-organ involvement. Accumulating evidence points to involvement of innate immunity and aberrant activity of the type I IFN system in both the initiation and propagation of this disease. Analysis of the activity of IFN-inducible genes has evidenced that more than half of pSS patients present with a so-called 'type I IFN signature'. In this review, we examine activation of the IFN system in pSS patients and how this may drive autoimmunity through various immune cells. We further discuss the clinical value of assessing IFN activity as a biomarker in pSS patients and review novel therapies targeting IFN signalling and their potential use in pSS.
Collapse
Affiliation(s)
- Iris L A Bodewes
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Albin Björk
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marjan A Versnel
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marie Wahren-Herlenius
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Labonte AC, Kegerreis B, Geraci NS, Bachali P, Madamanchi S, Robl R, Catalina MD, Lipsky PE, Grammer AC. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One 2018; 13:e0208132. [PMID: 30562343 PMCID: PMC6298676 DOI: 10.1371/journal.pone.0208132] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormalities in B cell and T cell function, but the role of disturbances in the activation status of macrophages (Mϕ) has not been well described in human patients. To address this, gene expression profiles from isolated lymphoid and myeloid populations were analyzed to identify differentially expressed (DE) genes between healthy controls and patients with either inactive or active SLE. While hundreds of DE genes were identified in B and T cells of active SLE patients, there were no DE genes found in B or T cells from patients with inactive SLE compared to healthy controls. In contrast, large numbers of DE genes were found in myeloid cells (MC) from both active and inactive SLE patients. Among the DE genes were several known to play roles in Mϕ activation and polarization, including the M1 genes STAT1 and SOCS3 and the M2 genes STAT3, STAT6, and CD163. M1-associated genes were far more frequent in data sets from active versus inactive SLE patients. To characterize the relationship between Mϕ activation and disease activity in greater detail, weighted gene co-expression network analysis (WGCNA) was used to identify modules of genes associated with clinical activity in SLE patients. Among these were disease activity-correlated modules containing activation signatures of predominantly M1-associated genes. No disease activity-correlated modules were enriched in M2-associated genes. Pathway and upstream regulator analysis of DE genes from both active and inactive SLE MC were cross-referenced with high-scoring hits from the drug discovery Library of Integrated Network-based Cellular Signatures (LINCS) to identify new strategies to treat both stages of SLE. A machine learning approach employing MC gene modules and a generalized linear model was able to predict the disease activity status in unrelated gene expression data sets. In summary, altered MC gene expression is characteristic of both active and inactive SLE. However, disease activity is associated with an alteration in the activation of MC, with a bias toward the M1 proinflammatory phenotype. These data suggest that while hyperactivity of B cells and T cells is associated with active SLE, MC potentially direct flare-ups and remission by altering their activation status toward the M1 state.
Collapse
Affiliation(s)
- Adam C. Labonte
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Brian Kegerreis
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Nicholas S. Geraci
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
| | - Sushma Madamanchi
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Robert Robl
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Michelle D. Catalina
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America
- RILITE Research Institute, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|