1
|
Lee YH, Yang SS, Yoon HJ, Kim HY, Kwon SW, Jeong SK, Oh SJ, Park SH, Lee Y, Seong KM. Collaborative activities in a biological dosimetry network for radiation emergencies in South Korea. Int J Radiat Biol 2025; 101:274-282. [PMID: 39746140 DOI: 10.1080/09553002.2024.2447506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Biological dosimetry is an essential analytic method to estimate the absorbed radiation dose in the human body by measuring changes in biomolecules after radiation exposure. Joint response in a network to mass-casualty radiation incidents is one way to overcome the limitations of biological dosimetry, sharing the workload among laboratories. This study aimed to investigate the current performance, collaborative activities and technical advances of the Korea biodosimetry network (K-BioDos), and suggest the future directions toward successful joint response. MATERIALS AND METHODS A survey was performed to investigate the capacities of each laboratory and their expectations for the K-BioDos network. We summarized the capacities, expectations and technical advances of K-BioDos members. Based on the results, in-depth discussion was carried out to determine the future plan and activities of K-BioDos. RESULTS K-BioDos has grown to six laboratories since its establishment with three functional laboratories of biological dosimetry in South Korea. We constructed long-term strategy according the survey results, and performed various activities for enhanced biological dosimetry capabilities - including intercomparison exercises, education, and resource sharing. Through these active collaborations we achieved harmonization of biodosimetry protocols and technical improvement such as better image quality. CONCLUSIONS K-BioDos network performed various activities for joint response and constructed long-term plans, considering the expectations and feedbacks of members. K-BioDos continue to support members to establish and develop biodosimetry tools. These efforts and findings could serve as a fundamental guide for coordinated network responses in the event of large-scale radiological disaster.
Collapse
Affiliation(s)
- Yang Hee Lee
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Hwa Young Kim
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Soon Woo Kwon
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Soo Kyung Jeong
- Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Su Jung Oh
- Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Seong-Hoon Park
- Genetic & Epigenetic Toxicology Research Group, Toxicology Mechanism Research Division, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Younghyun Lee
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dose Assessment, National Radiation Emergency Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
2
|
Background Level of Unstable Chromosome Aberrations in the Kazakhstan Population: A Human Biomonitoring Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148485. [PMID: 35886338 PMCID: PMC9320529 DOI: 10.3390/ijerph19148485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023]
Abstract
Kazakhstan is known as a country with a complex radioecological situation resulting from different sources such as a natural radiation background, extensive activities of the industrial system of the former Soviet Union and a well-known testing of nuclear power weapons occurred in the Semipalatinsk Test Site (STS) area. The present study focuses on the assessment of the background of dicentric chromosomes in Kazakhstan’s population, which is the starting point in the dose assessment of irradiated people, since the baseline level of spontaneous dicentrics can vary significantly in different populations. In this context, aiming to determine the background frequency of chromosome aberrations in the population of Kazakhstan, considering the heterogeneity of natural radiation background levels of its large territory, a selection of 40 control subjects living in four cities of North, South, West and East Kazakhstan was performed. The cytogenetic study on the selected groups showed fairly low background frequency values of chromosome aberrations (0.84 ± 0.83 per 1000 cells), comparable with other data in the literature on general populations, reporting background frequency values between 0.54 and 2.99 per 1000 cells. The obtained results should be taken into account when constructing the dose–effect calibration curve used in cytogenetic biodosimetry, as a “zero” dose point, which will reduce the uncertainty in quantifying the individual absorbed dose in emergency radiological situations.
Collapse
|
3
|
Lin WC, Chang KW, Liao TZ, Ou Yang FY, Chang TJ, Yuan MC, Wilkins RC, Chang CH. Intercomparison of conventional and QuickScan dicentric scoring for the validation of individual biodosimetry analysis in Taiwan. Int J Radiat Biol 2021; 97:916-925. [PMID: 34003708 DOI: 10.1080/09553002.2021.1928789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The dicentric chromosome assay (DCA), the gold standard for radiation biodosimetry, evaluates an individual absorbed radiation dose by the analysis of DNA damage in human lymphocytes. The conventional (C-DCA) and QuickScan (QS-DCA) scoring methods are sensitive for estimating radiation dose. The Biodosimetry Laboratory at Institute of Nuclear Energy Research (INER), Taiwan, participated in intercomparison exercises conducted by Health Canada (HC) in 2014, 2015 and 2018 to validate the laboratory's accuracy and performance. MATERIAL AND METHODS Blood samples for the conventional dose response curve for Taiwan were irradiated with 0, 0.25, 0.5, 1, 2, 3, 4 and 5 Gy. Ten blind blood samples were provided by HC. Either or both of two methods of conventional (C) or QuickScan (QS) scoring could be chosen for the HC's intercomparison. For C-DCA triage scoring, only cells with 46 centromeres were counted and each scorer recorded the number of dicentrics in the first 50 metaphases or stopped scoring when 30 dicentrics were reached. Scorers also recorded how much time it took to analyze 10, 20, and 50 cells. Subsequently, the data were entered into the Dose Estimate software (DoseEstimate_v5.1) and dose estimates were calculated. With QS-DCA scoring, a minimum of 50 metaphase cells (or 30 dicentrics) were scored in apparently complete metaphases without verification of exactly 46 centromeres. RESULTS For the blinded blood samples irradiated at HC and shipped to INER, the mean absolute deviation (MAD) derived after scoring 50 cells for C-DCA and QS-DCA was <0.5 Gy for all three intercomparisons, meeting the criteria for acceptance. CONCLUSION The results indicated that the Biodosimetry Laboratory at INER can provide reliable dose estimates in the case of a large-scale radiation accident.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Kang-Wei Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Tse-Zung Liao
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Fang-Yu Ou Yang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Tsui-Jung Chang
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Chen Yuan
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol 2021; 99:925-933. [PMID: 33970766 PMCID: PMC10026363 DOI: 10.1080/09553002.2021.1928784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Abstract
The dicentric chromosome (DC) assay accurately quantifies exposure to radiation; however, manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates unattended DC detection and determines radiation exposures, fulfilling IAEA criteria for triage biodosimetry. This study evaluates the throughput of high-performance ADCI (ADCI-HT) to stratify exposures of populations in 15 simulated population scale radiation exposures. ADCI-HT streamlines dose estimation using a supercomputer by optimal hierarchical scheduling of DC detection for varying numbers of samples and metaphase cell images in parallel on multiple processors. We evaluated processing times and accuracy of estimated exposures across census-defined populations. Image processing of 1744 samples on 16,384 CPUs required 1 h 11 min 23 s and radiation dose estimation based on DC frequencies required 32 sec. Processing of 40,000 samples at 10 exposures from five laboratories required 25 h and met IAEA criteria (dose estimates were within 0.5 Gy; median = 0.07). Geostatistically interpolated radiation exposure contours of simulated nuclear incidents were defined by samples exposed to clinically relevant exposure levels (1 and 2 Gy). Analysis of all exposed individuals with ADCI-HT required 0.6–7.4 days, depending on the population density of the simulation.
Collapse
|
6
|
Shirley BC, Knoll JHM, Moquet J, Ainsbury E, Pham ND, Norton F, Wilkins RC, Rogan PK. Estimating partial-body ionizing radiation exposure by automated cytogenetic biodosimetry. Int J Radiat Biol 2020; 96:1492-1503. [PMID: 32910711 DOI: 10.1080/09553002.2020.1820611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Inhomogeneous exposures to ionizing radiation can be detected and quantified with the dicentric chromosome assay (DCA) of metaphase cells. Complete automation of interpretation of the DCA for whole-body irradiation has significantly improved throughput without compromising accuracy, however, low levels of residual false positive dicentric chromosomes (DCs) have confounded its application for partial-body exposure determination. MATERIALS AND METHODS We describe a method of estimating and correcting for false positive DCs in digitally processed images of metaphase cells. Nearly all DCs detected in unirradiated calibration samples are introduced by digital image processing. DC frequencies of irradiated calibration samples and those exposed to unknown radiation levels are corrected subtracting this false positive fraction from each. In partial-body exposures, the fraction of cells exposed, and radiation dose can be quantified after applying this modification of the contaminated Poisson method. RESULTS Dose estimates of three partially irradiated samples diverged 0.2-2.5 Gy from physical doses and irradiated cell fractions deviated by 2.3%-15.8% from the known levels. Synthetic partial-body samples comprised of unirradiated and 3 Gy samples from 4 laboratories were correctly discriminated as inhomogeneous by multiple criteria. Root mean squared errors of these dose estimates ranged from 0.52 to 1.14 Gy2 and from 8.1 to 33.3%2 for the fraction of cells irradiated. CONCLUSIONS Automated DCA can differentiate whole- from partial-body radiation exposures and provides timely quantification of estimated whole-body equivalent dose.
Collapse
Affiliation(s)
| | - Joan H M Knoll
- CytoGnomix Inc., London, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada
| | | | | | | | | | | | - Peter K Rogan
- CytoGnomix Inc., London, Canada.,Departments of Biochemistry and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
7
|
Swartz HM, Flood AB, Singh VK, Swarts SG. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. HEALTH PHYSICS 2020; 119:72-82. [PMID: 32175928 PMCID: PMC7269859 DOI: 10.1097/hp.0000000000001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective medical response to a large-scale radiation event requires prompt and effective initial triage so that appropriate care can be provided to individuals with significant risk for severe acute radiation injury. Arguably, it would be advantageous to use injury rather than radiation dose for the initial assessment; i.e., use bioassays of biological damage. Such assays would be based on changes in intrinsic biological response elements; e.g., up- or down-regulation of genes, proteins, metabolites, blood cell counts, chromosomal aberrations, micronuclei, micro-RNA, cytokines, or transcriptomes. Using a framework to evaluate the feasibility of biodosimetry for triaging up to a million people in less than a week following a major radiation event, Part 1 analyzes the logistical feasibility and clinical needs for ensuring that biomarkers of organ-specific injury could be effectively used in this context. We conclude that the decision to use biomarkers of organ-specific injury would greatly benefit by first having independent knowledge of whether the person's exposure was heterogeneous and, if so, what was the dose distribution (to determine which organs were exposed to high doses). In Part 2, we describe how these two essential needs for prior information (heterogeneity and dose distribution) could be obtained by using in vivo nail dosimetry. This novel physical biodosimetry method can also meet the needs for initial triage, providing non-invasive, point-of-care measurements made by non-experts with immediate dose estimates for four separate anatomical sites. Additionally, it uniquely provides immediate information as to whether the exposure was homogeneous and, if not, it can estimate the dose distribution. We conclude that combining the capability of methods such as in vivo EPR nail dosimetry with bioassays to predict organ-specific damage would allow effective use of medical resources to save lives.
Collapse
Affiliation(s)
- Harold M. Swartz
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Dept of Medicine/Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Ann Barry Flood
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Vijay K. Singh
- Dept. Pharmacology & Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven G. Swarts
- Dept of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Rogan PK, Mucaki EJ, Lu R, Shirley BC, Waller E, Knoll JHM. Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling. PLoS One 2020; 15:e0232008. [PMID: 32330192 PMCID: PMC7182271 DOI: 10.1371/journal.pone.0232008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Accurate radiation dose estimates are critical for determining eligibility for therapies by timely triaging of exposed individuals after large-scale radiation events. However, the universal assessment of a large population subjected to a nuclear spill incident or detonation is not feasible. Even with high-throughput dosimetry analysis, test volumes far exceed the capacities of first responders to measure radiation exposures directly, or to acquire and process samples for follow-on biodosimetry testing. AIM To significantly reduce data acquisition and processing requirements for triaging of treatment-eligible exposures in population-scale radiation incidents. METHODS Physical radiation plumes modelled nuclear detonation scenarios of simulated exposures at 22 US locations. Models assumed only location of the epicenter and historical, prevailing wind directions/speeds. The spatial boundaries of graduated radiation exposures were determined by targeted, multistep geostatistical analysis of small population samples. Initially, locations proximate to these sites were randomly sampled (generally 0.1% of population). Empirical Bayesian kriging established radiation dose contour levels circumscribing these sites. Densification of each plume identified critical locations for additional sampling. After repeated kriging and densification, overlapping grids between each pair of contours of successive plumes were compared based on their diagonal Bray-Curtis distances and root-mean-square deviations, which provided criteria (<10% difference) to discontinue sampling. RESULTS/CONCLUSIONS We modeled 30 scenarios, including 22 urban/high-density and 2 rural/low-density scenarios under various weather conditions. Multiple (3-10) rounds of sampling and kriging were required for the dosimetry maps to converge, requiring between 58 and 347 samples for different scenarios. On average, 70±10% of locations where populations are expected to receive an exposure ≥2Gy were identified. Under sub-optimal sampling conditions, the number of iterations and samples were increased, and accuracy was reduced. Geostatistical mapping limits the number of required dose assessments, the time required, and radiation exposure to first responders. Geostatistical analysis will expedite triaging of acute radiation exposure in population-scale nuclear events.
Collapse
Affiliation(s)
- Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- CytoGnomix Inc, London, ON, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ruipeng Lu
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | | | - Edward Waller
- Faculty of Energy Systems and Nuclear Science, OntarioTech University, Canada
| | - Joan H M Knoll
- CytoGnomix Inc, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Jang S, Suto Y, Liu J, Liu Q, Zuo Y, Duy PN, Miura T, Abe Y, Hamasaki K, Suzuki K, Kodama S. CAPABILITIES OF THE ARADOS-WG03 REGIONAL NETWORK FOR LARGE-SCALE RADIOLOGICAL AND NUCLEAR EMERGENCY SITUATIONS IN ASIA. RADIATION PROTECTION DOSIMETRY 2019; 186:139-142. [PMID: 30576530 DOI: 10.1093/rpd/ncy279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
In 2015, the Asian Radiation Dosimetry Group established a regional network of biological dosimetry laboratories known as the ARADOS-WG03 (Working Group 03; Biological Dosimetry). A survey was conducted in 2017 to evaluate the capabilities and capacities of the participating laboratories for emergency preparedness and responses in large-scale nuclear and/or radiological incidents. The results of this survey were identified and assessed. The data provide important information on the current state of emergency cytogenetic biological dosimetry capabilities in the Asian region.
Collapse
Affiliation(s)
- S Jang
- Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Y Suto
- National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - J Liu
- National Institute of Radiation Protection (NIRP), China CDC, Beijing, China
| | - Q Liu
- National Institute of Radiation Protection (NIRP), China CDC, Beijing, China
| | - Y Zuo
- China Institute of Radiation Protection (CIRP), China National Nuclear Corporation (CNNC), Taiyuen, China
| | - P N Duy
- Nuclear Research Institute (NRI), Viet Nam Atomic Energy Commission, VINATOM, Dalat, Viet Nam
| | - T Miura
- Hirosaki University, Hirosaki, Japan
| | - Y Abe
- Fukushima Medical University, Fukushima, Japan
| | - K Hamasaki
- Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - K Suzuki
- Nagasaki University, Nagasaki, Japan
| | - S Kodama
- Osaka Prefacture University, Osaka, Japan
| |
Collapse
|
10
|
Medical management of acute responses to radiation. Hemasphere 2019; 3:HemaSphere-2019-0045. [PMID: 35309803 PMCID: PMC8925706 DOI: 10.1097/hs9.0000000000000225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
|
11
|
Kulka U, Wojcik A, Di Giorgio M, Wilkins R, Suto Y, Jang S, Quing-Jie L, Jiaxiang L, Ainsbury E, Woda C, Roy L, Li C, Lloyd D, Carr Z. BIODOSIMETRY AND BIODOSIMETRY NETWORKS FOR MANAGING RADIATION EMERGENCY. RADIATION PROTECTION DOSIMETRY 2018; 182:128-138. [PMID: 30423161 DOI: 10.1093/rpd/ncy137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 06/09/2023]
Abstract
Biological dosimetry enables individual dose reconstruction in the case of unclear or inconsistent radiation exposure situations, especially when a direct measurement of ionizing radiation is not or is no longer possible. To be prepared for large-scale radiological incidents, networking between well-trained laboratories has been identified as a useful approach for provision of the fast and trustworthy dose assessments needed in such circumstances. To this end, various biodosimetry laboratories worldwide have joined forces and set up regional and/or nationwide networks either on a formal or informal basis. Many of these laboratories are also a part of global networks such as those organized by World Health Organization, International Atomic Energy Agency or Global Health Security Initiative. In the present report, biodosimetry networks from different parts of the world are presented, and the partners, activities and cooperation actions are detailed. Moreover, guidance for situational application of tools used for individual dosimetry is given.
Collapse
Affiliation(s)
- U Kulka
- Bundesamt für Strahlenschutz, Salzgitter, Germany
| | - A Wojcik
- Stockholm University, Centre for Radiation Protection Research, Stockholm, Sweden
| | - M Di Giorgio
- Autoridad Regulatoria Nuclear, C1429BNP CABA, Buenos Aires, Argentina
| | - R Wilkins
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - Y Suto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Jang
- Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - L Quing-Jie
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Jiaxiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - E Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - C Woda
- HelmholtzZentrum München, Institute of Radiation Protection, Oberschleissheim, Germany
| | - L Roy
- Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses, France
| | - C Li
- Health Canada, Radiation Protection Bureau, Ottawa, Canada
| | - D Lloyd
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Z Carr
- World Health Organization, Department of Public Health, Environmental and Social Determinants of Health, Geneva-27, Switzerland
| |
Collapse
|
12
|
Einbeck J, Ainsbury EA, Sales R, Barnard S, Kaestle F, Higueras M. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS One 2018; 13:e0207464. [PMID: 30485322 PMCID: PMC6261578 DOI: 10.1371/journal.pone.0207464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
Over the last decade, the γ–H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double–strand–breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose–response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose–response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods.
Collapse
Affiliation(s)
- Jochen Einbeck
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| | - Elizabeth A. Ainsbury
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Rachel Sales
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Stephen Barnard
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Felix Kaestle
- Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Oberschleissheim, Germany
| | - Manuel Higueras
- Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja, Spain
- Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
| |
Collapse
|
13
|
Wilkins RC, Rodrigues MA, Beaton-Green LA. The Application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integr 2017; 8:7. [PMID: 28250914 PMCID: PMC5320785 DOI: 10.4103/2041-9414.198912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large-scale radiological/nuclear event. Recent modifications to the microscope-based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer (IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope-based biodosimetry techniques can be modified for the IFC for high-throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry.
Collapse
Affiliation(s)
- Ruth C. Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Lindsay A. Beaton-Green
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Pan Y, Gao G, Ruan JL, Liu JX. Study on γH2AX Expression of Lymphocytes as a Biomarker In Radiation Biodosimetry. Genome Integr 2016; 7:10. [PMID: 28217286 PMCID: PMC5292907 DOI: 10.4103/2041-9414.197167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flow cytometry analysis was used to detect the changes of γH2AX protein expression in human peripheral blood lymphocytes. In the dose-effect study, the expression of γH2AX was detected 1 h after irradiation with 60Co γ-rays at doses of 0, 0.5, 1, 2, 4, and 6 Gy. Blood was cultivated for 0, 1, 2, 4, 6, 12, and 24 h after 4 Gy 60Co γ-rays irradiation for the time-effect study. At the same time, the blood was divided into four treatment groups (ultraviolet [UV] irradiation, 60Co γ-rays irradiation, UV plus 60Co γ-rays irradiation, and control group) to detect the changes of protein expression of γH2AX. The results showed that the γH2AX protein expression was in dose-effect and time-effect relationship with 60Co γ-rays. The peak expression of γH2AX was at 1 h after 60Co γ-ray irradiation and began to decrease quickly. Compared to irradiation with 60Co γ-rays alone, the expression of γH2AX was not significantly changed after irradiation with 60Co γ-rays plus UV. Dose rate did not significantly change the expression of γH2AX. The expression of γH2AX induced by 60Co γ-rays was basically consistent with the mice in vivo and in vitro. The results revealed that the detection of γH2AX protein expression changes in peripheral blood lymphocyte by flow cytometry analysis is reasonable and may be useful for biodosimetry.
Collapse
Affiliation(s)
- Yan Pan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Gang Gao
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Jian Lei Ruan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Jian Xiang Liu
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| |
Collapse
|
15
|
Asaad CO, Caraos GL, Robles GJM, Asa ADDC, Cobar MLC, Asaad AA. Enhancing Cytogenetic Biological Dosimetry Capabilities of the Philippines for Nuclear Incident Preparedness. Genome Integr 2016; 7:4. [PMID: 28217280 PMCID: PMC5292908 DOI: 10.4103/2041-9414.197163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The utility of a biological dosimeter based on the analysis of dicentrics is invaluable in the event of a radiological emergency wherein the estimated absorbed dose of an exposed individual is crucial in the proper medical management of patients. The technique is also used for routine monitoring of occupationally exposed workers to determine radiation exposure. An in vitro irradiation study of human peripheral blood lymphocytes was conducted to establish a dose-response curve for radiation-induced dicentric aberrations. Blood samples were collected from volunteer donors and together with optically stimulated luminescence (OSL) dosimeters and were irradiated at 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 4, and 6 Gy using a cobalt-60 radiotherapy unit. Blood samples were cultured for 48 h, and the metaphase chromosomes were prepared following the procedure of the International Atomic Energy Agency's Emergency Preparedness and Response – Biodosimetry 2011 manual. At least 100 metaphases were scored for dicentric aberrations at each dose point. The data were analyzed using R language program. The results indicated that the distribution of dicentric cells followed a Poisson distribution and the dose-response curve was established using the estimated model, Ydic = 0.0003 (±0.0003) +0.0336 (±0.0115) × D + 0.0236 (±0.0054) × D2. In this study, the reliability of the dose-response curve in estimating the absorbed dose was also validated for 2 and 4 Gy using OSL dosimeters. The data were fitted into the constructed curve. The result of the validation study showed that the obtained estimate for the absorbed exposure doses was close to the true exposure doses.
Collapse
Affiliation(s)
- Celia O Asaad
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Gloriamaris L Caraos
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Gerardo Jose M Robles
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Anie Day D C Asa
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Maria Lucia C Cobar
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Al-Ahmadgaid Asaad
- Department of Science and Technology, Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, Philippines
| |
Collapse
|
16
|
Romm H, Beinke C, Garcia O, Di Giorgio M, Gregoire E, Livingston G, Lloyd DC, Martìnez-Lopez W, Moquet JE, Sugarman SL, Wilkins RC, Ainsbury EA. A New Cytogenetic Biodosimetry Image Repository for the Dicentric Assay. RADIATION PROTECTION DOSIMETRY 2016; 172:192-200. [PMID: 27412509 DOI: 10.1093/rpd/ncw158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases.
Collapse
Affiliation(s)
- Horst Romm
- Bundesamt fuer Strahlenschutz, Neuherberg, Salzgitter, Germany
| | | | - Omar Garcia
- Centro de Protección e Higiene de las Radiaciones, Havana, Cuba
| | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
18
|
Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. RADIATION PROTECTION DOSIMETRY 2016; 172:58-71. [PMID: 27886989 DOI: 10.1093/rpd/ncw295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The U.S. Department of Defense (USDOD) service members are at risk of exposure to ionizing radiation due to radiation accidents, terrorist attacks and national defense activities. The use of biodosimetry is a standard of care for the triage and treatment of radiation injuries. Resources and procedures need to be established to implement a multiple-parameter biodosimetry system coupled with expert medial guidance to provide an integrated radiation diagnostic system to meet USDOD requirements. Current USDOD biodosimetry capabilities were identified and recommendations to fill the identified gaps are provided. A USDOD Multi-parametric Biodosimetry Network, based on the expertise that resides at the Armed Forces Radiobiology Research Institute and the Naval Dosimetry Center, was designed. This network based on the use of multiple biodosimetry modalities would provide diagnostic and triage capabilities needed to meet USDOD requirements. These are not available with sufficient capacity elsewhere but could be needed urgently after a major radiological/nuclear event.
Collapse
Affiliation(s)
- William F Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | | | - Ricardo A Reyes
- Defense Health Agency, Walter Reed National Military Medical Command, Bethesda, MD 20889, USA
| | | | - Matthew H Hoefer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| | | | - Thad Sharp
- Naval Dosimetry Center, Bethesda, MD 20889, USA
| | - L Andrew Huff
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA
| |
Collapse
|
19
|
Monteiro Gil O, Vaz P, Romm H, De Angelis C, Antunes AC, Barquinero JF, Beinke C, Bortolin E, Burbidge CI, Cucu A, Della Monaca S, Domene MM, Fattibene P, Gregoire E, Hadjidekova V, Kulka U, Lindholm C, Meschini R, M’Kacher R, Moquet J, Oestreicher U, Palitti F, Pantelias G, Montoro Pastor A, Popescu IA, Quattrini MC, Ricoul M, Rothkamm K, Sabatier L, Sebastià N, Sommer S, Terzoudi G, Testa A, Trompier F, Vral A. Capabilities of the RENEB network for research and large scale radiological and nuclear emergency situations. Int J Radiat Biol 2016; 93:136-141. [DOI: 10.1080/09553002.2016.1227107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Horst Romm
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Christina Beinke
- Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | - Christopher Ian Burbidge
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alexandra Cucu
- Institutul National de Sanatate Publica, Bucharest, Romania
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Valeria Hadjidekova
- National Centre of Radiobiology and Radiation Protection (NCRRP), Sofia, Bulgaria
| | - Ulrike Kulka
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | | | - Roberta Meschini
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Radhia M’Kacher
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Jayne Moquet
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
| | - Ursula Oestreicher
- Bundesamt für Strahlenschutz, Department Radiation Protection and Health, Oberschleissheim, Germany
| | - Fabrizio Palitti
- Department of Ecological & Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Gabriel Pantelias
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | | | | | | | - Michelle Ricoul
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemicals and Environmental Hazards, Chilton, Oxfordshire, UK
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laure Sabatier
- Commissariat à l’Énergie Atomique, PROCyTOX, Fontenay aux Roses, France
| | | | | | - Georgia Terzoudi
- National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Sostenibile, Rome, Italy
| | - François Trompier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | - Anne Vral
- Ghent University, Department of Basic Medical Sciences, Ghent, Belgium
| |
Collapse
|
20
|
Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes AC, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Castaño CH, Čemusová Z, Christiansson M, Cordero SM, Cosler G, Monaca SD, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever SW, Meade A, Medipally D, Meschini R, M’kacher R, Gil OM, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto MJ, Quattrini MC, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey OV, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans – joint RENEB and EURADOS inter-laboratory comparisons. Int J Radiat Biol 2016; 93:99-109. [DOI: 10.1080/09553002.2016.1206233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elizabeth Ainsbury
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Christophe Badie
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Stephen Barnard
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Grainne Manning
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Jayne Moquet
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology (BIR), Munich, Germany
| | - Ana Catarina Antunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Celine Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm (UULM), Munich, Germany
| | | | - Lily Bossin
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
- Durham University (DUR), Durham, UK
| | - Clare Bricknell
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Kamil Brzoska
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Iwona Buraczewska
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | | | - Zina Čemusová
- Státní ústav radiační ochrany (SÚRO), Prague, Czech Republic
| | | | | | - Guillaume Cosler
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | | | | | - Michael Discher
- Salzburg University Department of Geography and Geology, Salzburg, Austria
| | | | | | - Jon Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | | | | | - Monika Frenzel
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Dimka Georgieva
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | | | | | | | - Rositsa Hristova
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Maria Karakosta
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Enikő Kis
- National Public Health Centre – National Research Institute for Radiobiology and Radiohygiene (NRIRR), Hungary
| | - Ralf Kriehuber
- Radiation Biology Unit Forschungszentrum Jülich GmbH (FzJ), Jülich, Germany
| | - Jungil Lee
- Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea
| | - David Lloyd
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), Chilton, UK
| | - Katalin Lumniczky
- National Public Health Centre – National Research Institute for Radiobiology and Radiohygiene (NRIRR), Hungary
| | - Fiona Lyng
- Dublin Institute of Technology (DIT), Dublin, Ireland
| | - Ellina Macaeva
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
- Ghent University (GU), Ghent, Belgium
| | | | - S. Vanda Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | | | - Aidan Meade
- Dublin Institute of Technology (DIT), Dublin, Ireland
| | | | | | - Radhia M’kacher
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico (IST/ITN), Universidade de Lisboa, Bobadela-LRS, Portugal
| | - Alegria Montero
- Radiation Protection Service, IIS La Fe, Health Research Institute (LAFE), Spain
| | - Mercedes Moreno
- Laboratorio de Dosimetría Biológica, Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañón (SERMAS), Spain
| | | | - Ursula Oestreicher
- Bundesamt fuer Strahlenschutz (BfS), Department Radiation Protection and Health, Neuherberg, Germany
| | - Dominik Oskamp
- Radiation Biology Unit Forschungszentrum Jülich GmbH (FzJ), Jülich, Germany
| | | | - Valentina Palma
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Gabriel Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Jerome Pateux
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | - Clarice Patrono
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Gaetano Pepe
- Università degli Studi della Tuscia (UNITUS), Italy
| | - Matthias Port
- Bundeswehr Institute of Radiobiology (BIR), Munich, Germany
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Servicio de Oncología Radioterápica, Hospital General Universitario Gregorio Marañón (SERMAS), Spain
| | | | - Roel Quintens
- Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
| | - Michelle Ricoul
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Laurence Roy
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Laure Sabatier
- PROCyTOX, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris-Saclay (CEA), Fontenay-aux-Roses, France
| | - Natividad Sebastià
- Radiation Protection Service, IIS La Fe, Health Research Institute (LAFE), Spain
| | | | - Sylwester Sommer
- Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland
| | - Albena Staynova
- National Center of Radiobiology and Radiation Protection (NCRRP), Bulgaria
| | - Sonja Strunz
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Georgia Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Center for Scientific Research “Demokritos” (NCSRD), Greece
| | - Antonella Testa
- Laboratory of Biosafety and Risk Assessment Division of Health Protection Technologies (ENEA) Casaccia Research Center, Italy
| | - Francois Trompier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
| | - Marco Valente
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | | | - Ivan Veronese
- Università degli Studi di Milano (UNIMI), Milano, Italy
| | | | - Clemens Woda
- Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| |
Collapse
|
21
|
Lue SW, Repin M, Mahnke R, Brenner DJ. Development of a High-Throughput and Miniaturized Cytokinesis-Block Micronucleus Assay for Use as a Biological Dosimetry Population Triage Tool. Radiat Res 2015; 184:134-42. [PMID: 26230078 DOI: 10.1667/rr13991.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetry is an essential tool for providing timely assessments of radiation exposure. For a large mass-casualty event involving exposure to ionizing radiation, it is of utmost importance to rapidly provide dose information for medical treatment. The well-established cytokinesis-block micronucleus (CBMN) assay is a validated method for biodosimetry. However, the need for an accelerated sample processing is required for the CBMN assay to be a suitable population triage tool. We report here on the development of a high-throughput and miniaturized version of the CMBN assay for accelerated sample processing.
Collapse
Affiliation(s)
- Stanley W Lue
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Mikhail Repin
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Ryan Mahnke
- b Northrop Grumman, Elkridge, Maryland 21075
| | - David J Brenner
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
22
|
Ainsbury EA, Barnard S, Barrios L, Fattibene P, de Gelder V, Gregoire E, Lindholm C, Lloyd D, Nergaard I, Rothkamm K, Romm H, Scherthan H, Thierens H, Vandevoorde C, Woda C, Wojcik A. Multibiodose radiation emergency triage categorization software. HEALTH PHYSICS 2014; 107:83-89. [PMID: 24849907 DOI: 10.1097/hp.0000000000000049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this note, the authors describe the MULTIBIODOSE software, which has been created as part of the MULTIBIODOSE project. The software enables doses estimated by networks of laboratories, using up to five retrospective (biological and physical) assays, to be combined to give a single estimate of triage category for each individual potentially exposed to ionizing radiation in a large scale radiation accident or incident. The MULTIBIODOSE software has been created in Java. The usage of the software is based on the MULTIBIODOSE Guidance: the program creates a link to a single SQLite database for each incident, and the database is administered by the lead laboratory. The software has been tested with Java runtime environment 6 and 7 on a number of different Windows, Mac, and Linux systems, using data from a recent intercomparison exercise. The Java program MULTIBIODOSE_1.0.jar is freely available to download from http://www.multibiodose.eu/software or by contacting the software administrator: MULTIBIODOSE-software@gmx.com.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- *Public Health England Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 0RQ; †Universitat Autònoma de Barcelona, Spain; ‡Istituto Superiore di Sanità, Italy; §Universiteit Gent, Belgium; **Institut de radioprotection et de sûreté nucléaire, France; ††Radiation and Nuclear Safety Authority, Finland; ‡‡Bundesamt fuer Strahlenschutz, Germany; §§Inst. für Radiobiologie der Bundeswehr in Verb. mit der Univ. Ulm, Germany; ***Helmholtz Zentrum München, Germany; †††Stockholm University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Repin M, Turner HC, Garty G, Brenner DJ. Next generation platforms for high-throughput biodosimetry. RADIATION PROTECTION DOSIMETRY 2014; 159:105-10. [PMID: 24837249 PMCID: PMC4067228 DOI: 10.1093/rpd/ncu161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems.
Collapse
Affiliation(s)
- Mikhail Repin
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen C Turner
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - Guy Garty
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Brenner
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
24
|
Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero JF, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, Moquet J, Oestreicher U, Puig R, Rothkamm K, Sommer S, Thierens H, Vandersickel V, Vral A, Wojcik A. Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. HEALTH PHYSICS 2014; 106:764-771. [PMID: 24776911 DOI: 10.1097/hp.0000000000000077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Large scale radiological emergencies require high throughput techniques of biological dosimetry for population triage in order to identify individuals indicated for medical treatment. The dicentric assay is the "gold standard" technique for the performance of biological dosimetry, but it is very time consuming and needs well trained scorers. To increase the throughput of blood samples, semi-automation of dicentric scoring was investigated in the framework of the MULTIBIODOSE EU FP7 project, and dose effect curves were established in six biodosimetry laboratories. To validate these dose effect curves, blood samples from 33 healthy donors (>10 donors/scenario) were irradiated in vitro with ⁶⁰Co gamma rays simulating three different exposure scenarios: acute whole body, partial body, and protracted exposure, with three different doses for each scenario. All the blood samples were irradiated at Ghent University, Belgium, and then shipped blind coded to the participating laboratories. The blood samples were set up by each lab using their own standard protocols, and metaphase slides were prepared to validate the calibration curves established by semi-automatic dicentric scoring. In order to achieve this, 300 metaphases per sample were captured, and the doses were estimated using the newly formed dose effect curves. After acute uniform exposure, all laboratories were able to distinguish between 0 Gy, 0.5 Gy, 2.0, and 4.0 Gy (p < 0.001), and, in most cases, the dose estimates were within a range of ± 0.5 Gy of the given dose. After protracted exposure, all laboratories were able to distinguish between 1.0 Gy, 2.0 Gy, and 4.0 Gy (p < 0.001), and here also a large number of the dose estimates were within ± 0.5 Gy of the irradiation dose. After simulated partial body exposure, all laboratories were able to distinguish between 2.0 Gy, 4.0 Gy, and 6.0 Gy (p < 0.001). Overdispersion of the dicentric distribution enabled the detection of the partial body samples; however, this result was clearly dose-dependent. For partial body exposures, only a few dose estimates were in the range of ± 0.5 Gy of the given dose, but an improvement could be achieved with higher cell numbers. The new method of semi-automation of the dicentric assay was introduced successfully in a network of six laboratories. It is therefore concluded that this method can be used as a high-throughput screening tool in a large-scale radiation accident.
Collapse
Affiliation(s)
- H Romm
- *Bundesamt fuer Strahlenschutz (Germany); †Public Health England (United Kingdom); ‡Universitat Autonoma de Barcelona (Spain); §Institut de Radioprotection et de Sûreté Nucleaire (France); **Bundeswehr Institute of Radiobiology affiliated to the University of Ulm (Germany); ††Stockholm University (Sweden); ‡‡Radiation and Nuclear Safety Authority (Finland); §§Institute of Nuclear Chemistry and Technology (Poland); ***University of Ghent (Belgium)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romm H, Ainsbury E, Bajinskis A, Barnard S, Barquinero JF, Barrios L, Beinke C, Puig-Casanovas R, Deperas-Kaminska M, Gregoire E, Oestreicher U, Lindholm C, Moquet J, Rothkamm K, Sommer S, Thierens H, Vral A, Vandersickel V, Wojcik A. Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:241-254. [PMID: 24557539 DOI: 10.1007/s00411-014-0519-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
In the case of a large scale radiation accident high throughput methods of biological dosimetry for population triage are needed to identify individuals requiring clinical treatment. The dicentric assay performed in web-based scoring mode may be a very suitable technique. Within the MULTIBIODOSE EU FP7 project a network is being established of 8 laboratories with expertise in dose estimations based on the dicentric assay. Here, the manual dicentric assay was tested in a web-based scoring mode. More than 23,000 high resolution images of metaphase spreads (only first mitosis) were captured by four laboratories and established as image galleries on the internet (cloud). The galleries included images of a complete dose effect curve (0-5.0 Gy) and three types of irradiation scenarios simulating acute whole body, partial body and protracted exposure. The blood samples had been irradiated in vitro with gamma rays at the University of Ghent, Belgium. Two laboratories provided image galleries from Fluorescence plus Giemsa stained slides (3 h colcemid) and the image galleries from the other two laboratories contained images from Giemsa stained preparations (24 h colcemid). Each of the 8 participating laboratories analysed 3 dose points of the dose effect curve (scoring 100 cells for each point) and 3 unknown dose points (50 cells) for each of the 3 simulated irradiation scenarios. At first all analyses were performed in a QuickScan Mode without scoring individual chromosomes, followed by conventional scoring (only complete cells, 46 centromeres). The calibration curves obtained using these two scoring methods were very similar, with no significant difference in the linear-quadratic curve coefficients. Analysis of variance showed a significant effect of dose on the yield of dicentrics, but no significant effect of the laboratories, different methods of slide preparation or different incubation times used for colcemid. The results obtained to date within the MULTIBIODOSE project by a network of 8 collaborating laboratories throughout Europe are very promising. The dicentric assay in the web based scoring mode as a high throughput scoring strategy is a useful application for biodosimetry in the case of a large scale radiation accident.
Collapse
Affiliation(s)
- H Romm
- Bundesamt fuer Strahlenschutz, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
27
|
Blumenthal DJ, Sugarman SL, Christensen DM, Wiley AL, Livingston GK, Glassman ES, Koerner JF, Sullivan JM, Hinds S. Role of dicentric analysis in an overarching biodosimetry strategy for use following a nuclear detonation in an urban environment. HEALTH PHYSICS 2014; 106:516-522. [PMID: 24562072 DOI: 10.1097/hp.0b013e3182a5f94f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the moments immediately following a nuclear detonation, casualties with a variety of injuries including trauma, burns, radiation exposure, and combined injuries would require immediate assistance. Accurate and timely radiation dose assessments, based on patient history and laboratory testing, are absolutely critical to support adequately the triage and treatment of those affected. This capability is also essential for ensuring the proper allocation of scarce resources and will support longitudinal evaluation of radiation-exposed individuals and populations. To maximize saving lives, casualties must be systematically triaged to determine what medical interventions are needed, the nature of those interventions, and who requires intervention immediately. In the National Strategy for Improving the Response and Recovery for an Improvised Nuclear Device (IND) Attack, the U.S. Department of Homeland Security recognized laboratory capacity for radiation biodosimetry as having a significant gap for performing mass radiation dose assessment. The anticipated demand for radiation biodosimetry exceeds its supply, and this gap is partly linked to the limited number and analytical complexity of laboratory methods for determining radiation doses within patients. The dicentric assay is a key component of a cytogenetic biodosimetry response asset, as it has the necessary sensitivity and specificity for assessing medically significant radiation doses. To address these shortfalls, the authors have developed a multimodal strategy to expand dicentric assay capacity. This strategy includes the development of an internet-based cytogenetics network that would address immediately the labor intensive burden of the dicentric chromosome assay by increasing the number of skilled personnel to conduct the analysis. An additional option that will require more time includes improving surge capabilities by combining resources available within the country's 150 clinical cytogenetics laboratories. Key to this intermediate term effort is the fact that geneticists and technicians may be experts in matters related to identifying chromosomal abnormalities related to genetic disorders, but they are not familiar with dosimetry for which training and retraining will be required. Finally, long-term options are presented to improve capacity focus on ways to automate parts of the dicentric chromosome assay method.
Collapse
Affiliation(s)
- Daniel J Blumenthal
- *U.S. Department of Energy, 1000 Independence Ave SW, Washington,DC 20585; †Radiation Emergency Assistance Center/Training Site, PO Box 117, MS-39, Oak Ridge, TN 37831; ‡Oak Ridge Associated Universities, 4301 Wilson Boulevard, Arlington, VA 22203; §U.S. Department of Health and Human Services, 200 Independence Ave SW, Washington, DC 20201; **Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Romm H, Ainsbury E, Barnard S, Barrios L, Barquinero J, Beinke C, Deperas M, Gregoire E, Koivistoinen A, Lindholm C, Moquet J, Oestreicher U, Puig R, Rothkamm K, Sommer S, Thierens H, Vandersickel V, Vral A, Wojcik A. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:174-83. [DOI: 10.1016/j.mrgentox.2013.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
|
29
|
Rothkamm K, Horn S, Scherthan H, Rössler U, De Amicis A, Barnard S, Kulka U, Lista F, Meineke V, Braselmann H, Beinke C, Abend M. Laboratory intercomparison on the γ-H2AX foci assay. Radiat Res 2013; 180:149-55. [PMID: 23883318 DOI: 10.1667/rr3238.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The focus of the study is an intercomparison of laboratories' dose-assessment performances using the γ-H2AX foci assay as a diagnostic triage tool for rapid individual radiation dose assessment. Homogenously X-irradiated (240 kVp, 1 Gy/min) blood samples for establishing calibration data (0.25-4 Gy) as well as blinded test samples (0.1-6.4 Gy) were incubated at 37°C for 2 and 24 h (repair time) and sent to the participants. The foci assay was performed according to protocols individually established in participating laboratories and therefore varied. The time taken to report dose estimates was documented for each laboratory. Additional information concerning laboratory organization/characteristics as well as assay performance was collected. The mean absolute difference (MAD) of estimated doses relative to the actual doses was calculated and radiation doses were merged into four triage categories reflecting clinical relevance to calculate accuracy, sensitivity and specificity. First γ-H2AX based dose estimates were reported 7 h after sample receipt. Estimates were similarly accurate for 2 and 24 h repair times, providing scope for its use in the early phase of a radiation exposure incident. Equal accuracy was achieved by scoring 20, 30, 40 or 50 cells per sample. However, MAD values of 0.5-0.7 Gy and 1.3-1.7 Gy divided the data sets into two groups, driven mainly by the considerable differences in foci yields between calibration and blind samples. Foci yields also varied dramatically between laboratories, highlighting reproducibility issues as an important caveat of the foci assay. Nonetheless, foci counts could distinguish high- and low-dose samples in all data sets and binary dose categories of clinical significance could be discriminated with satisfactory accuracy (mean 84%, ±0.03 SEM). Overall, the results suggest that the γ-H2AX assay is a useful tool for rapidly screening individuals for significant exposures that occurred up to at least 24 h earlier, and may help to prioritize cytogenetic dosimetry follow-up.
Collapse
Affiliation(s)
- K Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Manual versus automated γ-H2AX foci analysis across five European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat Res 2013; 756:170-3. [PMID: 23648320 DOI: 10.1016/j.mrgentox.2013.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/12/2023]
Abstract
The identification of severely exposed individuals and reassurance of the 'worried well' are of prime importance for initial triage following a large scale radiation accident. We aim to develop the γ-H2AX foci assay into a rapid biomarker tool for use in accidents. Here, five laboratories established a standard operating procedure and analysed 100 ex vivo γ-irradiated, 4 or 24h incubated and overnight-shipped lymphocyte samples from four donors to generate γ-H2AX reference data, using manual and/or automated foci scoring strategies. In addition to acute, homogeneous exposures to 0, 1, 2 and 4Gy, acute simulated partial body (4Gy to 50% of cells) and protracted exposures (4Gy over 24h) were analysed. Data from all laboratories could be satisfactorily fitted with linear dose response functions. Average yields observed at 4h post exposure were 2-4 times higher than at 24h and varied considerably between laboratories. Automated scoring caused larger uncertainties than manual scoring and was unable to identify partial exposures, which were detectable in manually scored samples due to their overdispersed foci distributions. Protracted exposures were detectable but doses could not be accurately estimated with the γ-H2AX assay. We conclude that the γ-H2AX assay may be useful for rapid triage following a recent acute radiation exposure. The potentially higher speed and convenience of automated relative to manual foci scoring needs to be balanced against its compromised accuracy and inability to detect partial body exposures. Regular re-calibration or inclusion of reference samples may be necessary to ensure consistent results between laboratories or over long time periods.
Collapse
|