1
|
Ozdemir B, Ambrus GG. From encoding to recognition: Exploring the shared neural signatures of visual memory. Brain Res 2025; 1857:149616. [PMID: 40187518 DOI: 10.1016/j.brainres.2025.149616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
This study investigated the shared neural dynamics underlying encoding and recognition processes across diverse visual object stimulus types in short term experimental familiarization, using EEG-based representational similarity analysis and multivariate cross-classification. Building upon previous research, we extended our exploration to the encoding phase. We show early visual stimulus category effects around 150 ms post-stimulus onset and old/new effects around 400 to 600 ms. Notably, a divergence in neural responses for encoding, old, and new stimuli emerged around 300 ms, with items encountered during the study phase showing the highest differentiation from old items during the test phase. Cross-category classification demonstrated discernible memory-related effects as early as 150 ms. Anterior regions of interest, particularly in the right hemisphere, did not exhibit differentiation between experimental phases or between study and new items, hinting at similar processing for items first encountered, irrespective of experiment phase. While short-term experimental familiarity did not consistently adhere to the old >new pattern observed in long-term personal familiarity, statistically significant effects are observed specifically for experimentally familiarized faces, suggesting a potential unique phenomenon specific to facial stimuli. Further investigation is warranted to elucidate underlying mechanisms and determine the extent of face-specific effects. Lastly, our findings underscore the utility of multivariate cross-classification and cross-dataset classification as promising tools for probing abstraction and shared neural signatures of cognitive processing.
Collapse
Affiliation(s)
- Berfin Ozdemir
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Géza Gergely Ambrus
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom.
| |
Collapse
|
2
|
Qin F, Hao L, Li X, Gao Y, Qiu J, Wei D. Neural correlates of risk decision-making: Insights from the balloon analogue risk task and exponential-weight mean-variance model. Cortex 2025; 187:1-15. [PMID: 40273486 DOI: 10.1016/j.cortex.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025]
Abstract
Risk decision-making involves complex cognitive processes, posing challenges in cognitive neuroscience. This study used the Exponential-Weight Mean-Variance (EWMV) model and intersubject representational similarity analysis (ISRSA) to examine the neural mechanisms of five key processes-prior belief, learning rate, risk preference, loss aversion, and behavioral consistency-during the Balloon Analogue Risk Task (BART). We identified distinct and overlapping neural substrates across three BART stages. The reward system, including the nucleus accumbens (NAcc) and lateral orbitofrontal cortex (lOFC), influenced risk preferences and flexibility through dynamic outcome assessments. The cognitive control network, including the dorsolateral prefrontal cortex (dlPFC) and superior parietal lobule (SPL), regulated risk preferences and behavioral consistency. The default mode network, especially the posterior cingulate cortex (PCC), was linked to prior beliefs and risk preferences. Emotional and value-based regions, such as the rostral anterior cingulate cortex (ACC) and ventromedial prefrontal cortex (vmPFC), modulated learning rates and loss aversion, supporting adaptive behavior. This study highlights the interaction of cognitive, emotional, and evaluative processes in risk decision-making, offering insights into the neural substrates of risk-related behaviors.
Collapse
Affiliation(s)
- Facai Qin
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; State Key Laboratory of Cognitive Neuroscience and Learning & International Data Group/McGovern Institute for Brain Research, Beijing Normal University(BNU), Beijing, China; Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Lei Hao
- College of Teacher Education, Southwest University (SWU), Chongqing, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Yixin Gao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University (SWU), Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University (SWU), Chongqing, China.
| |
Collapse
|
3
|
Lee M, Gonzalez A, Rilling JK. Grandmaternal caregiving is associated with a distinct multi-voxel neural representation of grandchildren in the parental motivation circuit. Soc Cogn Affect Neurosci 2025; 20:nsaf034. [PMID: 40261128 PMCID: PMC12077294 DOI: 10.1093/scan/nsaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Grandmothers enhance grandchild survival and maternal health through caregiving. Comparative evidence suggests that human grandmotherhood reflects a unique life history strategy promoting the inclusive fitness of post-reproductive females. Despite its evolutionary importance, the proximate neural mechanisms supporting grandmaternal caregiving remain unclear. This study uses functional magnetic resonance imaging (fMRI) and multivariate approaches to investigate how grandmaternal brains encode information about grandchildren and translate it into caregiving. Forty-seven grandmothers (age = 59.1 ± 7 years) completed an fMRI task viewing photos of a grandchild, the grandchild's parent, unfamiliar individuals, and nonhuman objects. Multi-voxel activation patterns associated with these stimuli were analyzed using representational similarity analysis, focusing on the hypothalamic and mesolimbic regions critical for mammalian parenting. Results reveal that grandchildren had the most distinct multi-voxel pattern of activation within these regions, potentially reflecting the grandmothers' motivational readiness to engage in grandmaternal caregiving. Indeed, greater neural dissimilarity between the grandchild and other social categories correlated with higher self-reported affection and supportive behaviors towards grandchildren, particularly in paternal grandmothers. Our findings provide novel insights into the mechanisms of grandmaternal caregiving that enhances inclusive fitness.
Collapse
Affiliation(s)
- Minwoo Lee
- Department of Psychology, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Amber Gonzalez
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Division of Medical Ethics & Health Policy, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - James K Rilling
- Department of Psychology, Emory University, Atlanta, GA 30322, United States
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States
- Center for Translational and Social Neuroscience, Emory University, Atlanta 30322, United States
- Center for Behavioral Neuroscience, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
4
|
Doyon JK, Shomstein S, Rosenblau G. Feature identification learning both shapes and is shaped by spatial object-similarity representations. COMMUNICATIONS PSYCHOLOGY 2025; 3:77. [PMID: 40355520 PMCID: PMC12069083 DOI: 10.1038/s44271-025-00259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Object knowledge is bound together in semantic networks that can be spatially represented. How these knowledge representations shape and are in turn shaped by learning remains unclear. Here, we directly examined how object similarity representations impact implicit learning of feature dimensions and how learning, in turn, influences these representations. In a pre-experiment, 237 adult participants arranged object-pictures in a spatial arena, revealing semantic relatedness of everyday objects across categories: activity, fashion, and foods. The subsequent experiment assessed whether these semantic relationships played a role in implicitly learning specific object features in a separate adult participant group (N = 82). Participants inferred the meanings of two pseudo-words through feedback. Using computational modeling, we tested various learning strategies and established that learning was guided by semantic relationships quantified in the pre-experiment. Post-learning arrangements reflected object similarity representations as well as the learned feature. We directly show that similarity representations guide implicit learning and that learning in turn reshapes existing knowledge representations.
Collapse
Affiliation(s)
- Jonathan K Doyon
- Department of Psychological and Brain Sciences, The George Washington University, Washington, D.C., USA.
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Washington, D.C., USA.
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Sarah Shomstein
- Department of Psychological and Brain Sciences, The George Washington University, Washington, D.C., USA
| | - Gabriela Rosenblau
- Department of Psychological and Brain Sciences, The George Washington University, Washington, D.C., USA.
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Washington, D.C., USA.
| |
Collapse
|
5
|
Liang J, Zhang M, Yang L, Li Y, Li Y, Wang L, Li H, Chen J, Luo W. How Linguistic and Nonlinguistic Vocalizations Shape the Perception of Emotional Faces-An Electroencephalography Study. J Cogn Neurosci 2025; 37:970-987. [PMID: 39620941 DOI: 10.1162/jocn_a_02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Vocal emotions are crucial in guiding visual attention toward emotionally significant environmental events, such as recognizing emotional faces. This study employed continuous EEG recordings to examine the impact of linguistic and nonlinguistic vocalizations on facial emotion processing. Participants completed a facial emotion discrimination task while viewing fearful, happy, and neutral faces. The behavioral and ERP results indicated that fearful nonlinguistic vocalizations accelerated the recognition of fearful faces and elicited a larger P1 amplitude, whereas happy linguistic vocalizations accelerated the recognition of happy faces and similarly induced a greater P1 amplitude. In recognition of fearful faces, a greater N170 component was observed in the right hemisphere when the emotional category of the priming vocalization was consistent with the face stimulus. In contrast, this effect occurred in the left hemisphere while recognizing happy faces. Representational similarity analysis revealed that the temporoparietal regions automatically differentiate between linguistic and nonlinguistic vocalizations early in face processing. In conclusion, these findings enhance our understanding of the interplay between vocalization types and facial emotion recognition, highlighting the importance of cross-modal processing in emotional perception.
Collapse
Affiliation(s)
- Junyu Liang
- South China Normal University
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
| | - Mingming Zhang
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
| | - Lan Yang
- South China Normal University
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
| | - Yiwen Li
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
- Beijing Normal University
| | - Yuchen Li
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
| | - Li Wang
- South China Normal University
| | | | | | - Wenbo Luo
- Liaoning Normal University
- Key Laboratory of Brain and Cognitive Neuroscience
| |
Collapse
|
6
|
Guassi Moreira JF, Silvers JA. Multi-voxel pattern analysis for developmental cognitive neuroscientists. Dev Cogn Neurosci 2025; 73:101555. [PMID: 40188575 PMCID: PMC12002837 DOI: 10.1016/j.dcn.2025.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025] Open
Abstract
The current prevailing approaches to analyzing task fMRI data in developmental cognitive neuroscience are brain connectivity and mass univariate task-based analyses, used either in isolation or as part of a broader analytic framework (e.g., BWAS). While these are powerful tools, it is somewhat surprising that multi-voxel pattern analysis (MVPA) is not more common in developmental cognitive neuroscience given its enhanced ability to both probe neural population codes and greater sensitivity relative to the mass univariate approach. Omitting MVPA methods might represent a missed opportunity to leverage a suite of tools that are uniquely poised to reveal mechanisms underlying brain development. The goal of this review is to spur awareness and adoption of MVPA in developmental cognitive neuroscience by providing a practical introduction to foundational MVPA concepts. We begin by defining MVPA and explain why examining multi-voxel patterns of brain activity can aid in understanding the developing human brain. We then survey four different types of MVPA: Decoding, representational similarity analysis (RSA), pattern expression, and voxel-wise encoding models. Each variant of MVPA is presented with a conceptual overview of the method followed by practical considerations and subvariants thereof. We go on to highlight the types of developmental questions that can be answered by MPVA, discuss practical matters in MVPA implementation germane to developmental cognitive neuroscientists, and make recommendations for integrating MVPA with the existing analytic ecosystem in the field.
Collapse
|
7
|
Cheng X, Popal H, Wang H, Hu R, Zang Y, Zhang M, Thornton MA, Ma Y, Cai H, Bi Y, Reilly J, Olson IR, Wang Y. The conceptual structure of human relationships across modern and historical cultures. Nat Hum Behav 2025:10.1038/s41562-025-02122-8. [PMID: 40082684 DOI: 10.1038/s41562-025-02122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/21/2025] [Indexed: 03/16/2025]
Abstract
A defining characteristic of social complexity in Homo sapiens is the diversity of our relationships. We build connections of various types in our families, workplaces, neighbourhoods and online communities. How do we make sense of such complex systems of human relationships? The basic organization of relationships has long been studied in the social sciences, but no consensus has been reached. Here, by using online surveys, laboratory cognitive tasks and natural language processing in diverse modern cultures across the world (n = 20,427) and ancient cultures spanning 3,000 years of history, we examined universality and cultural variability in the ways that people conceptualize relationships. We discovered a universal representational space for relationship concepts, comprising five principal dimensions (formality, activeness, valence, exchange and equality) and three core categories (hostile, public and private relationships). Our work reveals the fundamental cognitive constructs and cultural principles of human relationship knowledge and advances our understanding of human sociality.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haroon Popal
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Huanqing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Renfen Hu
- School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yinyin Zang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Mingzhe Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mark A Thornton
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huajian Cai
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jamie Reilly
- Department of Communication Sciences & Disorders, Temple University, Philadelphia, PA, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
8
|
Liu C, Ma Y, Liang X, Xiang M, Wu H, Ning X. Decoding the Spatiotemporal Dynamics of Neural Response Similarity in Auditory Processing: A Multivariate Analysis Based on OPM-MEG. Hum Brain Mapp 2025; 46:e70175. [PMID: 40016919 PMCID: PMC11868016 DOI: 10.1002/hbm.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
The brain represents information through the encoding of neural populations, where the activity patterns of these neural groups constitute the content of this information. Understanding these activity patterns and their dynamic changes is of significant importance to cognitive neuroscience and related research areas. Current studies focus more on brain regions that show differential responses to stimuli, but they lack the ability to capture information about the representational or process-level dynamics within these regions. In this study, we recorded neural data from 10 healthy participants during auditory experiments using optically pumped magnetometer magnetoencephalography (OPM-MEG) and electroencephalography (EEG). We constructed representational similarity matrices (RSMs) to investigate the similarity of neural response patterns during auditory decoding. The results indicate that RSA can reveal the dynamic changes in pattern similarity during different stages of auditory processing through the neural activity patterns reflected by OPM-MEG. Comparisons with EEG results showed that both techniques captured the same processes during the early stages of auditory decoding. However, differences in sensitivity at later stages highlighted both common and distinct aspects of neural representation between the two modalities. Further analysis indicated that this process involved widespread neural network activation, including the Heschl's gyrus, superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, and orbitofrontal gyrus. This study demonstrates that the combination of OPM-MEG and RSA is sufficiently sensitive to detect changes in pattern similarity during neural representation processes and to identify their anatomical origins, offering new insights and references for the future application of RSA and other multivariate pattern analysis methods in the MEG field.
Collapse
Affiliation(s)
- Changzeng Liu
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
| | - Yuyu Ma
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
| | - Xiaoyu Liang
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
| | - Min Xiang
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
- Hefei National LaboratoryHefeiAnhuiChina
- Key Laboratory of Traditional Chinese Medicine SyndromeNational Institute of Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
| | - Huanqi Wu
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
| | - Xiaoling Ning
- Key Laboratory of Ultra‐Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Hangzhou Institute of National Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
- Hefei National LaboratoryHefeiAnhuiChina
- Key Laboratory of Traditional Chinese Medicine SyndromeNational Institute of Extremely‐Weak Magnetic Field InfrastructureHangzhouZhejiangChina
- Shandong Key Laboratory for Magnetic Field‐Free Medicine and Functional Imaging, Institute of Magnetic Field‐Free Medicine and Functional ImagingShandong UniversityJinanShandongChina
| |
Collapse
|
9
|
Wang Y. Neural Representation of Response Inhibition and Attentional Capture in the Right Inferior Frontal Gyrus. Eur J Neurosci 2025; 61:e70048. [PMID: 40029550 DOI: 10.1111/ejn.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Inhibitory control requires individuals to suppress inappropriate behaviors while also engaging in attentional capture of response signals. Previous research has identified the right inferior frontal gyrus as a critical brain region for implementing inhibitory control; however, evidence regarding its role in attentional capture remains limited. Since the Stop trials in the stop signal task involve both attentional capture of salient stimuli and response inhibition, it is challenging to isolate the attentional capture process from inhibitory control. To address this issue, the present study modified the stop signal task by introducing Continue signals, allowing participants to execute Go responses upon seeing a Continue signal. Consequently, the processing of Continue signals involved attentional capture without engaging in response inhibition. Multivoxel pattern analysis revealed that the right inferior frontal gyrus is capable of representing both Stop and Continue signals, with a stronger neural representation for Stop signals compared to Continue signals. Thus, this study demonstrates that the right inferior frontal gyrus is involved in both attentional capture of stimulus signals and behavioral inhibition during the process of inhibitory control. This finding enhances our understanding of the specific functions of the right inferior frontal gyrus in the context of inhibitory control processing.
Collapse
Affiliation(s)
- Yanqing Wang
- School of Psychology, Northwest Normal University, Lanzhou, China
| |
Collapse
|
10
|
Schirmer A, Croy I, Liebal K, Schweinberger SR. Non-verbal effecting - animal research sheds light on human emotion communication. Biol Rev Camb Philos Soc 2025; 100:245-257. [PMID: 39262120 PMCID: PMC11718621 DOI: 10.1111/brv.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Cracking the non-verbal "code" of human emotions has been a chief interest of generations of scientists. Yet, despite much effort, a dictionary that clearly maps non-verbal behaviours onto meaning remains elusive. We suggest this is due to an over-reliance on language-related concepts and an under-appreciation of the evolutionary context in which a given non-verbal behaviour emerged. Indeed, work in other species emphasizes non-verbal effects (e.g. affiliation) rather than meaning (e.g. happiness) and differentiates between signals, for which communication benefits both sender and receiver, and cues, for which communication does not benefit senders. Against this backdrop, we develop a "non-verbal effecting" perspective for human research. This perspective extends the typical focus on facial expressions to a broadcasting of multisensory signals and cues that emerge from both social and non-social emotions. Moreover, it emphasizes the consequences or effects that signals and cues have for individuals and their social interactions. We believe that re-directing our attention from verbal emotion labels to non-verbal effects is a necessary step to comprehend scientifically how humans share what they feel.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of PsychologyInnsbruck UniversityUniversitaetsstrasse 5‐7Innsbruck6020Austria
| | - Ilona Croy
- Department of PsychologyFriedrich Schiller University JenaAm Steiger 3Jena07743Germany
- German Center for Mental Health (DZPG)Partner Site Halle‐Jena‐MagdeburgVirchowweg 23Berlin10117Germany
| | - Katja Liebal
- Institute of BiologyLeipzig UniversityTalstraße 33Leipzig04103Germany
| | | |
Collapse
|
11
|
Amoruso L, Moguilner S, Castillo EM, Kleineschay T, Geng S, Ibáñez A, García AM. Neural dynamics of social verb processing: an MEG study. Soc Cogn Affect Neurosci 2025; 20:nsae066. [PMID: 39725669 PMCID: PMC11711678 DOI: 10.1093/scan/nsae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024] Open
Abstract
Human vocabularies include specific words to communicate interpersonal behaviors, a core linguistic function mainly afforded by social verbs (SVs). This skill has been proposed to engage dedicated systems subserving social knowledge. Yet, neurocognitive evidence is scarce, and no study has examined spectro-temporal and spatial signatures of SV access. Here, we combined magnetoencephalography and time-resolved decoding methods to characterize the neural dynamics underpinning SVs, relative to nonsocial verbs (nSVs), via a lexical decision task. Time-frequency analysis revealed stronger beta (20 Hz) power decreases for SVs in right fronto-temporal sensors at early stages. Time-resolved decoding showed that beta oscillations significantly discriminated SVs and nSVs between 180 and 230 ms. Sources of this effect were traced to the right anterior superior temporal gyrus (a key hub underpinning social conceptual knowledge) as well as parietal, pre/motor and prefrontal cortices supporting nonverbal social cognition. Finally, representational similarity analyses showed that the observed fronto-temporal neural patterns were specifically predicted by verbs' socialness, as opposed to other psycholinguistic dimensions such as sensorimotor content, emotional valence, arousal, and concreteness. Overall, verbal conveyance of socialness seems to involve distinct neurolinguistic patterns, partly shared by more general sociocognitive and lexicosemantic processes.
Collapse
Affiliation(s)
- Lucia Amoruso
- Cognitive Neuroscience Center (CNC), University of San Andres, Buenos Aires C1011ACC, Argentina
- Basque Center on Cognition, Brain and Language (BCBL), San Sebastian 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Sebastian Moguilner
- Cognitive Neuroscience Center (CNC), University of San Andres, Buenos Aires C1011ACC, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (CA94158), United States; Trinity College Dublin (TCD), Dublin D02DP21, Ireland
| | - Eduardo M Castillo
- Magnetoencephalography Laboratory, Advent Health for Children, Orlando, FL 32804, United States
| | - Tara Kleineschay
- Magnetoencephalography Laboratory, Advent Health for Children, Orlando, FL 32804, United States
| | - Shuang Geng
- Brain, Language and Computation Lab, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Agustín Ibáñez
- Cognitive Neuroscience Center (CNC), University of San Andres, Buenos Aires C1011ACC, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (CA94158), United States; Trinity College Dublin (TCD), Dublin D02DP21, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago 8320000, Chile
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), University of San Andres, Buenos Aires C1011ACC, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (CA94158), United States; Trinity College Dublin (TCD), Dublin D02DP21, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
12
|
Zhang Y, Ma C, Li H, Assumpção L, Liu Y. Sophisticated perspective-takers are distinctive: Neural idiosyncrasy of functional connectivity in the mentalizing network. iScience 2024; 27:111472. [PMID: 39720521 PMCID: PMC11667172 DOI: 10.1016/j.isci.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Naive perspective-takers often perceive the social world in a simplistic and uniform way, whereas sophisticated ones recognize the diversity and complexity of others' minds. This commonly accepted distinction points to a possibility of greater inter-individual variability in mentalizing for sophisticated than naive perspective-takers, a difference previously overlooked in research. In the current study, participants were asked to watch a mentalizing-related movie and their neural responses, interpretations of the characters' mental states, and eye-gaze trajectories were recorded. The results provide robust and converging evidence that the neural connectomic features within the mentalizing network, eye-gaze trajectories, and interpretations of others' mental states exhibit greater inter-individual variability among sophisticated perspective-takers compared to naive ones, supporting that sophisticated perspective-takers are more distinctive while naive ones are more similar. These findings deepen our understanding of mentalizing by highlighting the idiosyncrasy and homogeneity of neural collaboration and behavioral manifestations across varying levels of perspective-taking sophistication.
Collapse
Affiliation(s)
- Yu Zhang
- School of Psychology, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| | - Chao Ma
- School of Psychology, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| | - Haiming Li
- School of Psychology, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| | - Leonardo Assumpção
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians University, 80802 Munich, Germany
| | - Yi Liu
- School of Psychology, Northeast Normal University, Changchun 130024, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| |
Collapse
|
13
|
Goebel R, Lührs M, Ciarlo A, Esposito F, Linden DE. Semantic fMRI neurofeedback of emotions: from basic principles to clinical applications. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230084. [PMID: 39428873 PMCID: PMC11556678 DOI: 10.1098/rstb.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 10/22/2024] Open
Abstract
During fMRI neurofeedback participants learn to self-regulate activity in relevant brain areas and networks based on ongoing feedback extracted from measured responses in those regions. This closed-loop approach has been successfully applied to reduce symptoms in mood disorders such as depression by showing participants a thermometer-like display indicating the strength of activity in emotion-related brain areas. The hitherto employed conventional neurofeedback is, however, 'blind' with respect to emotional content, i.e. patients instructed to engage in a specific positive emotion could drive the neurofeedback signal by engaging in a different (positive or negative) emotion. In this future perspective, we present a new form of neurofeedback that displays semantic information of emotions to the participant. Semantic information is extracted online using real-time representational similarity analysis of emotion-specific activity patterns. The extracted semantic information can be provided to participants in a two-dimensional semantic map depicting the current mental state as a point reflecting its distance to pre-measured emotional mental states (e.g. 'happy', 'content', 'sad', 'angry'). This new approach provides transparent feedback during self-regulation training, and it has the potential to enable more specific training effects for future therapeutic applications such as clinical interventions in mood disorders.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht6229 EV, The Netherlands
- Research Department, Brain Innovation BV, Oxfordlaan 55, Maastricht6229 EV, The Netherlands
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht6229 EV, The Netherlands
- Research Department, Brain Innovation BV, Oxfordlaan 55, Maastricht6229 EV, The Netherlands
| | - Assunta Ciarlo
- Research Department, Brain Innovation BV, Oxfordlaan 55, Maastricht6229 EV, The Netherlands
- Department of Medicine, Surgery and Dentistry, ‘Scuola Medica Salernitana’, University of Salerno, S. Allende 43, Baronissi (SA)84081, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, School of Medicine, University of Campania ‘Luigi Vanvitelli’, Piazza Luigi Miraglia 2, Naples80123, Italy
| | - David E. Linden
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, Maastricht6229 ER, The Netherlands
| |
Collapse
|
14
|
Luo S, Yuan H, Wang Y, Bond MH. Culturomics: Taking the cross-scale, interdisciplinary science of culture into the next decade. Neurosci Biobehav Rev 2024; 167:105942. [PMID: 39542284 DOI: 10.1016/j.neubiorev.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Culture is a complex topic involving a comprehensive representation of human institutions, social customs, norms, and lifestyles. Over the past half-century, the methods of cultural studies have improved dramatically in the depth of the research questions posed. However, most contemporary research on cultural issues is conducted from a single perspective, which fails to account for the holistic and extensive nature of culture. The development of culture is influenced by various factors, encompassing not only the humanistic environment but also factors related to the natural environment and socio-economic conditions. Hence, culture involves multiple concepts with associated levels and dimensions, such as genes, molecules, brains, individuals, groups, institutions, societies, and political environments. Therefore, we propose the concept of Culturomics, a cross-level, interdisciplinary science that studies human behavior and cultural representation in high-order space. Under this concept, it is necessary to find new methods to compare multidimensional data from different levels directly. In this paper, we first review past cultural studies, then introduce the concept, research content, and methodology of Culturomics, and discuss future directions for this field.
Collapse
Affiliation(s)
- Siyang Luo
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hang Yuan
- Department of Psychology, Guangdong Provincial Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Michael Harris Bond
- Department of Management and Marketing, Faculty of Business, Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
15
|
Del Motte MG, Tamman AJF. Representational similarity analysis of neural patterns in childhood maltreatment. Neuropsychopharmacology 2024; 50:357-358. [PMID: 39097622 PMCID: PMC11525809 DOI: 10.1038/s41386-024-01955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
16
|
Chen D, Yao Z, Liu J, Wu H, Hu X. Social conformity updates the neural representation of facial attractiveness. Commun Biol 2024; 7:1369. [PMID: 39438704 PMCID: PMC11496808 DOI: 10.1038/s42003-024-06791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
People readily change their behavior to comply with others. However, to which extent they will internalize the social influence remains elusive. In this preregistered electroencephalogram (EEG) study, we investigated how learning from one's in-group or out-group members about facial attractiveness would change explicit attractiveness ratings and spontaneous neural representations of facial attractiveness. Specifically, we quantified the neural representational similarities of learned faces with prototypical attractive faces during a face perception task without overt social influence and intentional evaluation. We found that participants changed their explicit attractiveness ratings to both in-group and out-group influences. Moreover, social conformity updated spontaneous neural representation of facial attractiveness, an effect particularly evident when participants learned from their in-group members and among those who perceived tighter social norms. These findings offer insights into how group affiliations and individual differences in perceived social norms modulate the internalization of social influence.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
17
|
Hwang MJ, Lee SA. Scene construction processes in the anterior hippocampus during temporal episodic memory retrieval. Hippocampus 2024; 34:506-517. [PMID: 39096199 DOI: 10.1002/hipo.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
Although the hippocampus has been implicated in both the temporal organization of memories and association of scene elements, some theoretical accounts posit that the role of the hippocampus in episodic memory is largely atemporal. In this study, we set out to explore this discrepancy by identifying hippocampal activity patterns related to scene construction while participants performed a temporal order memory task. Participants in the fMRI scanner were shown a sequence of photographs, each consisting of a central object and a contextual background scene. On each retrieval trial, participants were shown a pair of the original photographs (FULL), objects from the scenes without the background (OBJ), or background contexts without the main foreground object (BACK). In the temporal order judgment (TOJ) task, participants judged the temporal order of the pair of scenes; in the Viewing trials, two identical scenes were shown without any task. First, we found that the anterior hippocampus-particularly the CA1 and subiculum-showed similar patterns of activation between the BACK and OBJ conditions, suggesting that scene construction occurred spontaneously during both TOJ and Viewing. Furthermore, neural markers of scene construction in the anterior hippocampus did not apply to incorrect trials, showing that successful temporal memory retrieval was functionally linked to scene construction. In the cortex, time-processing areas, such as the supplementary motor area and the precuneus, and scene-processing areas, such as the parahippocampal cortex, were activated and functionally connected with the hippocampus. Together, these results support the view that the hippocampus is concurrently involved in scene construction and temporal organization of memory and propose a model of hippocampal episodic memory that takes both processes into account.
Collapse
Affiliation(s)
- Maria Jieun Hwang
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Chwe JAH, Vartiainen HI, Freeman JB. A Multidimensional Neural Representation of Face Impressions. J Neurosci 2024; 44:e0542242024. [PMID: 39134420 PMCID: PMC11426373 DOI: 10.1523/jneurosci.0542-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/27/2024] Open
Abstract
From a glimpse of a face, people form trait impressions that operate as facial stereotypes, which are largely inaccurate yet nevertheless drive social behavior. Behavioral studies have long pointed to dimensions of trustworthiness and dominance that are thought to underlie face impressions due to their evolutionarily adaptive nature. Using human neuroimaging (N = 26, 19 female, 7 male), we identify a two-dimensional representation of faces' inferred traits in the middle temporal gyrus (MTG), a region involved in domain-general conceptual processing including the activation of social concepts. The similarity of neural-response patterns for any given pair of faces in the bilateral MTG was predicted by their proximity in trustworthiness-dominance space, an effect that could not be explained by mere visual similarity. This MTG trait-space representation occurred automatically, was relatively invariant across participants, and did not depend on the explicit endorsement of face impressions (i.e., beliefs that face impressions are valid and accurate). In contrast, regions involved in high-level social reasoning (the bilateral temporoparietal junction and posterior superior temporal sulcus; TPJ-pSTS) and entity-specific social knowledge (the left anterior temporal lobe; ATL) also exhibited this trait-space representation but only among participants who explicitly endorsed forming these impressions. Together, the findings identify a two-dimensional neural representation of face impressions and suggest that multiple implicit and explicit mechanisms give rise to biases based on facial appearance. While the MTG implicitly represents a multidimensional trait space for faces, the TPJ-pSTS and ATL are involved in the explicit application of this trait space for social evaluation and behavior.
Collapse
Affiliation(s)
| | - Henna I Vartiainen
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
19
|
Knyazev GG, Savostyanov AN, Bocharov AV, Rudych PD, Saprigyn AE. Multivariate pattern analysis of cooperation and competition in constructive action. Neuropsychologia 2024; 202:108956. [PMID: 39002772 DOI: 10.1016/j.neuropsychologia.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The neural underpinning of cooperative and competitive constructive activity has been investigated using mass-univariate approaches. In this study, we sought to compare the results of these approaches with the results of multivariate pattern analysis (MVPA). In particular, we wanted to test whether MVPA supports the claim made in previous studies that cooperation is associated with the activity of reward-related brain circuits. Participants were required to construct a pattern on the screen either individually or in cooperation or competition with another person during an fMRI scan. Both the MVPA classification methods and the representational similarity analysis indicated the involvement of orbitofrontal and ventromedial prefrontal areas in processes that distinguish between cooperation and competition, and activation analysis showed that these areas are more active during cooperation than during competition. However, a single trial analysis showed that the effect was reversed when only winning trials were considered. In these trials, activation of reward-related areas was higher during competition than during cooperation. Moreover, the contrast between won and lost trials in terms of reward circuits involvement was sharper under competition than under cooperation. Thus, although cooperation can be generally more rewarding than competition, it is associated with smaller difference between trials lost and trials won in terms of reward circuits activation. One may speculate that in cooperation, victory and defeat are shared with the partner and, contrary to competition, are not experienced as personal achievement or failure.
Collapse
Affiliation(s)
- G G Knyazev
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
| | - A N Savostyanov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A V Bocharov
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - P D Rudych
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - A E Saprigyn
- Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
20
|
Qi S, Cross L, Wise T, Sui X, O'Doherty J, Mobbs D. The Role of the Medial Prefrontal Cortex in Spatial Margin of Safety Calculations. J Neurosci 2024; 44:e1162222024. [PMID: 38997158 PMCID: PMC11340276 DOI: 10.1523/jneurosci.1162-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/05/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Naturalistic observations show that animals pre-empt danger by moving to locations that increase their success in avoiding future threats. To test this in humans, we created a spatial margin of safety (MOS) decision task that quantifies pre-emptive avoidance by measuring the distance subjects place themselves to safety when facing different threats whose attack locations vary in predictability. Behavioral results show that human participants place themselves closer to safe locations when facing threats that attack in spatial locations with more outliers. Using both univariate and multivariate pattern analysis (MVPA) on fMRI data collected during a 2 h session on participants of both sexes, we demonstrate a dissociable role for the vmPFC in MOS-related decision-making. MVPA results revealed that the posterior vmPFC encoded for more unpredictable threats with univariate analyses showing a functional coupling with the amygdala and hippocampus. Conversely, the anterior vmPFC was more active for the more predictable attacks and showed coupling with the striatum. Our findings converge in showing that during pre-emptive danger, the anterior vmPFC may provide a safety signal, possibly via foreseeable outcomes, while the posterior vmPFC drives unpredictable danger signals.
Collapse
Affiliation(s)
- Song Qi
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - Logan Cross
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| | - Toby Wise
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - Xin Sui
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - John O'Doherty
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| | - Dean Mobbs
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
21
|
Xu HZ, Peng XR, Huan SY, Xu JJ, Yu J, Ma QG. Are older adults less generous? Age differences in emotion-related social decision making. Neuroimage 2024; 297:120756. [PMID: 39074759 DOI: 10.1016/j.neuroimage.2024.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
In social interaction, age-related differences in emotional processing may lead to varied social decision making between young and older adults. However, previous studies of social decision making have paid less attention to the interactants' emotions, leaving age differences and underlying neural mechanisms unexplored. To address this gap, the present study combined functional and structural magnetic resonance imaging, employing a modified dictator game task with recipients displaying either neutral or sad facial expressions. Behavioral results indicated that although older adults' overall allocations did not differ significantly from those of young adults, older adults' allocations showing a decrease in emotion-related generosity compared to young adults. Using representational similarity analysis, we found that older adults showed reduced neural representations of recipients' emotions and gray matter volume in the right anterior cingulate gyrus (ACC), right insula, and left dorsomedial prefrontal cortex (DMPFC) compared to young adults. More importantly, mediation analyses indicated that age influenced allocations not only through serial mediation of neural representations of the right insula and left DMPFC, but also through serial mediation of the mean gray matter volume of the right ACC and left DMPFC. This study identifies the potential neural pathways through which age affects emotion-related social decision making, advancing our understanding of older adults' social interaction behavior that they may not be less generous unless confronted with individuals with specific emotions.
Collapse
Affiliation(s)
- Hong-Zhou Xu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xue-Rui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden 01062, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden 01062, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Shen-Yin Huan
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jia-Jie Xu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Qing-Guo Ma
- Neuromanagement Laboratory, School of Management, Zhejiang University, Hangzhou 310058, China; Institute of Neural Management Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
22
|
Varlet M, Grootswagers T. Measuring information alignment in hyperscanning research with representational analyses: moving beyond interbrain synchrony. Front Hum Neurosci 2024; 18:1385624. [PMID: 39118818 PMCID: PMC11306121 DOI: 10.3389/fnhum.2024.1385624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Hyperscanning, which enables the recording of brain activity from multiple individuals simultaneously, has been increasingly used to investigate the neuropsychological processes underpinning social interaction. Previous hyperscanning research has primarily focused on interbrain synchrony, demonstrating an enhanced alignment of brain waves across individuals during social interaction. However, using EEG hyperscanning simulations, we here show that interbrain synchrony has low sensitivity to information alignment across people. Surprisingly, interbrain synchrony remains largely unchanged despite manipulating whether two individuals are seeing same or different things at the same time. Furthermore, we show that hyperscanning recordings do contain indices of interpersonal information alignment and that they can be captured using representational analyses. These findings highlight major limitations of current hyperscanning research and offer a promising alternative for investigating interactive minds.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Western Sydney University, Sydney, NSW, Australia
| | - Tijl Grootswagers
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Giraud M, Zapparoli L, Basso G, Petilli M, Paulesu E, Nava E. Mapping the emotional homunculus with fMRI. iScience 2024; 27:109985. [PMID: 38868180 PMCID: PMC11167434 DOI: 10.1016/j.isci.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/02/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Emotions are commonly associated with bodily sensations, e.g., boiling with anger when overwhelmed with rage. Studies have shown that emotions are related to specific body parts, suggesting that somatotopically organized cortical regions that commonly respond to somatosensory and motor experiences might be involved in the generation of emotions. We used functional magnetic resonance imaging to investigate whether the subjective feelings of emotion are accompanied by the activation of somatotopically defined sensorimotor brain regions, thus aiming to reconstruct an "emotional homunculus." By defining the convergence of the brain activation patterns evoked by self-generated emotions during scanning onto a sensorimotor map created on participants' tactile and motor brain activity, we showed that all the evoked emotions activated parts of this sensorimotor map, yet with considerable overlap among different emotions. Although we could not find a highly specific segmentation of discrete emotions over sensorimotor regions, our results support an embodied experience of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Laura Zapparoli
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
- fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| | - Marco Petilli
- Department of Psychology, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
24
|
Morales-Torres R, Wing EA, Deng L, Davis SW, Cabeza R. Visual Recognition Memory of Scenes Is Driven by Categorical, Not Sensory, Visual Representations. J Neurosci 2024; 44:e1479232024. [PMID: 38569925 PMCID: PMC11112637 DOI: 10.1523/jneurosci.1479-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
When we perceive a scene, our brain processes various types of visual information simultaneously, ranging from sensory features, such as line orientations and colors, to categorical features, such as objects and their arrangements. Whereas the role of sensory and categorical visual representations in predicting subsequent memory has been studied using isolated objects, their impact on memory for complex scenes remains largely unknown. To address this gap, we conducted an fMRI study in which female and male participants encoded pictures of familiar scenes (e.g., an airport picture) and later recalled them, while rating the vividness of their visual recall. Outside the scanner, participants had to distinguish each seen scene from three similar lures (e.g., three airport pictures). We modeled the sensory and categorical visual features of multiple scenes using both early and late layers of a deep convolutional neural network. Then, we applied representational similarity analysis to determine which brain regions represented stimuli in accordance with the sensory and categorical models. We found that categorical, but not sensory, representations predicted subsequent memory. In line with the previous result, only for the categorical model, the average recognition performance of each scene exhibited a positive correlation with the average visual dissimilarity between the item in question and its respective lures. These results strongly suggest that even in memory tests that ostensibly rely solely on visual cues (such as forced-choice visual recognition with similar distractors), memory decisions for scenes may be primarily influenced by categorical rather than sensory representations.
Collapse
Affiliation(s)
| | - Erik A Wing
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
| | - Lifu Deng
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708
| | - Simon W Davis
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina 27708
| | - Roberto Cabeza
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina 27708
| |
Collapse
|
25
|
Faghel-Soubeyrand S, Richoz AR, Waeber D, Woodhams J, Caldara R, Gosselin F, Charest I. Neural computations in prosopagnosia. Cereb Cortex 2024; 34:bhae211. [PMID: 38795358 PMCID: PMC11127037 DOI: 10.1093/cercor/bhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024] Open
Abstract
We report an investigation of the neural processes involved in the processing of faces and objects of brain-lesioned patient PS, a well-documented case of pure acquired prosopagnosia. We gathered a substantial dataset of high-density electrophysiological recordings from both PS and neurotypicals. Using representational similarity analysis, we produced time-resolved brain representations in a format that facilitates direct comparisons across time points, different individuals, and computational models. To understand how the lesions in PS's ventral stream affect the temporal evolution of her brain representations, we computed the temporal generalization of her brain representations. We uncovered that PS's early brain representations exhibit an unusual similarity to later representations, implying an excessive generalization of early visual patterns. To reveal the underlying computational deficits, we correlated PS' brain representations with those of deep neural networks (DNN). We found that the computations underlying PS' brain activity bore a closer resemblance to early layers of a visual DNN than those of controls. However, the brain representations in neurotypicals became more akin to those of the later layers of the model compared to PS. We confirmed PS's deficits in high-level brain representations by demonstrating that her brain representations exhibited less similarity with those of a DNN of semantics.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG
| | - Anne-Raphaelle Richoz
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Delphine Waeber
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Jessica Woodhams
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | - Roberto Caldara
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| |
Collapse
|
26
|
Liu J, Hu X, Shen X, Song S, Zhang D. Electrophysiological representations of multivariate human emotion experience. Cogn Emot 2024; 38:378-388. [PMID: 38147431 DOI: 10.1080/02699931.2023.2297272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
ABSTRACTDespite the fact that human daily emotions are co-occurring by nature, most neuroscience studies have primarily adopted a univariate approach to identify the neural representation of emotion (emotion experience within a single emotion category) without adequate consideration of the co-occurrence of different emotions (emotion experience across different emotion categories simultaneously). To investigate the neural representations of multivariate emotion experience, this study employed the inter-situation representational similarity analysis (RSA) method. Researchers used an EEG dataset of 78 participants who watched 28 video clips and rated their experience on eight emotion categories. The EEG-based electrophysiological representation was extracted as the power spectral density (PSD) feature per channel in the five frequency bands. The inter-situation RSA method revealed significant correlations between the multivariate emotion experience ratings and PSD features in the Alpha and Beta bands, primarily over the frontal and parietal-occipital brain regions. The study found the identified EEG representations to be reliable with sufficient situations and participants. Moreover, through a series of ablation analyses, the inter-situation RSA further demonstrated the stability and specificity of the EEG representations for multivariate emotion experience. These findings highlight the importance of adopting a multivariate perspective for a comprehensive understanding of the neural representation of human emotion experience.
Collapse
Affiliation(s)
- Jin Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Xin Hu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Sen Song
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Dan Zhang
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
- Department of Psychology, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Barrett AMY, Cheng TW, Flannery JE, Mills KL, Fisher PA, McCann CF, Pfeifer JH. Comparing the multivariate relationships of conceptual adversity models and structural brain development in adolescent girls: A registered report. Dev Psychol 2024; 60:858-877. [PMID: 38358662 PMCID: PMC11332272 DOI: 10.1037/dev0001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adverse experiences throughout development confer risk for a multitude of negative long-term outcomes, but the processes via which these experiences are neurobiologically embedded are still unclear. Adolescence provides an opportunity to understand how these experiences impact the brain's rapidly changing structure. Two models are central to current adversity conceptualizations: a cumulative risk model, where all types of experiences are combined to represent accumulating stress, and a dimensional model, where certain features of experience (e.g., threat or deprivation) exert unique neurophysiological influence. In this registered report, we extended upon previous research by using a form of representational similarity analysis to examine whether the dimensional and cumulative risk models of adversity predict cortical thinning in frontoparietal and frontotemporal networks and volumetric changes in subcortical regions throughout adolescence. Drawing from a longitudinal sample of 179 adolescent girls (ages 10-13 years at the first wave) from Lane County, Oregon, United States, and up to four waves of follow-up data, we found that operationalizing adversity by similarity in threat and deprivation provided better prediction of brain development than similarity in overall adversity. However, these dimensions do not exhibit unique associations with developmental changes in the hypothesized brain changes. These results underscore the significance of carefully defining adversity and considering its impact on the entire brain. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Kathryn L. Mills
- Department of Psychology, University of Oregon
- PROMENTA Research Center, Department of Psychology, University of Oslo
| | - Philip A. Fisher
- Stanford Center on Early Childhood and Graduate School of Education, Stanford University
| | - Clare F. McCann
- Department of Psychology, University of California, Los Angeles
| | | |
Collapse
|
28
|
Park Y, Zhang Y, Schwartz F, Iuculano T, Chang H, Menon V. Integrated number sense tutoring remediates aberrant neural representations in children with mathematical disabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.587577. [PMID: 38645139 PMCID: PMC11030345 DOI: 10.1101/2024.04.09.587577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, 'inverted U-shaped' neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions.
Collapse
Affiliation(s)
- Yunji Park
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Flora Schwartz
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Teresa Iuculano
- Centre National de la Recherche Scientifique & Université Paris Sorbonne, Paris 75016, France
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305
- Stanford Neuroscience Institute, Stanford University, Stanford, California, CA, 94305
- Symbolic Systems Program, Stanford University, Stanford, California, CA, 94305
| |
Collapse
|
29
|
Tamman AJF, Abdallah CG, Dunsmoor JE, Cisler JM. Neural differentiation of emotional faces as a function of interpersonal violence among adolescent girls. J Psychiatr Res 2024; 172:90-101. [PMID: 38368703 DOI: 10.1016/j.jpsychires.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Interpersonal violence (IV) is associated with altered neural threat processing and risk for psychiatric disorder. Representational similarity analysis (RSA) is a multivariate approach examining the extent to which differences between stimuli correspond to differences in multivoxel activation patterns to these stimuli within each ROI. Using RSA, we examine overlap in neural patterns between threat and neutral faces in youth with IV. Participants were female adolescents aged 11-17 who had a history of IV exposure (n = 77) or no history of IV, psychiatric diagnoses, nor psychiatric medications (n = 37). Participants completed a facial emotion processing task during fMRI. Linear mixed models indicated that increasing hippocampal differentiation of fear and neutral faces was associated with increasing IV severity. Increased neural differentiation of these facial stimuli in the left and right hippocampus was associated with increasing physical abuse severity. Increased differentiation by the dACC correlated with increasing physical assault severity. RSA for most ROIs were not significantly associated with univariate activity, except for a positive association between amygdala RSA and activity to fear faces. Differences in statistically significant ROIs for physical assault and physical abuse may highlight distinct effects of trauma type on encoding of threat vs. neutral faces. Null associations between RSA and univariate activation in most ROIs suggest unique contributions of RSA for understanding IV compared to traditional activation. Implications include understanding mechanisms of risk in IV and trauma-specific treatment selection. Future work should replicate these findings in longitudinal studies and identify sensitive periods for neural alterations in RSA.
Collapse
Affiliation(s)
- Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX 77030, USA.
| | - Chadi G Abdallah
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX 77030, USA; Yale School of Medicine, New Haven, CT 06510, USA; Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA; US Department of Veterans Affairs, National Center for PTSD - Clinical Neurosciences Division, VA Connecticut, West Haven, CT 06516, USA; Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Josh M Cisler
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Early Life Adversity Research, The University of Texas at Austin, Dell Medical School, Department of Psychiatry and Behavioral Sciences, Austin, TX 78712, USA
| |
Collapse
|
30
|
Nanni-Zepeda M, DeGutis J, Wu C, Rothlein D, Fan Y, Grimm S, Walter M, Esterman M, Zuberer A. Neural signatures of shared subjective affective engagement and disengagement during movie viewing. Hum Brain Mapp 2024; 45:e26622. [PMID: 38488450 DOI: 10.1002/hbm.26622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
When watching a negative emotional movie, we differ from person to person in the ease with which we engage and the difficulty with which we disengage throughout a temporally evolving narrative. We investigated neural responses of emotional processing, by considering inter-individual synchronization in subjective emotional engagement and disengagement. The neural underpinnings of these shared responses are ideally studied in naturalistic scenarios like movie viewing, wherein individuals emotionally engage and disengage at their own time and pace throughout the course of a narrative. Despite the rich data that naturalistic designs can bring to the study, there is a challenge in determining time-resolved behavioral markers of subjective engagement and disengagement and their underlying neural responses. We used a within-subject cross-over design instructing 22 subjects to watch clips of either neutral or sad content while undergoing functional magnetic resonance imaging (fMRI). Participants watched the same movies a second time while continuously annotating the perceived emotional intensity, thus enabling the mapping of brain activity and emotional experience. Our analyses revealed that between-participant similarity in waxing (engagement) and waning (disengagement) of emotional intensity was directly related to the between-participant similarity in spatiotemporal patterns of brain activation during the movie(s). Similar patterns of engagement reflected common activation in the bilateral ventromedial prefrontal cortex, regions often involved in self-referenced evaluation and generation of negative emotions. Similar patterns of disengagement reflected common activation in central executive and default mode network regions often involved in top-down emotion regulation. Together this work helps to better understand cognitive and neural mechanisms underpinning engagement and disengagement from emotionally evocative narratives.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Charley Wu
- Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany
| | - David Rothlein
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Simone Grimm
- Berlin Institute of Health, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Skalaban LJ, Chan I, Rapuano KM, Lin Q, Conley MI, Watts RR, Busch EL, Murty VP, Casey BJ. Representational Dissimilarity of Faces and Places during a Working Memory Task is Associated with Subsequent Recognition Memory during Development. J Cogn Neurosci 2024; 36:415-434. [PMID: 38060253 DOI: 10.1162/jocn_a_02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Nearly 50 years of research has focused on faces as a special visual category, especially during development. Yet it remains unclear how spatial patterns of neural similarity of faces and places relate to how information processing supports subsequent recognition of items from these categories. The current study uses representational similarity analysis and functional imaging data from 9- and 10-year-old youth during an emotional n-back task from the Adolescent Brain and Cognitive Development Study 3.0 data release to relate spatial patterns of neural similarity during working memory to subsequent out-of-scanner performance on a recognition memory task. Specifically, we examine how similarities in representations within face categories (neutral, happy, and fearful faces) and representations between visual categories (faces and places) relate to subsequent recognition memory of these visual categories. Although working memory performance was higher for faces than places, subsequent recognition memory was greater for places than faces. Representational similarity analysis revealed category-specific patterns in face-and place-sensitive brain regions (fusiform gyrus, parahippocampal gyrus) compared with a nonsensitive visual region (pericalcarine cortex). Similarity within face categories and dissimilarity between face and place categories in the parahippocampus was related to better recognition of places from the n-back task. Conversely, in the fusiform, similarity within face categories and their relative dissimilarity from places was associated with better recognition of new faces, but not old faces. These findings highlight how the representational distinctiveness of visual categories influence what information is subsequently prioritized in recognition memory during development.
Collapse
Affiliation(s)
- Lena J Skalaban
- Yale University, New Haven, CT
- Temple University, Philadelphia, PA
| | | | | | - Qi Lin
- Yale University, New Haven, CT
| | | | | | | | | | - B J Casey
- Yale University, New Haven, CT
- Barnard College, Columbia University, New York, NY
| |
Collapse
|
32
|
Smith DV, Ludwig RM, Dennison JB, Reeck C, Fareri DS. An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults. Sci Data 2024; 11:158. [PMID: 38302470 PMCID: PMC10834522 DOI: 10.1038/s41597-024-02931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Behavioural and neuroimaging research has shown that older adults are less sensitive to financial losses compared to younger adults. Yet relatively less is known about age-related differences in social decisions and social reward processing. As part of a pilot study, we collected behavioural and functional magnetic resonance imaging (fMRI) data from 50 participants (Younger: N = 26, ages 18-34 years; Older: N = 24, ages 63-80 years) who completed three tasks in the scanner: an economic trust game as the investor with three partners (computer, stranger, friend) as the investee; a card-guessing task with monetary gains and losses shared with three partners (computer, stranger, friend); and an ultimatum game as responder to three anonymous proposers (computer, age-similar adults, age-dissimilar adults). We also collected B0 field maps and high-resolution structural images (T1-weighted and T2-weighted images). These data could be reused to answer questions about moment-to-moment variability in fMRI signal, representational similarity between tasks, and brain structure.
Collapse
Affiliation(s)
| | - Rita M Ludwig
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B Dennison
- Temple University, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
33
|
Knyazev GG, Savostyanov AN, Bocharov AV, Saprigyn AE. Representational similarity analysis of self- versus other-processing: Effect of trait aggressiveness. Aggress Behav 2024; 50:e22125. [PMID: 38268387 DOI: 10.1002/ab.22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024]
Abstract
In this study, using the self/other adjective judgment task, we aimed to explore how people perceive themselves in comparison to various other people, including friends, strangers, and those they dislike. Next, using representational similarity analysis, we sought to elucidate how these perceptual similarities and differences are represented in brain activity and how aggressiveness is related to these representations. Behavioral ratings show that, on average, people tend to consider themselves more like their friends than neutral strangers, and least like people they dislike. This pattern of similarity is positively correlated with neural representation in social and cognitive circuits of the brain and negatively correlated with neural representation in emotional centers that may represent emotional arousal associated with various social objects. Aggressiveness seems to predispose a person to a pattern of behavior that is the opposite of the average pattern, that is, a tendency to think of oneself as less like one's friends and more like one's enemies. This corresponds to an increase in the similarity of the behavioral representation with the representation in the emotional centers and a decrease in its similarity with the representation in the social and cognitive centers. This can be seen as evidence that in individuals prone to aggression, behavior in the social environment may depend to a greater extent on the representation of social objects in the emotional rather than social and cognitive brain circuits.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Alexander N Savostyanov
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Alexander E Saprigyn
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
34
|
Guekos A, Cole DM, Dörig M, Stämpfli P, Schibli L, Schuetz P, Schweinhardt P, Meier ML. BackWards - Unveiling the brain's topographic organization of paraspinal sensory input. Neuroimage 2023; 283:120431. [PMID: 37914091 DOI: 10.1016/j.neuroimage.2023.120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Cortical reorganization and its potential pathological significance are being increasingly studied in musculoskeletal disorders such as chronic low back pain (CLBP) patients. However, detailed sensory-topographic maps of the human back are lacking, and a baseline characterization of such representations, reflecting the somatosensory organization of the healthy back, is needed before exploring potential sensory map reorganization. To this end, a novel pneumatic vibrotactile stimulation method was used to stimulate paraspinal sensory afferents, while studying their cortical representations in unprecedented detail. In 41 young healthy participants, vibrotactile stimulations at 20 Hz and 80 Hz were applied bilaterally at nine locations along the thoracolumbar axis while functional magnetic resonance imaging (fMRI) was performed. Model-based whole-brain searchlight representational similarity analysis (RSA) was used to investigate the organizational structure of brain activity patterns evoked by thoracolumbar sensory inputs. A model based on segmental distances best explained the similarity structure of brain activity patterns that were located in different areas of sensorimotor cortices, including the primary somatosensory and motor cortices and parts of the superior parietal cortex, suggesting that these brain areas process sensory input from the back in a "dermatomal" manner. The current findings provide a sound basis for testing the "cortical map reorganization theory" and its pathological relevance in CLBP.
Collapse
Affiliation(s)
- Alexandros Guekos
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Decision Neuroscience Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland.
| | - David M Cole
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland
| | - Monika Dörig
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, University of Zurich, Switzerland; MR-Center of the Psychiatric University Hospital, Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Louis Schibli
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Art, Horw, Switzerland
| | - Philipp Schuetz
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Art, Horw, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Michael L Meier
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
35
|
Levine SM, Merz K, Keeser D, Kunz JI, Barton BB, Reinhard MA, Jobst A, Padberg F, Neukel C, Herpertz SC, Bertsch K, Musil R. Altered amygdalar emotion space in borderline personality disorder normalizes following dialectical behaviour therapy. J Psychiatry Neurosci 2023; 48:E431-E438. [PMID: 37935476 PMCID: PMC10635707 DOI: 10.1503/jpn.230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Borderline personality disorder (BPD) is a mental health condition characterized by an inability to regulate emotions or accurately process the emotional states of others. Previous neuroimaging studies using classical univariate analyses have tied such emotion dysregulation to aberrant activity levels in the amygdala of patients with BPD. However, multivariate analyses have not yet been used to investigate how representational spaces of emotion information may be systematically altered in patients with BPD. METHODS Patients with BPD performed an emotional face matching task while undergoing MRI before and after a 10-week inpatient program of dialectical behavioural therapy. Representational similarity analysis (RSA) was applied to activity patterns (evoked by angry, fearful, neutral and surprised faces) in the amygdala and temporo-occipital fusiform gyrus of patients with BPD and in the amygdala of healthy controls. RESULTS We recruited 15 patients with BPD (8 females, 6 males, 1 transgender male) to participate in the study, and we obtained a neuroimaging data set for 25 healthy controls for a comparative analysis. The RSA of the amygdala revealed a negative bias in the underlying affective space (in that activity patterns evoked by angry, fearful and neutral faces were more similar to each other than to patterns evoked by surprised faces), which normalized after therapy. This bias-to-normalization effect was present neither in activity patterns of the temporo-occipital fusiform gyrus of patients nor in amygdalar activity patterns of healthy controls. LIMITATIONS Larger samples and additional questionnaires would help to better characterize the association between specific aspects of therapy and changes in the neural representational space. CONCLUSION Our findings suggest a more refined role for the amygdala in the pathological processing of perceived emotions and may provide new diagnostic and prognostic imaging-based markers of emotion dysregulation and personality disorders.Clinical trial registration: DRKS00019821, German Clinical Trials Register (Deutsches Register Klinischer Studien).
Collapse
Affiliation(s)
- Seth M Levine
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Katharina Merz
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Daniel Keeser
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Julia I Kunz
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Barbara B Barton
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Matthias A Reinhard
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Andrea Jobst
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Frank Padberg
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Corinne Neukel
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Sabine C Herpertz
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Katja Bertsch
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| | - Richard Musil
- From the Department of Psychology, LMU Munich, Munich, Germany (Levine, Bertsch); the NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany (Levine, Merz, Keeser, Bertsch); the Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany (Merz, Keeser, Kunz, Barton, Reinhard, Jobst, Padberg, Musil); the Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany (Neukel, Herpertz, Bertsch); and the German Center for Mental Health (DZPG), Munich, Germany (Padberg, Bertsch)
| |
Collapse
|
36
|
Lee Y, Seo Y, Lee Y, Lee D. Dimensional emotions are represented by distinct topographical brain networks. Int J Clin Health Psychol 2023; 23:100408. [PMID: 37663040 PMCID: PMC10472247 DOI: 10.1016/j.ijchp.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
The ability to recognize others' facial emotions has become increasingly important after the COVID-19 pandemic, which causes stressful situations in emotion regulation. Considering the importance of emotion in maintaining a social life, emotion knowledge to perceive and label emotions of oneself and others requires an understanding of affective dimensions, such as emotional valence and emotional arousal. However, limited information is available about whether the behavioral representation of affective dimensions is similar to their neural representation. To explore the relationship between the brain and behavior in the representational geometries of affective dimensions, we constructed a behavioral paradigm in which emotional faces were categorized into geometric spaces along the valence, arousal, and valence and arousal dimensions. Moreover, we compared such representations to neural representations of the faces acquired by functional magnetic resonance imaging. We found that affective dimensions were similarly represented in the behavior and brain. Specifically, behavioral and neural representations of valence were less similar to those of arousal. We also found that valence was represented in the dorsolateral prefrontal cortex, frontal eye fields, precuneus, and early visual cortex, whereas arousal was represented in the cingulate gyrus, middle frontal gyrus, orbitofrontal cortex, fusiform gyrus, and early visual cortex. In conclusion, the current study suggests that dimensional emotions are similarly represented in the behavior and brain and are presented with differential topographical organizations in the brain.
Collapse
Affiliation(s)
| | | | - Youngju Lee
- Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| |
Collapse
|
37
|
Seiger R, Reggente N, Majid DSA, Ly R, Tadayonnejad R, Strober M, Feusner JD. Neural representations of anxiety in adolescents with anorexia nervosa: a multivariate approach. Transl Psychiatry 2023; 13:283. [PMID: 37582758 PMCID: PMC10427677 DOI: 10.1038/s41398-023-02581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Anorexia nervosa (AN) is characterized by low body weight, fear of gaining weight, and distorted body image. Anxiety may play a role in the formation and course of the illness, especially related to situations involving food, eating, weight, and body image. To understand distributed patterns and consistency of neural responses related to anxiety, we enrolled 25 female adolescents with AN and 22 non-clinical female adolescents with mild anxiety who underwent two fMRI sessions in which they saw personalized anxiety-provoking word stimuli and neutral words. Consistency in brain response patterns across trials was determined using a multivariate representational similarity analysis (RSA) approach within anxiety circuits and in a whole-brain voxel-wise searchlight analysis. In the AN group there was higher representational similarity for anxiety-provoking compared with neutral stimuli predominantly in prefrontal regions including the frontal pole, medial prefrontal cortex, dorsolateral prefrontal cortex, and medial orbitofrontal cortex, although no significant group differences. Severity of anxiety correlated with consistency of brain responses within anxiety circuits and in cortical and subcortical regions including the frontal pole, middle frontal gyrus, orbitofrontal cortex, thalamus, lateral occipital cortex, middle temporal gyrus, and cerebellum. Higher consistency of activation in those with more severe anxiety symptoms suggests the possibility of a greater degree of conditioned brain responses evoked by personally-relevant emotional stimuli. Anxiety elicited by disorder-related stimuli may activate stereotyped, previously-learned neural responses within- and outside of classical anxiety circuits. Results have implications for understanding consistent and automatic responding to environmental stimuli that may play a role in maintenance of AN.
Collapse
Affiliation(s)
- René Seiger
- General Adult Psychiatry and Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - D S-Adnan Majid
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald Ly
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Reza Tadayonnejad
- Division of Neuromodulation, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Michael Strober
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- General Adult Psychiatry and Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Women's and Children's Health, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Jiang H, Huang C, Li Z, Wang Q, Liang W, Zhou A. Conflict Experience Regulates the Neural Encoding of Cognitive Conflict. Brain Sci 2023; 13:880. [PMID: 37371360 DOI: 10.3390/brainsci13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Cognitive control is adaptive in that it rapidly adjusts attention in response to changing contexts and shifting goals. Research provides evidence that cognitive control can rapidly adjust attention to focus on task-relevant information based on prior conflict experience. Neural encoding of goal-related information is critical for goal-directed behaviour; however, the empirical evidence on how conflict experience affects the encoding of cognitive conflict in the brain is rather weak. In the present fMRI study, a Stroop task with different proportions of incongruent trial was used to investigate the neural encoding of cognitive conflict in the environment with changing conflict experience. The results showed that the anterior cingulate cortex, dorsolateral prefrontal cortex, and intraparietal sulcus played a pivotal role in the neural encoding of cognitive conflict. The classification in anterior cingulate cortex was significantly above chance in the high-proportion, moderate-proportion, and low-proportion conflict conditions conducted separately, suggesting that neural encoding of cognitive conflict in this region was not altered based on proportion of conflict. The dorsolateral prefrontal cortex and intraparietal sulcus showed significant above-chance classification in the moderate-proportion and low-proportion conflict conditions, but not in the high-proportion conflict condition. These findings provide direct evidence that conflict experience modulates the neural encoding of cognitive conflict.
Collapse
Affiliation(s)
- Hui Jiang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Chaozheng Huang
- School of Judicial Police, Gansu University of Political Science and Law, Lanzhou 730070, China
| | - Zekai Li
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Qiuyun Wang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Weisong Liang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Aibao Zhou
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
- School of Judicial Police, Gansu University of Political Science and Law, Lanzhou 730070, China
| |
Collapse
|
39
|
Xu Q, Hu J, Qin Y, Li G, Zhang X, Li P. Intention affects fairness processing: Evidence from behavior and representational similarity analysis of event-related potential signals. Hum Brain Mapp 2023; 44:2451-2464. [PMID: 36749642 PMCID: PMC10028638 DOI: 10.1002/hbm.26223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
In an ultimatum game, the responder must decide between pursuing self-interest and insisting on fairness, and these choices are affected by the intentions of the proposer. However, the time course of this social decision-making process is unclear. Representational similarity analysis (RSA) is a useful technique for linking brain activity with rich behavioral data sets. In this study, electroencephalography (EEG) was used to measure the time course of neural responses to proposed allocation schemes with different intentions. Twenty-eight participants played an ultimatum game as responders. They had to choose between accepting and rejecting the fair or unfair money allocation schemes of proposers. The schemes were offered based on the proposer's selfish intention (monetary gain), altruistic intention (donation to charity), or ambiguous intention (unknown to the responder). We used a spatiotemporal RSA and inter-subject RSA (IS-RSA) to explore the connections between event-related potentials (ERPs) after offer presentation and intention presentation with four types of behavioral data (acceptance, response time, fairness ratings, and pleasantness ratings). The spatiotemporal RSA results revealed that only response time variation was linked with the difference in ERPs at 432-592 ms after offer presentation on the posterior parietal and prefrontal regions. Meanwhile, the IS-RSA results found a significant association between inter-individual differences in response time and differences in ERP activity at 596-812 ms after the presentation of ambiguous intention, particularly in the prefrontal region. This study expands the intention-based reciprocal model to the third-party context and demonstrates that brain activity can represent response time differences in social decision-making.
Collapse
Affiliation(s)
- Qiang Xu
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Jiali Hu
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Yi Qin
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Guojie Li
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| | - Xukai Zhang
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Peng Li
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Li Z, Dong Q, Hu B, Wu H. Every individual makes a difference: A trinity derived from linking individual brain morphometry, connectivity and mentalising ability. Hum Brain Mapp 2023; 44:3343-3358. [PMID: 37051692 PMCID: PMC10171537 DOI: 10.1002/hbm.26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the "social brain", are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ( N = 24 $$ N=24 $$ ). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
Collapse
Affiliation(s)
- Zhaoning Li
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| |
Collapse
|
41
|
González-García I, Visser M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare (Basel) 2023; 11:healthcare11060821. [PMID: 36981478 PMCID: PMC10047953 DOI: 10.3390/healthcare11060821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Over the last two decades, the functional role of the bilateral anterior temporal lobes (bATLs) has been receiving more attention. They have been associated with semantics and social concept processing, and are regarded as a core region for depression. In the past, the role of the ATL has often been overlooked in semantic models based on functional magnetic resonance imaging (fMRI) due to geometric distortions in the BOLD signal. However, previous work has unequivocally associated the bATLs with these higher-order cognitive functions following advances in neuroimaging techniques to overcome the geometric distortions. At the same time, the importance of the neural basis of conceptual knowledge in understanding mood disorders became apparent. Theoretical models of the neural basis of mood and anxiety disorders have been classically studied from the emotion perspective, without concentrating on conceptual processing. However, recent work suggests that the ATL, a brain region underlying conceptual knowledge, plays an essential role in mood and anxiety disorders. Patients with anxiety and depression often cope with self-blaming biases and guilt. The theory is that in order to experience guilt, the brain needs to access the related conceptual information via the ATL. This narrative review describes how aberrant interactions of the ATL with the fronto–limbic emotional system could underlie mood and anxiety disorders.
Collapse
|
42
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
43
|
Kim JH, De Asis-Cruz J, Cook KM, Limperopoulos C. Gestational age-related changes in the fetal functional connectome: in utero evidence for the global signal. Cereb Cortex 2023; 33:2302-2314. [PMID: 35641159 PMCID: PMC9977380 DOI: 10.1093/cercor/bhac209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The human brain begins to develop in the third gestational week and rapidly grows and matures over the course of pregnancy. Compared to fetal structural neurodevelopment, less is known about emerging functional connectivity in utero. Here, we investigated gestational age (GA)-associated in vivo changes in functional brain connectivity during the second and third trimesters in a large dataset of 110 resting-state functional magnetic resonance imaging scans from a cohort of 95 healthy fetuses. Using representational similarity analysis, a multivariate analytical technique that reveals pair-wise similarity in high-order space, we showed that intersubject similarity of fetal functional connectome patterns was strongly related to between-subject GA differences (r = 0.28, P < 0.01) and that GA sensitivity of functional connectome was lateralized, especially at the frontal area. Our analysis also revealed a subnetwork of connections that were critical for predicting age (mean absolute error = 2.72 weeks); functional connectome patterns of individual fetuses reliably predicted their GA (r = 0.51, P < 0.001). Lastly, we identified the primary principal brain network that tracked fetal brain maturity. The main network showed a global synchronization pattern resembling global signal in the adult brain.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Kevin M Cook
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Corresponding author: Developing Brain Institute, Children’s National, 111 Michigan Ave. N.W., Washington D.C. 20010.
| |
Collapse
|
44
|
Li HX, Lu B, Wang YW, Li XY, Chen X, Yan CG. Neural representations of self-generated thought during think-aloud fMRI. Neuroimage 2023; 265:119775. [PMID: 36455761 DOI: 10.1016/j.neuroimage.2022.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Is the brain at rest during the so-called resting state? Ongoing experiences in the resting state vary in unobserved and uncontrolled ways across time, individuals, and populations. However, the role of self-generated thoughts in resting-state fMRI remains largely unexplored. In this study, we collected real-time self-generated thoughts during "resting-state" fMRI scans via the think-aloud method (i.e., think-aloud fMRI), which required participants to report whatever they were currently thinking. We first investigated brain activation patterns during a think-aloud condition and found that significantly activated brain areas included all brain regions required for speech. We then calculated the relationship between divergence in thought content and brain activation during think-aloud and found that divergence in thought content was associated with many brain regions. Finally, we explored the neural representation of self-generated thoughts by performing representational similarity analysis (RSA) at three neural scales: a voxel-wise whole-brain searchlight level, a region-level whole-brain analysis using the Schaefer 400-parcels, and at the systems level using the Yeo seven-networks. We found that "resting-state" self-generated thoughts were distributed across a wide range of brain regions involving all seven Yeo networks. This study highlights the value of considering ongoing experiences during resting-state fMRI and providing preliminary methodological support for think-aloud fMRI.
Collapse
Affiliation(s)
- Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Decomposing Neural Representational Patterns of Discriminatory and Hedonic Information during Somatosensory Stimulation. eNeuro 2023; 10:ENEURO.0274-22.2022. [PMID: 36549914 PMCID: PMC9829099 DOI: 10.1523/eneuro.0274-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to interrogate specific representations in the brain, determining how, and where, difference sources of information are instantiated can provide invaluable insight into neural functioning. Pattern component modeling (PCM) is a recent analytic technique for human neuroimaging that allows the decomposition of representational patterns in brain into contributing subcomponents. In the current study, we present a novel PCM variant that tracks the contribution of prespecified representational patterns to brain representation across areas, thus allowing hypothesis-guided employment of the technique. We apply this technique to investigate the contributions of hedonic and nonhedonic information to the neural representation of tactile experience. We applied aversive pressure (AP) and appetitive brush (AB) to stimulate distinct peripheral nerve pathways for tactile information (C-/CT-fibers, respectively) while patients underwent functional magnetic resonance imaging (fMRI) scanning. We performed representational similarity analyses (RSAs) with pattern component modeling to dissociate how discriminatory versus hedonic tactile information contributes to population code representations in the human brain. Results demonstrated that information about appetitive and aversive tactile sensation is represented separately from nonhedonic tactile information across cortical structures. This also demonstrates the potential of new hypothesis-guided PCM variants to help delineate how information is instantiated in the brain.
Collapse
|
46
|
Watanabe R, Kim Y, Kuruma H, Takahashi H. Imitation encourages empathic capacity toward other individuals with physical disabilities. Neuroimage 2022; 264:119710. [PMID: 36283544 DOI: 10.1016/j.neuroimage.2022.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Many people have difficulty empathizing with others who have dissimilar characteristics, such as physical disabilities. We hypothesized that people with no disabilities imitating the movements of individuals with disabilities could improve the empathic capacity toward their difficulties. To evaluate this hypothesis, we used functional magnetic resonance imaging to measure the neural activity patterns of 26 healthy participants while they felt the difficulties of individuals with hemiplegia by adopting their perspective. The participants initially either imitated or observed hemiplegic hand movements shown in video clips. Subsequently, the videos were rewatched and their difficulties were rated. Analysis of the subjective rating scores indicated that after imitating the hemiplegic movements, the participants felt into the difficulties of hemiplegia better than if they simply observed them. The cross-validation approach of multivoxel pattern analyses demonstrated that the information regarding the effect of imitation on empathizing with the difficulties was represented in specific activation patterns of brain regions involved in the mirror neuron system and cognitive empathy by comparing to other conditions that did not contain the information. The cross-classification approach detected distinct activation patterns in the brain regions involved in affective and cognitive empathy, commonly while imitating the hemiplegic movements and subsequently feeling them. This indicated that the common representation related to these two types of empathy existed between imitating and feeling the hemiplegic movements. Furthermore, representational similarity analysis revealed that activity patterns in the anterior cingulate cortex linked to affective empathy tuned to the subjective assessment of hemiplegic movements. Our findings indicate that imitating the movements of individuals with hemiplegia triggered the affective empathic response and improved the cognitive empathic response toward them. The affective empathic response also linked the subjective assessment to the difficulties of hemiplegia, which was especially modulated by the experience of imitation. Imitating the movements of individuals with disabilities likely encourages empathic capacity from both affective and cognitive aspects, resulting in people with no disabilities precisely feeling what they are feeling.
Collapse
Affiliation(s)
- Rui Watanabe
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yusima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Physical Therapy Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Yuri Kim
- Department of Diagnistics and Theraputics for brain Diseases, Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga 520-2121 Japan
| | - Hironobu Kuruma
- Department of Physical Therapy Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yusima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
47
|
Maisson DJN, Wikenheiser A, Noel JPG, Keinath AT. Making Sense of the Multiplicity and Dynamics of Navigational Codes in the Brain. J Neurosci 2022; 42:8450-8459. [PMID: 36351831 PMCID: PMC9665915 DOI: 10.1523/jneurosci.1124-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of conspicuously spatially tuned neurons in the hippocampal formation over 50 years ago, characterizing which, where, and how neurons encode navigationally relevant variables has been a major thrust of navigational neuroscience. While much of this effort has centered on the hippocampal formation and functionally-adjacent structures, recent work suggests that spatial codes, in some form or another, can be found throughout the brain, even in areas traditionally associated with sensation, movement, and executive function. In this review, we highlight these unexpected results, draw insights from comparison of these codes across contexts, regions, and species, and finally suggest an avenue for future work to make sense of these diverse and dynamic navigational codes.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew Wikenheiser
- Department of Psychology, University of California, Los Angeles, California 90024
| | - Jean-Paul G Noel
- Center for Neural Science, New York University, New York, New York 10003
| | - Alexandra T Keinath
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Verdun H3A 0G4, Quebec Canada
- Department of Psychology, University of IL Chicago, Chicago, Illinois 60607
| |
Collapse
|
48
|
Pimpini L, Kochs S, Franssen S, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. More complex than you might think: Neural representations of food reward value in obesity. Appetite 2022; 178:106164. [PMID: 35863505 DOI: 10.1016/j.appet.2022.106164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Obesity reached pandemic proportions and weight-loss treatments are mostly ineffective. The level of brain activity in the reward circuitry is proposed to be proportionate to the reward value of food stimuli, and stronger in people with obesity. However, empirical evidence is inconsistent. This may be due to the double-sided nature of high caloric palatable foods: at once highly palatable and high in calories (unhealthy). This study hypothesizes that, viewing high caloric palatable foods, a hedonic attentional focus compared to a health and a neutral attentional focus elicits more activity in reward-related brain regions, mostly in people with obesity. Moreover, caloric content and food palatability can be decoded from multivoxel patterns of activity most accurately in people with obesity and in the corresponding attentional focus. During one fMRI-session, attentional focus (hedonic, health, neutral) was manipulated using a one-back task with individually tailored food stimuli in 32 healthy-weight people and 29 people with obesity. Univariate analyses (p < 0.05, FWE-corrected) showed that brain activity was not different for palatable vs. unpalatable foods, nor for high vs. low caloric foods. Instead, this was higher in the hedonic compared to the health and neutral attentional focus. Multivariate analyses (MVPA) (p < 0.05, FDR-corrected) showed that palatability and caloric content could be decoded above chance level, independently of either BMI or attentional focus. Thus, brain activity to visual food stimuli is neither proportionate to the reward value (palatability and/or caloric content), nor significantly moderated by BMI. Instead, it depends on people's attentional focus, and may reflect motivational salience. Furthermore, food palatability and caloric content are represented as patterns of brain activity, independently of BMI and attentional focus. So, food reward value is reflected in patterns, not levels, of brain activity.
Collapse
Affiliation(s)
- Leonardo Pimpini
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sarah Kochs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Job van den Hurk
- Scannexus, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
49
|
Golec-Staśkiewicz K, Pluta A, Wojciechowski J, Okruszek Ł, Haman M, Wysocka J, Wolak T. Does the TPJ fit it all? Representational similarity analysis of different forms of mentalizing. Soc Neurosci 2022; 17:428-440. [DOI: 10.1080/17470919.2022.2138536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Jakub Wojciechowski
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Łukasz Okruszek
- Social Neuroscience Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Haman
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Joanna Wysocka
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Tomasz Wolak
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Lockwood PL, Wittmann MK, Nili H, Matsumoto-Ryan M, Abdurahman A, Cutler J, Husain M, Apps MAJ. Distinct neural representations for prosocial and self-benefiting effort. Curr Biol 2022; 32:4172-4185.e7. [PMID: 36029773 PMCID: PMC9616728 DOI: 10.1016/j.cub.2022.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 08/07/2022] [Indexed: 01/09/2023]
Abstract
Prosocial behaviors-actions that benefit others-are central to individual and societal well-being. Although the mechanisms underlying the financial and moral costs of prosocial behaviors are increasingly understood, this work has often ignored a key influence on behavior: effort. Many prosocial acts are effortful, and people are averse to the costs of exerting them. However, how the brain encodes effort costs when actions benefit others is unknown. During fMRI, participants completed a decision-making task where they chose in each trial whether to "work" and exert force (30%-70% of maximum grip strength) or "rest" (no effort) for rewards (2-10 credits). Crucially, on separate trials, they made these decisions either to benefit another person or themselves. We used a combination of multivariate representational similarity analysis and model-based univariate analysis to reveal how the costs of prosocial and self-benefiting efforts are processed. Strikingly, we identified a unique neural signature of effort in the anterior cingulate gyrus (ACCg) for prosocial acts, both when choosing to help others and when exerting force to benefit them. This pattern was absent for self-benefiting behaviors. Moreover, stronger, specific representations of prosocial effort in the ACCg were linked to higher levels of empathy and higher subsequent exerted force to benefit others. In contrast, the ventral tegmental area and ventral insula represented value preferentially when choosing for oneself and not for prosocial acts. These findings advance our understanding of the neural mechanisms of prosocial behavior, highlighting the critical role that effort has in the brain circuits that guide helping others.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Christ Church, University of Oxford, St Aldate's, Oxford OX1 1DP, UK.
| | - Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, Russell Square House 10-12 Russell Square, London WC1B 5EH, UK
| | - Hamed Nili
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| | - Mona Matsumoto-Ryan
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Ayat Abdurahman
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, FMRIB Building, Headington, Oxford OX3 9DU, UK; Department of Psychology, University of Cambridge, Downing Place, Cambridge CB2 3EB, UK
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Road, Oxford OX2 6GG, UK; Christ Church, University of Oxford, St Aldate's, Oxford OX1 1DP, UK
| |
Collapse
|