1
|
Dalal TC, Liang L, Silva AM, Mackinley M, Voppel A, Palaniyappan L. Speech based natural language profile before, during and after the onset of psychosis: A cluster analysis. Acta Psychiatr Scand 2025; 151:332-347. [PMID: 38600593 PMCID: PMC11787926 DOI: 10.1111/acps.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Speech markers are digitally acquired, computationally derived, quantifiable set of measures that reflect the state of neurocognitive processes relevant for social functioning. "Oddities" in language and communication have historically been seen as a core feature of schizophrenia. The application of natural language processing (NLP) to speech samples can elucidate even the most subtle deviations in language. We aim to determine if NLP based profiles that are distinctive of schizophrenia can be observed across the various clinical phases of psychosis. DESIGN Our sample consisted of 147 participants and included 39 healthy controls (HC), 72 with first-episode psychosis (FEP), 18 in a clinical high-risk state (CHR), 18 with schizophrenia (SZ). A structured task elicited 3 minutes of speech, which was then transformed into quantitative measures on 12 linguistic variables (lexical, syntactic, and semantic). Cluster analysis that leveraged healthy variations was then applied to determine language-based subgroups. RESULTS We observed a three-cluster solution. The largest cluster included most HC and the majority of patients, indicating a 'typical linguistic profile (TLP)'. One of the atypical clusters had notably high semantic similarity in word choices with less perceptual words, lower cohesion and analytical structure; this cluster was almost entirely composed of patients in early stages of psychosis (EPP - early phase profile). The second atypical cluster had more patients with established schizophrenia (SPP - stable phase profile), with more perceptual but less cognitive/emotional word classes, simpler syntactic structure, and a lack of sufficient reference to prior information (reduced givenness). CONCLUSION The patterns of speech deviations in early and established stages of schizophrenia are distinguishable from each other and detectable when lexical, semantic and syntactic aspects are assessed in the pursuit of 'formal thought disorder'.
Collapse
Affiliation(s)
- Tyler C. Dalal
- Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | | | | | | | | | - Lena Palaniyappan
- Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Robarts Research InstituteLondonOntarioCanada
- Douglas Mental Health University InstituteMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
| |
Collapse
|
2
|
Bambini V, Frau F, Bischetti L, Agostoni G, Mevio C, Battaglini C, Bechi M, Buonocore M, Sapienza J, Spangaro M, Guglielmino C, Cocchi F, Cavallaro R, Bosia M. From semantic concreteness to concretism in schizophrenia: An automated linguistic analysis of speech produced in figurative language interpretation. CLINICAL LINGUISTICS & PHONETICS 2025:1-23. [PMID: 39981803 DOI: 10.1080/02699206.2025.2451961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 02/22/2025]
Abstract
Lack of abstract thinking, known as concretism, is a well-known psychopathological feature of schizophrenia, reflecting the tendency to adhere to concrete aspects of stimuli and figurative language comprehension difficulties. Inspired by the similarity between 'concretism' as defined in psychopathology and 'concreteness' as defined in linguistics, namely a semantic dimension linked to perceptual experience, we tested the novel hypothesis that impairment in deriving figurative meanings is related to impairment at the semantic level, involving concreteness. We analysed speech samples from 63 individuals with schizophrenia and 47 controls, who were asked to verbalise the meaning of idioms, metaphors, and proverbs. By automatically extracting linguistic features from speech, we observed that answers in the schizophrenia group exhibited higher word concreteness and the related measure of word imageability, especially in proverbs, while not differing from controls' ones in lexical richness and speech-time composition. Concreteness in verbalisations produced by individuals with schizophrenia negatively predicted their ability to understand proverbs and their global pragmatic and cognitive profile. This study supports the idea that concretism is rooted in semantics, linking the tendency to concrete figurative interpretations and a bias towards concrete words. In this view, impairment in figurative language understanding can be seen as a difficulty in abstracting away from perceptual-related properties associated with linguistic inputs, in the broader context of multisensory integration disruption. The study discloses new areas of interest for the automated analysis of speech in psychosis, pointing to the importance of considering concreteness for better characterising linguistic profiles and identifying clinically relevant linguistic dimensions.
Collapse
Affiliation(s)
- Valentina Bambini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Federico Frau
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Luca Bischetti
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Cristian Mevio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Chiara Battaglini
- Laboratory of Neurolinguistics and Experimental Pragmatics (NEPLab), Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Margherita Bechi
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmelo Guglielmino
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Kizilay E, Arslan B, Verim B, Demirlek C, Demir M, Cesim E, Eyuboglu MS, Uzman Ozbek S, Sut E, Yalincetin B, Bora E. Automated linguistic analysis in youth at clinical high risk for psychosis. Schizophr Res 2024; 274:121-128. [PMID: 39293249 DOI: 10.1016/j.schres.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Identifying individuals at clinical high risk for psychosis (CHRP) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.
Collapse
Affiliation(s)
- Elif Kizilay
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Berat Arslan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cemal Demirlek
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Muhammed Demir
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Sumeyye Eyuboglu
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman Ozbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Sut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
4
|
Arslan B, Kizilay E, Verim B, Demirlek C, Demir M, Cesim E, Eyuboglu MS, Ozbek SU, Sut E, Yalincetin B, Bora E. Computational analysis of linguistic features in speech samples of first-episode bipolar disorder and psychosis. J Affect Disord 2024; 363:340-347. [PMID: 39029695 DOI: 10.1016/j.jad.2024.07.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/25/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND In recent years, automated analyses using novel NLP methods have been used to investigate language abnormalities in schizophrenia. In contrast, only a few studies used automated language analyses in bipolar disorder. To our knowledge, no previous research compared automated language characteristics of first-episode psychosis (FEP) and bipolar disorder (FEBD) using NLP methods. METHODS Our study included 53 FEP, 40 FEBD and 50 healthy control participants who are native Turkish speakers. Speech samples of the participants in the Thematic Apperception Test (TAT) underwent automated generic and part-of-speech analyses, as well as sentence-level semantic similarity analysis based on SBERT. RESULTS Both FEBD and FEP were associated with the use of shorter sentences and increased sentence-level semantic similarity but less semantic alignment with the TAT pictures. FEP also demonstrated reduced verbosity and syntactic complexity. FEP differed from FEBD in reduced verbosity, decreased first-person singular pronouns, fewer conjunctions, increased semantic similarity as well as shorter sentence and word length. The mean classification accuracy was 82.45 % in FEP vs HC, 71.1 % in FEBD vs HC, and 73 % in FEP vs FEBD. After Bonferroni correction, the severity of negative symptoms in FEP was associated with reduced verbal output and increased 5th percentile of semantic similarity. LIMITATIONS The main limitation of this study was the cross-sectional nature. CONCLUSION Our findings demonstrate that both patient groups showed language abnormalities, which were more severe and widespread in FEP compared to FEBD. Our results suggest that NLP methods reveal transdiagnostic linguistic abnormalities in FEP and FEBD.
Collapse
Affiliation(s)
- Berat Arslan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Elif Kizilay
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cemal Demirlek
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Muhammed Demir
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman Ozbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Sut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
5
|
Plank L, Zlomuzica A. Reduced speech coherence in psychosis-related social media forum posts. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:60. [PMID: 38965247 PMCID: PMC11224262 DOI: 10.1038/s41537-024-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
The extraction of linguistic markers from social media posts, which are indicative of the onset and course of mental disorders, offers great potential for mental healthcare. In the present study, we extracted over one million posts from the popular social media platform Reddit to analyze speech coherence, which reflects formal thought disorder and is a characteristic feature of schizophrenia and associated psychotic disorders. Natural language processing (NLP) models were used to perform an automated quantification of speech coherence. We could demonstrate that users who are active on forums geared towards disorders with a higher degree of psychotic symptoms tend to show a lower level of coherence. The lowest coherence scores were found in users of forums on dissociative identity disorder, schizophrenia, and bipolar disorder. In contrast, a relatively high level of coherence was detected in users of forums related to obsessive-compulsive disorder, anxiety, and depression. Users of forums on posttraumatic stress disorder, autism, and attention-deficit hyperactivity disorder exhibited medium-level coherence. Our findings provide promising first evidence for the possible utility of NLP-based coherence analyses for the early detection and prevention of psychosis on the basis of posts gathered from publicly available social media data. This opens new avenues for large-scale prevention programs aimed at high-risk populations.
Collapse
Affiliation(s)
- Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), D-44787, Bochum, Germany
| | - Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), D-44787, Bochum, Germany.
| |
Collapse
|
6
|
Chernyak BR, Bradlow AR, Keshet J, Goldrick M. A perceptual similarity space for speech based on self-supervised speech representations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3915-3929. [PMID: 38904539 DOI: 10.1121/10.0026358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Speech recognition by both humans and machines frequently fails in non-optimal yet common situations. For example, word recognition error rates for second-language (L2) speech can be high, especially under conditions involving background noise. At the same time, both human and machine speech recognition sometimes shows remarkable robustness against signal- and noise-related degradation. Which acoustic features of speech explain this substantial variation in intelligibility? Current approaches align speech to text to extract a small set of pre-defined spectro-temporal properties from specific sounds in particular words. However, variation in these properties leaves much cross-talker variation in intelligibility unexplained. We examine an alternative approach utilizing a perceptual similarity space acquired using self-supervised learning. This approach encodes distinctions between speech samples without requiring pre-defined acoustic features or speech-to-text alignment. We show that L2 English speech samples are less tightly clustered in the space than L1 samples reflecting variability in English proficiency among L2 talkers. Critically, distances in this similarity space are perceptually meaningful: L1 English listeners have lower recognition accuracy for L2 speakers whose speech is more distant in the space from L1 speech. These results indicate that perceptual similarity may form the basis for an entirely new speech and language analysis approach.
Collapse
Affiliation(s)
- Bronya R Chernyak
- Faculty of Electrical & Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ann R Bradlow
- Department of Linguistics, Northwestern University, Evanston, Illinois 60208, USA
| | - Joseph Keshet
- Faculty of Electrical & Computer Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Matthew Goldrick
- Department of Linguistics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Olson GM, Damme KSF, Cowan HR, Alliende LM, Mittal VA. Emotional tone in clinical high risk for psychosis: novel insights from a natural language analysis approach. Front Psychiatry 2024; 15:1389597. [PMID: 38803678 PMCID: PMC11128650 DOI: 10.3389/fpsyt.2024.1389597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Individuals at clinical high risk (CHR) for psychosis experience subtle emotional disturbances that are traditionally difficult to assess, but natural language processing (NLP) methods may provide novel insight into these symptoms. We predicted that CHR individuals would express more negative emotionality and less emotional language when compared to controls. We also examined associations with symptomatology. Methods Participants included 49 CHR individuals and 42 healthy controls who completed a semi-structured narrative interview. Interview transcripts were analyzed using Linguistic Inquiry and Word Count (LIWC) to assess the emotional tone of the language (tone -the ratio of negative to positive language) and count positive/negative words used. Participants also completed clinical symptom assessments to determine CHR status and characterize symptoms (i.e., positive and negative symptom domains). Results The CHR group had more negative emotional tone compared to healthy controls (t=2.676, p=.009), which related to more severe positive symptoms (r2=.323, p=.013). The percentages of positive and negative words did not differ between groups (p's>.05). Conclusions Language analyses provided accessible, ecologically valid insight into affective dysfunction and psychosis risk symptoms. Natural language processing analyses unmasked differences in language for CHR that captured language tendencies that were more nuanced than the words that are chosen.
Collapse
Affiliation(s)
- Gabrielle M. Olson
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Katherine S. F. Damme
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, United States
- Department of Psychiatry, Northwestern University, Chicago, IL, United States
| | - Henry R. Cowan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Luz Maria Alliende
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, United States
- Department of Psychiatry, Northwestern University, Chicago, IL, United States
- Medical Social Sciences, Northwestern University, Chicago, IL, United States
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Garcia DL, Gollan TH. Language switching and speaking a nondominant language challenge executive control: Preliminary data for novel behavioral markers of Alzheimer's risk in Spanish-English bilinguals. Neuropsychology 2024; 38:322-336. [PMID: 38330361 PMCID: PMC11035100 DOI: 10.1037/neu0000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE The present study explored psycholinguistic analysis of spoken responses produced in a structured interview and cued linguistic and nonlinguistic task switching as possible novel markers of Alzheimer's disease (AD) risk in Spanish-English bilinguals. METHOD Nineteen Spanish-English bilinguals completed an Oral Proficiency Interview (OPI) in both languages, cued-switching tasks, and a battery of traditional neuropsychological tests (in a separate testing session). All were cognitively healthy at the time of testing, but eight decliners were later diagnosed with AD (on average 4.5 years after testing; SD = 2.3), while 11 controls remained cognitively healthy. RESULTS Past studies showed picture naming was more sensitive to AD in the dominant than in the nondominant language, but we found the opposite for a composite measure of spoken utterances produced in the OPI that included revisions, repetitions, and filled pauses (RRFPs), which were especially sensitive to AD risk in the nondominant language. Errors produced on language switch trials best discriminated decliners from controls (in receiver operating characteristic curves), and though the nonlinguistic switching task was also sensitive to AD risk, it elicited more errors overall and was also negatively affected by increased age and low education level. CONCLUSIONS Speaking a nondominant language and errors in cued language switching provided sensitive and specific markers of pending cognitive decline and AD risk in bilinguals. These measures may reflect early decline in executive control abilities that are needed to plan and monitor the production of connected speech and to manage competition for selection between languages. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Dalia L. Garcia
- Joint Doctoral Program in Language and Communicative Disorders, San Diego State University/University of California, San Diego, CA, USA
| | - Tamar H. Gollan
- Department of Psychiatry, University of California, San Diego
| |
Collapse
|
9
|
Arslan B, Kizilay E, Verim B, Demirlek C, Dokuyan Y, Turan YE, Kucukakdag A, Demir M, Cesim E, Bora E. Automated linguistic analysis in speech samples of Turkish-speaking patients with schizophrenia-spectrum disorders. Schizophr Res 2024; 267:65-71. [PMID: 38518480 DOI: 10.1016/j.schres.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Modern natural language processing (NLP) methods provide ways to objectively quantify language disturbances for potential use in diagnostic classification. We performed computerized language analysis in speech samples of 82 Turkish-speaking subjects, including 44 patients with schizophrenia spectrum disorders (SSD) and 38 healthy controls (HC). Exploratory analysis of speech samples involved 16 sentence-level semantic similarity features using SBERT (Sentence Bidirectional Encoder Representation from Text) as well as 8 generic and 8 part-of-speech (POS) features. The random forest classifier using SBERT-derived semantic similarity features achieved a mean accuracy of 85.6 % for the classification of SSD and HC. When semantic similarity features were combined with generic and POS features, the classifier's mean accuracy reached to 86.8 %. Our analysis reflected increased sentence-level semantic similarity scores in SSD. Generic and POS analyses revealed an increase in the use of verbs, proper nouns and pronouns in SSD while our results showed a decrease in the utilization of conjunctions, determiners, and both average and maximum sentence length in SSD compared to HC. Quantitative language features were correlated with the expressive deficit domain of BNSS (Brief Negative Symptom Scale) as well as with the duration of illness. These findings from Turkish-speaking interviews contribute to the growing evidence-based NLP-derived assessments in non-English-speaking patients.
Collapse
Affiliation(s)
- Berat Arslan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Elif Kizilay
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cemal Demirlek
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yagmur Dokuyan
- Department of Psychiatry, Izmir City Hospital, Izmir, Turkey
| | - Yaren Ecesu Turan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Aybuke Kucukakdag
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
10
|
Çabuk T, Sevim N, Mutlu E, Yağcıoğlu AEA, Koç A, Toulopoulou T. Natural language processing for defining linguistic features in schizophrenia: A sample from Turkish speakers. Schizophr Res 2024; 266:183-189. [PMID: 38417398 DOI: 10.1016/j.schres.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/26/2023] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Natural language processing (NLP) provides fast and accurate extraction of features related to the language of schizophrenia. We utilized NLP methods to test the hypothesis that schizophrenia is associated with altered linguistic features in Turkish, a non-Indo-European language, compared to controls. We also explored whether these possible altered linguistic features were language-dependent or -independent. We extracted and compared speech in schizophrenia (SZ, N = 38) and healthy well-matched control (HC, N = 38) participants using NLP. The analysis was conducted in two parts. In the first one, mean sentence length, total completed words, moving average type-token ratio to measure the lexical diversity, and first-person singular pronoun usage were calculated. In the second one, we used parts-of-speech tagging (POS) and Word2Vec in schizophrenia and control. We found that SZ had lower mean sentence length and moving average type-token ratio but higher use of first-person singular pronoun. All these significant results were correlated with the Thought and Language Disorder Scale score. The POS approach demonstrated that SZ used fewer coordinating conjunctions. Our methodology using Word2Vec detected that SZ had higher semantic similarity than HC and K-Means could differentiate between SZ and HC into two distinct groups with high accuracy, 86.84 %. Our findings showed that altered linguistic features in SZ are mostly language-independent. They are promising to describe language patterns in schizophrenia which proposes that NLP measurements may allow for rapid and objective measurements of linguistic features.
Collapse
Affiliation(s)
- Tuğçe Çabuk
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Bilkent, 06800 Ankara, Turkey.
| | - Nurullah Sevim
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Emre Mutlu
- Department of Psychiatry, Hacettepe University, Faculty of Medicine, Sıhhiye, 06230 Ankara, Turkey
| | - A Elif Anıl Yağcıoğlu
- Department of Psychiatry, Hacettepe University, Faculty of Medicine, Sıhhiye, 06230 Ankara, Turkey.
| | - Aykut Koç
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, 06800 Ankara, Turkey.
| | - Timothea Toulopoulou
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Bilkent, 06800 Ankara, Turkey; 1(st) Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
11
|
He R, Palominos C, Zhang H, Alonso-Sánchez MF, Palaniyappan L, Hinzen W. Navigating the semantic space: Unraveling the structure of meaning in psychosis using different computational language models. Psychiatry Res 2024; 333:115752. [PMID: 38280291 DOI: 10.1016/j.psychres.2024.115752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Speech in psychosis has long been ascribed as involving 'loosening of associations'. We pursued the aim to elucidate its underlying cognitive mechanisms by analysing picture descriptions from 94 subjects (29 healthy controls, 18 participants at clinical high risk, 29 with first-episode psychosis, and 18 with chronic schizophrenia), using five language models with different computational architectures: FastText, which represents meaning non-contextually/statically; BERT, which represents contextual meaning sensitive to grammar and context; Infersent and SBERT, which provide sentential representations; and CLIP, which evaluates speech relative to a visual stimulus. These models were used to quantify semantic distances crossed between successive tokens/sentences, and semantic perplexity indicating unexpectedness in continuations. Results showed that, among patients, semantic similarity increased when measured with FastText, Infersent, and SBERT, while it decreased with CLIP and BERT. Higher perplexity was observed in first-episode psychosis. Static semantic measures were associated with clinically measured impoverishment of thought and referential semantic measures with disorganization. These patterns indicate a shrinking conceptual semantic space as represented by static language models, which co-occurs with a widening in the referential semantic space as represented by contextual models. This duality underlines the need to separate these two forms of meaning for understanding mechanisms involved in semantic change in psychosis.
Collapse
Affiliation(s)
- Rui He
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, Barcelona, 08018, Spain.
| | - Claudio Palominos
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, Barcelona, 08018, Spain
| | - Han Zhang
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, Barcelona, 08018, Spain
| | | | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wolfram Hinzen
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Carrer Roc Boronat, 138, Barcelona, 08018, Spain; Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Daniel DG, Cohen AS, Harvey PD, Velligan DI, Potter WZ, Horan WP, Moore RC, Marder SR. Rationale and Challenges for a New Instrument for Remote Measurement of Negative Symptoms. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae027. [PMID: 39502136 PMCID: PMC11535854 DOI: 10.1093/schizbullopen/sgae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
There is a broad consensus that the commonly used clinician-administered rating scales for assessment of negative symptoms share significant limitations, including (1) reliance upon accurate self-report and recall from the patient and caregiver; (2) potential for sampling bias and thus being unrepresentative of daily-life experiences; (3) subjectivity of the symptom scoring process and limited sensitivity to change. These limitations led a work group from the International Society of CNS Clinical Trials and Methodology (ISCTM) to initiate the development of a multimodal negative symptom instrument. Experts from academia and industry reviewed the current methods of assessing the domains of negative symptoms including diminished (1) affect; (2) sociality; (3) verbal communication; (4) goal-directed behavior; and (5) Hedonic drives. For each domain, they documented the limitations of the current methods and recommended new approaches that could potentially be included in a multimodal instrument. The recommended methods for assessing negative symptoms included ecological momentary assessment (EMA), in which the patient self-reports their condition upon receipt of periodic prompts from a smartphone or other device during their daily routine; and direct inference of negative symptoms through detection and analysis of the patient's voice, appearance or activity from audio/visual or sensor-based (eg, global positioning systems, actigraphy) recordings captured by the patient's smartphone or other device. The process for developing an instrument could resemble the NIMH MATRICS process that was used to develop a battery for measuring cognition in schizophrenia. Although the EMA and other digital measures for negative symptoms are at relatively early stages of development/maturity and development of such an instrument faces substantial challenges, none of them are insurmountable.
Collapse
Affiliation(s)
- David Gordon Daniel
- Signant Health, Blue Bell, PA, USA
- Bioniche Global Development, LLC, McLean, VA, USA
- George Washington University, Washington, DC, USA
| | - Alex S Cohen
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Dawn I Velligan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Stephen R Marder
- Semel Institute for Neuroscience at UCLA and the VA Desert Pacific Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA
| |
Collapse
|
13
|
Lucarini V, Alouit A, Yeh D, Le Coq J, Savatte R, Charre M, Louveau C, Houamri MB, Penaud S, Gaston-Bellegarde A, Rio S, Drouet L, Elbaz M, Becchio J, Pourchet S, Pruvost-Robieux E, Marchi A, Moyal M, Lefebvre A, Chaumette B, Grice M, Lindberg PG, Dupin L, Piolino P, Lemogne C, Léger D, Gavaret M, Krebs MO, Iftimovici A. Neurophysiological explorations across the spectrum of psychosis, autism, and depression, during wakefulness and sleep: protocol of a prospective case-control transdiagnostic multimodal study (DEMETER). BMC Psychiatry 2023; 23:860. [PMID: 37990173 PMCID: PMC10662684 DOI: 10.1186/s12888-023-05347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Quantitative electroencephalography (EEG) analysis offers the opportunity to study high-level cognitive processes across psychiatric disorders. In particular, EEG microstates translate the temporal dynamics of neuronal networks throughout the brain. Their alteration may reflect transdiagnostic anomalies in neurophysiological functions that are impaired in mood, psychosis, and autism spectrum disorders, such as sensorimotor integration, speech, sleep, and sense of self. The main questions this study aims to answer are as follows: 1) Are EEG microstate anomalies associated with clinical and functional prognosis, both in resting conditions and during sleep, across psychiatric disorders? 2) Are EEG microstate anomalies associated with differences in sensorimotor integration, speech, sense of self, and sleep? 3) Can the dynamic of EEG microstates be modulated by a non-drug intervention such as light hypnosis? METHODS This prospective cohort will include a population of adolescents and young adults, aged 15 to 30 years old, with ultra-high-risk of psychosis (UHR), first-episode psychosis (FEP), schizophrenia (SCZ), autism spectrum disorder (ASD), and major depressive disorder (MDD), as well as healthy controls (CTRL) (N = 21 × 6), who will be assessed at baseline and after one year of follow-up. Participants will undergo deep phenotyping based on psychopathology, neuropsychological assessments, 64-channel EEG recordings, and biological sampling at the two timepoints. At baseline, the EEG recording will also be coupled to a sensorimotor task and a recording of the characteristics of their speech (prosody and turn-taking), a one-night polysomnography, a self-reference effect task in virtual reality (only in UHR, FEP, and CTRL). An interventional ancillary study will involve only healthy controls, in order to assess whether light hypnosis can modify the EEG microstate architecture in a direction opposite to what is seen in disease. DISCUSSION This transdiagnostic longitudinal case-control study will provide a multimodal neurophysiological assessment of clinical dimensions (sensorimotor integration, speech, sleep, and sense of self) that are disrupted across mood, psychosis, and autism spectrum disorders. It will further test the relevance of EEG microstates as dimensional functional biomarkers. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT06045897.
Collapse
Affiliation(s)
- Valeria Lucarini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Anaëlle Alouit
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
| | - Delphine Yeh
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Jeanne Le Coq
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Romane Savatte
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Mylène Charre
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Cécile Louveau
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Meryem Benlaifa Houamri
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Sylvain Penaud
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Alexandre Gaston-Bellegarde
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Stéphane Rio
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Laurent Drouet
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Maxime Elbaz
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
| | - Jean Becchio
- Collège International de Thérapies d'orientation de l'Attention et de la Conscience (CITAC), Paris, France
| | - Sylvain Pourchet
- Collège International de Thérapies d'orientation de l'Attention et de la Conscience (CITAC), Paris, France
| | - Estelle Pruvost-Robieux
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
- Service de Neurophysiologie Clinique, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Angela Marchi
- Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Mylène Moyal
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Aline Lefebvre
- Department of Child and Adolescent Psychiatry, Fondation Vallee, UNIACT Neurospin CEA - INSERM UMR 1129, Universite Paris Saclay, Gentilly, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Martine Grice
- IfL-Phonetics, University of Cologne, Cologne, Germany
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
| | - Lucile Dupin
- INCC UMR 8002, CNRS, Université Paris Cité, Paris, F-75006, France
| | - Pascale Piolino
- Laboratoire Mémoire, Cerveau et Cognition, UR7536, Université Paris Cité, Boulogne-Billancourt, F-92100, France
| | - Cédric Lemogne
- Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Service de Psychiatrie de l'adulte, AP-HP, Hôpital Hôtel-Dieu, Université Paris Cité and Université Sorbonne Paris Nord, Paris, France
| | - Damien Léger
- Centre du Sommeil et de la Vigilance, AP-HP, Hôtel-Dieu, Paris, France
- VIFASOM, ERC 7330, Université Paris Cité, Paris, France
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Stroke: from prognostic determinants and translational research to personalized interventions", Paris, 75014, France
- Service de Neurophysiologie Clinique, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France
| | - Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team "Pathophysiology of psychiatric disorders", GDR 3557-Institut de Psychiatrie, 102-108 Rue de la Santé, Paris, 75014, France.
- GHU Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique (PEPIT), Paris, France.
| |
Collapse
|
14
|
Ehlen F, Montag C, Leopold K, Heinz A. Linguistic findings in persons with schizophrenia-a review of the current literature. Front Psychol 2023; 14:1287706. [PMID: 38078276 PMCID: PMC10710163 DOI: 10.3389/fpsyg.2023.1287706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 10/24/2024] Open
Abstract
INTRODUCTION Alterations of verbalized thought occur frequently in psychotic disorders. We characterize linguistic findings in individuals with schizophrenia based on the current literature, including findings relevant for differential and early diagnosis. METHODS Review of literature published via PubMed search between January 2010 and May 2022. RESULTS A total of 143 articles were included. In persons with schizophrenia, language-related alterations can occur at all linguistic levels. Differentiating from findings in persons with affective disorders, typical symptoms in those with schizophrenia mainly include so-called "poverty of speech," reduced word and sentence production, impaired processing of complex syntax, pragmatic language deficits as well as reduced semantic verbal fluency. At the at-risk state, "poverty of content," pragmatic difficulties and reduced verbal fluency could be of predictive value. DISCUSSION The current results support multilevel alterations of the language system in persons with schizophrenia. Creative expressions of psychotic experiences are frequently found but are not in the focus of this review. Clinical examinations of linguistic alterations can support differential diagnostics and early detection. Computational methods (Natural Language Processing) may improve the precision of corresponding diagnostics. The relations between language-related and other symptoms can improve diagnostics.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Montag
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte (Psychiatric University Clinic at St. Hedwig Hospital, Große Hamburger Berlin) – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karolina Leopold
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
15
|
Nour MM, McNamee DC, Liu Y, Dolan RJ. Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts. Proc Natl Acad Sci U S A 2023; 120:e2305290120. [PMID: 37816054 PMCID: PMC10589662 DOI: 10.1073/pnas.2305290120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Human cognition is underpinned by structured internal representations that encode relationships between entities in the world (cognitive maps). Clinical features of schizophrenia-from thought disorder to delusions-are proposed to reflect disorganization in such conceptual representations. Schizophrenia is also linked to abnormalities in neural processes that support cognitive map representations, including hippocampal replay and high-frequency ripple oscillations. Here, we report a computational assay of semantically guided conceptual sampling and exploit this to test a hypothesis that people with schizophrenia (PScz) exhibit abnormalities in semantically guided cognition that relate to hippocampal replay and ripples. Fifty-two participants [26 PScz (13 unmedicated) and 26 age-, gender-, and intelligence quotient (IQ)-matched nonclinical controls] completed a category- and letter-verbal fluency task, followed by a magnetoencephalography (MEG) scan involving a separate sequence-learning task. We used a pretrained word embedding model of semantic similarity, coupled to a computational model of word selection, to quantify the degree to which each participant's verbal behavior was guided by semantic similarity. Using MEG, we indexed neural replay and ripple power in a post-task rest session. Across all participants, word selection was strongly influenced by semantic similarity. The strength of this influence showed sensitivity to task demands (category > letter fluency) and predicted performance. In line with our hypothesis, the influence of semantic similarity on behavior was reduced in schizophrenia relative to controls, predicted negative psychotic symptoms, and correlated with an MEG signature of hippocampal ripple power (but not replay). The findings bridge a gap between phenomenological and neurocomputational accounts of schizophrenia.
Collapse
Affiliation(s)
- Matthew M. Nour
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, LondonWC1B 5EH, United Kingdom
| | - Daniel C. McNamee
- Champalimaud Research, Centre for the Unknown, 1400-038Lisbon, Portugal
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Chinese Institute for Brain Research, Beijing102206, China
| | - Raymond J. Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, LondonWC1B 5EH, United Kingdom
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3AR, United Kingdom
| |
Collapse
|
16
|
Lundin NB, Brown JW, Johns BT, Jones MN, Purcell JR, Hetrick WP, O’Donnell BF, Todd PM. Neural evidence of switch processes during semantic and phonetic foraging in human memory. Proc Natl Acad Sci U S A 2023; 120:e2312462120. [PMID: 37824523 PMCID: PMC10589708 DOI: 10.1073/pnas.2312462120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Humans may retrieve words from memory by exploring and exploiting in "semantic space" similar to how nonhuman animals forage for resources in physical space. This has been studied using the verbal fluency test (VFT), in which participants generate words belonging to a semantic or phonetic category in a limited time. People produce bursts of related items during VFT, referred to as "clustering" and "switching." The strategic foraging model posits that cognitive search behavior is guided by a monitoring process which detects relevant declines in performance and then triggers the searcher to seek a new patch or cluster in memory after the current patch has been depleted. An alternative body of research proposes that this behavior can be explained by an undirected rather than strategic search process, such as random walks with or without random jumps to new parts of semantic space. This study contributes to this theoretical debate by testing for neural evidence of strategically timed switches during memory search. Thirty participants performed category and letter VFT during functional MRI. Responses were classified as cluster or switch events based on computational metrics of similarity and participant evaluations. Results showed greater hippocampal and posterior cerebellar activation during switching than clustering, even while controlling for interresponse times and linguistic distance. Furthermore, these regions exhibited ramping activity which increased during within-patch search leading up to switches. Findings support the strategic foraging model, clarifying how neural switch processes may guide memory search in a manner akin to foraging in patchy spatial environments.
Collapse
Affiliation(s)
- Nancy B. Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH43210
| | - Joshua W. Brown
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| | - Brendan T. Johns
- Department of Psychology, McGill University, Montréal, QCH3A 1G1, Canada
| | - Michael N. Jones
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| | - John R. Purcell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ08854
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN46202
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN46202
| | - Peter M. Todd
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Cognitive Science Program, Indiana University, Bloomington, IN47405
| |
Collapse
|
17
|
Hitczenko K, Segal Y, Keshet J, Goldrick M, Mittal VA. Speech characteristics yield important clues about motor function: Speech variability in individuals at clinical high-risk for psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:60. [PMID: 37717025 PMCID: PMC10505148 DOI: 10.1038/s41537-023-00382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Motor abnormalities are predictive of psychosis onset in individuals at clinical high risk (CHR) for psychosis and are tied to its progression. We hypothesize that these motor abnormalities also disrupt their speech production (a highly complex motor behavior) and predict CHR individuals will produce more variable speech than healthy controls, and that this variability will relate to symptom severity, motor measures, and psychosis-risk calculator risk scores. STUDY DESIGN We measure variability in speech production (variability in consonants, vowels, speech rate, and pausing/timing) in N = 58 CHR participants and N = 67 healthy controls. Three different tasks are used to elicit speech: diadochokinetic speech (rapidly-repeated syllables e.g., papapa…, pataka…), read speech, and spontaneously-generated speech. STUDY RESULTS Individuals in the CHR group produced more variable consonants and exhibited greater speech rate variability than healthy controls in two of the three speech tasks (diadochokinetic and read speech). While there were no significant correlations between speech measures and remotely-obtained motor measures, symptom severity, or conversion risk scores, these comparisons may be under-powered (in part due to challenges of remote data collection during the COVID-19 pandemic). CONCLUSION This study provides a thorough and theory-driven first look at how speech production is affected in this at-risk population and speaks to the promise and challenges facing this approach moving forward.
Collapse
Affiliation(s)
- Kasia Hitczenko
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, ENS, EHESS, CNRS, PSL University, Paris, France.
| | - Yael Segal
- Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joseph Keshet
- Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Matthew Goldrick
- Department of Linguistics, Northwestern University, Evanston, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Science Program, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Science Program, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Psychiatry, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Innovations in Developmental Sciences, Evanston/Chicago, IL, USA
| |
Collapse
|
18
|
Corona-Hernández H, de Boer JN, Brederoo SG, Voppel AE, Sommer IEC. Assessing coherence through linguistic connectives: Analysis of speech in patients with schizophrenia-spectrum disorders. Schizophr Res 2023; 259:48-58. [PMID: 35778234 DOI: 10.1016/j.schres.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Incoherent speech is a core diagnostic symptom of schizophrenia-spectrum disorders (SSD) that can be studied using semantic space models. Since linguistic connectives signal relations between words, they and their surrounding words might represent linguistic loci to detect unusual coherence in speech. Therefore, we investigated whether connectives' measures are useful to assess incoherent speech in SSD. METHODS Connectives and their surrounding words were extracted from transcripts of spontaneous speech of 50 SSD-patients and 50 control participants. Using word2vec, two different cosine similarities were calculated: those of connectives and their surrounding words (connectives-related similarity), and those of free-of-connectives words-chunks (non-connectives similarity). Differences between groups in proportion of five types of connectives were assessed using generalized logistic models, and connectives-related similarity was analyzed through non-parametric multivariate analysis of variance. These features were evaluated in classification tasks to differentiate between groups. RESULTS SSD-patients used less contingency (e.g., because) (p = .008) and multiclass connectives (e.g., as) (p < .001) than control participants. SSD-patients had higher minimum similarity of multiclass (adj-p = .04) and temporality connectives (e.g., after) (adj-p < .001), narrower similarity-range of expansion (e.g., and) (adj-p = .002) and multiclass connectives (adj-p = .04), and lower maximum similarity of expansion connectives (adj-p = .005). Using connectives' features alone, SSD-patients and controls could be distinguished with 85 % accuracy. DISCUSSION Our results show that SSD-speech can be distinguished from speech of control participants with high accuracy, based solely on connectives' features. We conclude that including connectives could strengthen computational models to categorize SSD.
Collapse
Affiliation(s)
- H Corona-Hernández
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - J N de Boer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Utrecht, Utrecht University & Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - S G Brederoo
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - A E Voppel
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands
| | - I E C Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
19
|
Holmlund TB, Chandler C, Foltz PW, Diaz-Asper C, Cohen AS, Rodriguez Z, Elvevåg B. Towards a temporospatial framework for measurements of disorganization in speech using semantic vectors. Schizophr Res 2023; 259:71-79. [PMID: 36372683 DOI: 10.1016/j.schres.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Incoherent speech in schizophrenia has long been described as the mind making "leaps" of large distances between thoughts and ideas. Such a view seems intuitive, and for almost two decades, attempts to operationalize these conceptual "leaps" in spoken word meanings have used language-based embedding spaces. An embedding space represents meaning of words as numerical vectors where a greater proximity between word vectors represents more shared meaning. However, there are limitations with word vector-based operationalizations of coherence which can limit their appeal and utility in clinical practice. First, the use of esoteric word embeddings can be conceptually hard to grasp, and this is complicated by several different operationalizations of incoherent speech. This problem can be overcome by a better visualization of methods. Second, temporal information from the act of speaking has been largely neglected since models have been built using written text, yet speech is spoken in real time. This issue can be resolved by leveraging time stamped transcripts of speech. Third, contextual information - namely the situation of where something is spoken - has often only been inferred and never explicitly modeled. Addressing this situational issue opens up new possibilities for models with increased temporal resolution and contextual relevance. In this paper, direct visualizations of semantic distances are used to enable the inspection of examples of incoherent speech. Some common operationalizations of incoherence are illustrated, and suggestions are made for how temporal and spatial contextual information can be integrated in future implementations of measures of incoherence.
Collapse
Affiliation(s)
- Terje B Holmlund
- Department of Clinical Medicine, University of Tromsø - the Arctic University of Norway, Tromsø, Norway.
| | - Chelsea Chandler
- Institute of Cognitive Science, University of Colorado Boulder, United States of America
| | - Peter W Foltz
- Institute of Cognitive Science, University of Colorado Boulder, United States of America
| | | | - Alex S Cohen
- Department of Psychology, Louisiana State University, United States of America; Center for Computation and Technology, Louisiana State University, United States of America
| | - Zachary Rodriguez
- Department of Psychology, Louisiana State University, United States of America; Center for Computation and Technology, Louisiana State University, United States of America
| | - Brita Elvevåg
- Department of Clinical Medicine, University of Tromsø - the Arctic University of Norway, Tromsø, Norway; Norwegian Center for eHealth Research, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
20
|
Mota NB, Ribeiro M, Malcorra BLC, Atídio JP, Haguiara B, Gadelha A. Happy thoughts: What computational assessment of connectedness and emotional words can inform about early stages of psychosis. Schizophr Res 2023; 259:38-47. [PMID: 35811267 DOI: 10.1016/j.schres.2022.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
In recent years, different natural language processing tools measured aspects related to narratives' structural, semantic, and emotional content. However, there is a need to better understand the limitations and effectiveness of speech elicitation protocols. The graph-theoretical analysis applied to short narratives reveals lower connectedness associated with negative symptoms even in the early stages of psychosis, but emotional topics seem more informative than others. We investigate the interaction between connectedness and emotional words with negative symptoms and educational level in participants with and without psychosis. For that purpose, we used a speech elicitation protocol based on three positive affective pictures and calculated the proportion of emotional words and connectedness measures in the first-episode psychosis (FEP) group (N: 24) and a control group (N: 33). First, we replicated the association between connectedness and negative symptoms (R2: 0.53, p: 0.0049). Second, the more positive terms, the more connected the narrative was, exclusively under psychosis and in association with education, pointing to an interaction between symptoms and formal education. Negative symptoms were independently associated with connectedness, but not with emotional words, although the associations with education were mutually dependent. Together, education and symptoms explained almost 70 % of connectedness variance (R2: 0.67, p < 0.0001), but not emotional expression. At this initial stage of psychosis, education seems to play an important role, diminishing the impact of negative symptoms on the narrative connectedness. Negative symptoms in FEP impact narrative connectedness in association with emotional expression, revealing aspects of social cognition through a short and innocuous protocol.
Collapse
Affiliation(s)
- Natália Bezerra Mota
- Department of Psychiatry and Legal Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Research department at Motrix Lab, Motrix, Rio de Janeiro, Brazil.
| | - Marina Ribeiro
- Research department at Motrix Lab, Motrix, Rio de Janeiro, Brazil
| | | | - João Paulo Atídio
- Schizophrenia Program (PROESQ), Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Brazil
| | - Bernardo Haguiara
- Schizophrenia Program (PROESQ), Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Brazil
| | - Ary Gadelha
- Schizophrenia Program (PROESQ), Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Brazil
| |
Collapse
|
21
|
Çokal D, Palominos-Flores C, Yalınçetin B, Türe-Abacı Ö, Bora E, Hinzen W. Referential noun phrases distribute differently in Turkish speakers with schizophrenia. Schizophr Res 2023; 259:104-110. [PMID: 35871970 DOI: 10.1016/j.schres.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
Abstract
In all human languages, noun phrases (NPs) (e.g., 'a field', 'the woman with a book') are used to identify entities in discourse. Previous evidence has shown that the spontaneous speech of patients with schizophrenia (Sz) shows differences in the distribution of grammatically different types of NPs, which are in part specific to patients with formal thought disorder (FTD). Here we sought to provide the first evidence of related grammatical effects in a non-Indo-European language. Results from a picture description task in a sample of 16 Turkish speakers with FTD (+FTD), 15 without FTD (-FTD), and 27 controls revealed that relative to controls, people with Sz over-produced NPs that are 'bare' (in the sense of lacking any grammatical items such as the or a in English). The +FTD group generally showed stronger effects than -FTD, and used more pronouns and less NPs co-referring with previously mentioned NPs. In addition, the dynamic distribution of NP types over narrative time showed an effect of increased mean distance between definite NPs in -FTD relative to controls. In +FTD but no other group there was an unexpected random distribution of indefinite DPs. Incidence rates of referential anomalies increased from controls to the -FTD and +FTD groups. These findings further confirm that Sz is manifest through specific linguistic effects in the referential structure of meaning as mediated by grammar. They provide a linguistic baseline for neurocognitive models of FTD and help to define appropriate targets for the automatic extraction of linguistic features to classify psychotic speech.
Collapse
Affiliation(s)
- D Çokal
- Department of German Language and Literature I - Linguistics, University of Cologne, Germany.
| | - C Palominos-Flores
- Department of Translation and Language Sciences, University of Pompeu Fabra, Spain
| | - B Yalınçetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ö Türe-Abacı
- Department of Western Studies and Literature, Canakkale 18 Mart University, Çanakkale, Turkey
| | - E Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Dokuz Eylul University Medical School, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - W Hinzen
- Department of Translation and Language Sciences, University of Pompeu Fabra, Spain; ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| |
Collapse
|
22
|
Silva AM, Limongi R, MacKinley M, Ford SD, Alonso-Sánchez MF, Palaniyappan L. Syntactic complexity of spoken language in the diagnosis of schizophrenia: A probabilistic Bayes network model. Schizophr Res 2023; 259:88-96. [PMID: 35752547 DOI: 10.1016/j.schres.2022.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023]
Abstract
In the clinical linguistics of schizophrenia, syntactic complexity has received much attention. In this study, we address whether syntactic complexity deteriorates within the six months following the first episode of psychosis in those who develop a diagnosis of schizophrenia. We collected data from a cohort of twenty-six first-episode psychosis and 12 healthy control subjects using the Thought and Language Index interview in response to three pictures from the Thematic Apperception Test at first assessment and after six months (the time of consensus diagnosis). An automated labeling (part-of-speech tagging) for specific syntactic elements calculated large and granular syntactic complexity indices with a focus on clause complexity as a particular case from this spoken language data. Probabilistic reasoning leveraging the conditional independence properties of Bayes networks revealed that consensus diagnosis of schizophrenia predicted a decrease in nominal subjects per clause among individuals with first episode psychosis. From the entire sample, we estimate a 95.4 % probability that a 50 % decrease in mean nominal subjects per clause after six months is explained by the presence of first episode psychosis. Among those with psychosis, a 30 % decrease in this clause-complexity index after six months of experiencing the first episode predicted with 95 % probability a consensus diagnosis of schizophrenia, representing a conditional relationship between a longitudinal decrease in syntactic complexity and a diagnosis of schizophrenia. We conclude that an early drift towards linguistic disorganization/impoverishment of clause complexity-at the granular level of nominal subject per clause-is a distinctive feature of schizophrenia that decreases longitudinally, thus differentiating schizophrenia from other psychotic illnesses with shared phenomenology.
Collapse
Affiliation(s)
- Angelica M Silva
- Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Canada; Faculty of Human and Social Sciences, Wilfred Laurier University, Brantford, Ontario, Canada
| | - Michael MacKinley
- Robarts Research Institute, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Sabrina D Ford
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
23
|
Parola A, Lin JM, Simonsen A, Bliksted V, Zhou Y, Wang H, Inoue L, Koelkebeck K, Fusaroli R. Speech disturbances in schizophrenia: Assessing cross-linguistic generalizability of NLP automated measures of coherence. Schizophr Res 2023; 259:59-70. [PMID: 35927097 DOI: 10.1016/j.schres.2022.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Language disorders - disorganized and incoherent speech in particular - are distinctive features of schizophrenia. Natural language processing (NLP) offers automated measures of incoherent speech as promising markers for schizophrenia. However, the scientific and clinical impact of NLP markers depends on their generalizability across contexts, samples, and languages, which we systematically assessed in the present study relying on a large, novel, cross-linguistic corpus. METHODS We collected a Danish (DK), German (GE), and Chinese (CH) cross-linguistic dataset involving transcripts from 187 participants with schizophrenia (111DK, 25GE, 51CH) and 200 matched controls (129DK, 29GE, 42CH) performing the Animated Triangles Task. Fourteen previously published NLP coherence measures were calculated, and between-groups differences and association with symptoms were tested for cross-linguistic generalizability. RESULTS One coherence measure, i.e. second-order coherence, robustly generalized across samples and languages. We found several language-specific effects, some of which partially replicated previous findings (lower coherence in German and Chinese patients), while others did not (higher coherence in Danish patients). We found several associations between symptoms and measures of coherence, but the effects were generally inconsistent across languages and rating scales. CONCLUSIONS Using a cumulative approach, we have shown that NLP findings of reduced semantic coherence in schizophrenia have limited generalizability across different languages, samples, and measures. We argue that several factors such as sociodemographic and clinical heterogeneity, cross-linguistic variation, and the different NLP measures reflecting different clinical aspects may be responsible for this variability. Future studies should take this variability into account in order to develop effective clinical applications targeting different patient populations.
Collapse
Affiliation(s)
- Alberto Parola
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Jessica Mary Lin
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Arndis Simonsen
- The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke Bliksted
- The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lana Inoue
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Essen, Germany; Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Germany
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Essen, Germany; Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Germany
| | - Riccardo Fusaroli
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
24
|
Lundin NB, Cowan HR, Singh DK, Moe AM. Lower cohesion and altered first-person pronoun usage in the spoken life narratives of individuals with schizophrenia. Schizophr Res 2023; 259:140-149. [PMID: 37127466 PMCID: PMC10524354 DOI: 10.1016/j.schres.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Usage of computational tools to quantify language disturbances among individuals with psychosis is increasing, improving measurement efficiency and access to fine-grained constructs. However, few studies apply automated linguistic analysis to life narratives in this population. Such research could facilitate the measurement of psychosis-relevant constructs such as sense of agency, capacity to organize one's personal history, narrative richness, and perceptions of the roles that others play in one's life. Furthermore, research is needed to understand how narrative linguistic features relate to cognitive and social functioning. In the present study, individuals with schizophrenia (n = 32) and individuals without a psychotic disorder (n = 15) produced personal life narratives within the Indiana Psychiatric Illness Interview. Narratives were analyzed using the Coh-Metrix computational tool. Linguistic variables analyzed were indices of connections within causal and goal-driven speech (deep cohesion), unique word usage (lexical diversity), and pronoun usage. Individuals with schizophrenia compared to control participants produced narratives that were lower in deep cohesion, contained more first-person singular pronouns, and contained fewer first-person plural pronouns. Narratives did not significantly differ between groups in lexical diversity, third-person pronoun usage, or total word count. Cognitive-linguistic relationships emerged in the full sample, including significant correlations between greater working memory capacity and greater deep cohesion and lexical diversity. In the schizophrenia group, social problem-solving abilities did not correlate with linguistic variables but were associated with cognition. Findings highlight the relevance of psychotherapies which aim to promote recovery among individuals with psychosis through the construction of coherent life narratives and increasing agency and social connectedness.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA.
| | - Henry R Cowan
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA.
| | - Divnoor K Singh
- Department of Neuroscience, The Ohio State University, 1585 Neil Avenue, Columbus, OH 43210, USA.
| | - Aubrey M Moe
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Stade EC, Ungar L, Havaldar S, Ruscio AM. Perseverative thinking is associated with features of spoken language. Behav Res Ther 2023; 165:104307. [PMID: 37121016 PMCID: PMC10263193 DOI: 10.1016/j.brat.2023.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Perseverative thinking (PT), such as rumination or worry, is a transdiagnostic process implicated in the onset and maintenance of emotional disorders. Existing measures of PT are limited by demand and expectancy effects, cognitive biases, and reflexivity, leading to calls for unobtrusive, behavioral measures. In response, we developed a behavioral measure of PT based on language. A mixed sample of 188 participants with major depressive disorder, generalized anxiety disorder, or no psychopathology completed self-report PT measures. Participants were also interviewed, providing a natural language sample. We examined language features associated with PT, then built a language-based PT model and examined its predictive power. PT was associated with multiple language features, most notably I-usage (e.g., "I", "me"; β = 0.25) and negative emotion language (e.g., "anxiety", "difficult"; β = 0.19). In machine learning analyses, language features accounted for 14% of the variance in self-reported PT. Language-based PT predicted the presence and severity of depression and anxiety, psychiatric comorbidity, and treatment seeking, with effects in the r = 0.15-0.41 range. PT has face-valid linguistic correlates and our language-based measure holds promise for assessing PT unobtrusively. With further development, this measure could be used to passively detect PT for deployment of "just-in-time" interventions.
Collapse
Affiliation(s)
- Elizabeth C Stade
- Department of Psychology, University of Pennsylvania, 425 South University Avenue, Philadelphia, PA, 19104-6018, USA.
| | - Lyle Ungar
- Department of Computer and Information Science, University of Pennsylvania, 504 Levine Hall, 3330 Walnut Street, Philadelphia, PA, 19104-6018, USA.
| | - Shreya Havaldar
- Department of Computer and Information Science, University of Pennsylvania, 504 Levine Hall, 3330 Walnut Street, Philadelphia, PA, 19104-6018, USA.
| | - Ayelet Meron Ruscio
- Department of Psychology, University of Pennsylvania, 425 South University Avenue, Philadelphia, PA, 19104-6018, USA.
| |
Collapse
|
26
|
Parola A, Simonsen A, Lin JM, Zhou Y, Wang H, Ubukata S, Koelkebeck K, Bliksted V, Fusaroli R. Voice Patterns as Markers of Schizophrenia: Building a Cumulative Generalizable Approach Via a Cross-Linguistic and Meta-analysis Based Investigation. Schizophr Bull 2023; 49:S125-S141. [PMID: 36946527 PMCID: PMC10031745 DOI: 10.1093/schbul/sbac128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Voice atypicalities are potential markers of clinical features of schizophrenia (eg, negative symptoms). A recent meta-analysis identified an acoustic profile associated with schizophrenia (reduced pitch variability and increased pauses), but also highlighted shortcomings in the field: small sample sizes, little attention to the heterogeneity of the disorder, and to generalizing findings to diverse samples and languages. STUDY DESIGN We provide a critical cumulative approach to vocal atypicalities in schizophrenia, where we conceptually and statistically build on previous studies. We aim at identifying a cross-linguistically reliable acoustic profile of schizophrenia and assessing sources of heterogeneity (symptomatology, pharmacotherapy, clinical and social characteristics). We relied on previous meta-analysis to build and analyze a large cross-linguistic dataset of audio recordings of 231 patients with schizophrenia and 238 matched controls (>4000 recordings in Danish, German, Mandarin and Japanese). We used multilevel Bayesian modeling, contrasting meta-analytically informed and skeptical inferences. STUDY RESULTS We found only a minimal generalizable acoustic profile of schizophrenia (reduced pitch variability), while duration atypicalities replicated only in some languages. We identified reliable associations between acoustic profile and individual differences in clinical ratings of negative symptoms, medication, age and gender. However, these associations vary across languages. CONCLUSIONS The findings indicate that a strong cross-linguistically reliable acoustic profile of schizophrenia is unlikely. Rather, if we are to devise effective clinical applications able to target different ranges of patients, we need first to establish larger and more diverse cross-linguistic datasets, focus on individual differences, and build self-critical cumulative approaches.
Collapse
Affiliation(s)
- Alberto Parola
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
- The Interacting Minds Center, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
- Department of Psychology, University of Turin, Turin, Italy
| | - Arndis Simonsen
- The Interacting Minds Center, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
- Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jessica Mary Lin
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
- The Interacting Minds Center, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiho Ubukata
- Department of Psychiatry, Kyoto University, Kyoto, Japan
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Germany
| | - Vibeke Bliksted
- The Interacting Minds Center, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
- Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Riccardo Fusaroli
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
- The Interacting Minds Center, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
27
|
Limongi R, Silva AM, Mackinley M, Ford SD, Palaniyappan L. Active Inference, Epistemic Value, and Uncertainty in Conceptual Disorganization in First-Episode Schizophrenia. Schizophr Bull 2023; 49:S115-S124. [PMID: 36946528 PMCID: PMC10031740 DOI: 10.1093/schbul/sbac125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Active inference has become an influential concept in psychopathology. We apply active inference to investigate conceptual disorganization in first-episode schizophrenia. We conceptualize speech production as a decision-making process affected by the latent "conceptual organization"-as a special case of uncertainty about the causes of sensory information. Uncertainty is both minimized via speech production-in which function words index conceptual organization in terms of analytic thinking-and tracked by a domain-general salience network. We hypothesize that analytic thinking depends on conceptual organization. Therefore, conceptual disorganization in schizophrenia would be both indexed by low conceptual organization and reflected in the effective connectivity within the salience network. STUDY DESIGN With 1-minute speech samples from a picture description task and resting state fMRI from 30 patients and 30 healthy subjects, we employed dynamic causal and probabilistic graphical models to investigate if the effective connectivity of the salience network underwrites conceptual organization. STUDY RESULTS Low analytic thinking scores index low conceptual organization which affects diagnostic status. The influence of the anterior insula on the anterior cingulate cortex and the self-inhibition within the anterior cingulate cortex are elevated given low conceptual organization (ie, conceptual disorganization). CONCLUSIONS Conceptual organization, a construct that explains formal thought disorder, can be modeled in an active inference framework and studied in relation to putative neural substrates of disrupted language in schizophrenia. This provides a critical advance to move away from rating-scale scores to deeper constructs in the pursuit of the pathophysiology of formal thought disorder.
Collapse
Affiliation(s)
- Roberto Limongi
- Department of Psychology, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| | | | - Michael Mackinley
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | | | - Lena Palaniyappan
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Tang SX, Hänsel K, Cong Y, Nikzad AH, Mehta A, Cho S, Berretta S, Behbehani L, Pradhan S, John M, Liberman MY. Latent Factors of Language Disturbance and Relationships to Quantitative Speech Features. Schizophr Bull 2023; 49:S93-S103. [PMID: 36946530 PMCID: PMC10031730 DOI: 10.1093/schbul/sbac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Quantitative acoustic and textual measures derived from speech ("speech features") may provide valuable biomarkers for psychiatric disorders, particularly schizophrenia spectrum disorders (SSD). We sought to identify cross-diagnostic latent factors for speech disturbance with relevance for SSD and computational modeling. STUDY DESIGN Clinical ratings for speech disturbance were generated across 14 items for a cross-diagnostic sample (N = 334), including SSD (n = 90). Speech features were quantified using an automated pipeline for brief recorded samples of free speech. Factor models for the clinical ratings were generated using exploratory factor analysis, then tested with confirmatory factor analysis in the cross-diagnostic and SSD groups. The relationships between factor scores and computational speech features were examined for 202 of the participants. STUDY RESULTS We found a 3-factor model with a good fit in the cross-diagnostic group and an acceptable fit for the SSD subsample. The model identifies an impaired expressivity factor and 2 interrelated disorganized factors for inefficient and incoherent speech. Incoherent speech was specific to psychosis groups, while inefficient speech and impaired expressivity showed intermediate effects in people with nonpsychotic disorders. Each of the 3 factors had significant and distinct relationships with speech features, which differed for the cross-diagnostic vs SSD groups. CONCLUSIONS We report a cross-diagnostic 3-factor model for speech disturbance which is supported by good statistical measures, intuitive, applicable to SSD, and relatable to linguistic theories. It provides a valuable framework for understanding speech disturbance and appropriate targets for modeling with quantitative speech features.
Collapse
Affiliation(s)
- Sunny X Tang
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Katrin Hänsel
- Department of Laboratory Medicine, Yale University, New Haven, USA
| | - Yan Cong
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Amir H Nikzad
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Aarush Mehta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Sarah Berretta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Leily Behbehani
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sameer Pradhan
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Majnu John
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Mark Y Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
29
|
de Boer JN, Voppel AE, Brederoo SG, Schnack HG, Truong KP, Wijnen FNK, Sommer IEC. Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychol Med 2023; 53:1302-1312. [PMID: 34344490 PMCID: PMC10009369 DOI: 10.1017/s0033291721002804] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Clinicians routinely use impressions of speech as an element of mental status examination. In schizophrenia-spectrum disorders, descriptions of speech are used to assess the severity of psychotic symptoms. In the current study, we assessed the diagnostic value of acoustic speech parameters in schizophrenia-spectrum disorders, as well as its value in recognizing positive and negative symptoms. METHODS Speech was obtained from 142 patients with a schizophrenia-spectrum disorder and 142 matched controls during a semi-structured interview on neutral topics. Patients were categorized as having predominantly positive or negative symptoms using the Positive and Negative Syndrome Scale (PANSS). Acoustic parameters were extracted with OpenSMILE, employing the extended Geneva Acoustic Minimalistic Parameter Set, which includes standardized analyses of pitch (F0), speech quality and pauses. Speech parameters were fed into a random forest algorithm with leave-ten-out cross-validation to assess their value for a schizophrenia-spectrum diagnosis, and PANSS subtype recognition. RESULTS The machine-learning speech classifier attained an accuracy of 86.2% in classifying patients with a schizophrenia-spectrum disorder and controls on speech parameters alone. Patients with predominantly positive v. negative symptoms could be classified with an accuracy of 74.2%. CONCLUSIONS Our results show that automatically extracted speech parameters can be used to accurately classify patients with a schizophrenia-spectrum disorder and healthy controls, as well as differentiate between patients with predominantly positive v. negatives symptoms. Thus, the field of speech technology has provided a standardized, powerful tool that has high potential for clinical applications in diagnosis and differentiation, given its ease of comparison and replication across samples.
Collapse
Affiliation(s)
- J. N. de Boer
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University & University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - A. E. Voppel
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S. G. Brederoo
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H. G. Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University & University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
- Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, the Netherlands
| | - K. P. Truong
- Department of Human Media Interaction, University of Twente, Enschede, the Netherlands
| | - F. N. K. Wijnen
- Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, the Netherlands
| | - I. E. C. Sommer
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Minor KS, Lundin NB, Myers EJ, Fernández-Villardón A, Lysaker PH. Automated measures of speech content and speech organization in schizophrenia: Test-retest reliability and generalizability across demographic variables. Psychiatry Res 2023; 320:115048. [PMID: 36645988 DOI: 10.1016/j.psychres.2023.115048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Technological advances in artificial intelligence and natural language processing have increased efficiency of assessing speech content and speech organization in schizophrenia. Despite these developments, there has been little focus on the psychometrics of these approaches. Using two common assessments, the current study addressed this gap by: 1) measuring test-retest reliability; and 2) assessing whether speech content and/or speech organization generalize across demographics. To test these aims, we examined psychometric properties of the Linguistic Inquiry Word Count (LIWC), a speech content measure, and the Coh-Metrix, a speech organization measure. Across baseline to six month (n = 101) and baseline to one year (n = 47) narrative speech samples, we generally observed fair reliability for speech content measures and fair to good reliability for speech organization measures. Regarding demographics, multiple speech indices varied by race, income, and education. The lack of excellent reliability scores for speech indices holds important implications for examining speech variables in clinical trials and highlights the dynamic nature of speech. This work illustrates the importance of designing speech content and speech organization measures with external validity across demographic factors. Future studies examining speech in schizophrenia should account for potential biases against demographic groups introduced by linguistic analysis tools.
Collapse
Affiliation(s)
- Kyle S Minor
- Department of Psychology, Indiana University- Purdue University Indianapolis, Indianapolis, IN, United States.
| | - Nancy B Lundin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - Evan J Myers
- Department of Psychology, Indiana University- Purdue University Indianapolis, Indianapolis, IN, United States
| | | | - Paul H Lysaker
- Roudebush VA Medical Center, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
31
|
Baklund L, Røssberg JI, Møller P. Linguistic markers and basic self-disturbances among adolescents at risk of psychosis. A qualitative study. EClinicalMedicine 2023; 55:101733. [PMID: 36386038 PMCID: PMC9661513 DOI: 10.1016/j.eclinm.2022.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Language impairments are key features of schizophrenia spectrum disorders, and have also been suggested to signal enhanced psychosis risk. Incoherence, derailment, and monotonous speaking are however closely related to psychosis onset, and thus not very early markers. Recent phenomenologic-psychiatric studies claim that basic self-disturbance (BSD) may represent more useful early markers. Methods We searched for distinctive irregular linguistics of 30 CHR outpatient adolescents, aged 12-18 years. Standard instruments established psychosis risk and BSD. Participants chose three personal and well manifested BSD phenomena. Ninety verbatim statements were analyzed and grouped into higher order clusters of linguistic irregularities. Findings We identified five clusters of irregular language features: distinctive words, describing an atmosphere of unreality; irregular use of prepositions, indicating experiential detachment; shifts of personal pronouns, indicating identity confusion; near-literal use of metaphors and conjunctions indicating existential insecurity, and idiosyncratic use of adjectives indicating perceptual transcendence. Interpretation The adolescents provided naturalistic descriptions of experiences that were markedly twisted and almost ineffable. This unique irregular "BSD -language" was highly meaningful in its proper context, expressing informative characteristics of first-personal experiential alterations, essential for early detection. The features may additionally represent precursors of psychosis transition, useful for clinical decision-making. Funding Foundation Dam, Oslo, Norway (Grant Number 2017/FO143368).
Collapse
Affiliation(s)
- Lise Baklund
- Division of Mental Health and Addiction, Department of Mental Health Research and Development, Vestre Viken, Drammen, Norway
- Vestre Viken HF, FoU-avdelingen, P.O. Box 800, Drammen 3004, Norway
| | - Jan Ivar Røssberg
- Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, P.O. Box 4959, Nydalen, Oslo N-0424, Norway
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, Oslo 0318, Norway
| | - Paul Møller
- Division of Mental Health and Addiction, Department of Mental Health Research and Development, Vestre Viken, Drammen, Norway
- Vestre Viken HF, FoU-avdelingen, P.O. Box 800, Drammen 3004, Norway
| |
Collapse
|
32
|
Bambini V, Frau F, Bischetti L, Cuoco F, Bechi M, Buonocore M, Agostoni G, Ferri I, Sapienza J, Martini F, Spangaro M, Bigai G, Cocchi F, Cavallaro R, Bosia M. Deconstructing heterogeneity in schizophrenia through language: a semi-automated linguistic analysis and data-driven clustering approach. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:102. [PMID: 36446789 PMCID: PMC9708845 DOI: 10.1038/s41537-022-00306-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Previous works highlighted the relevance of automated language analysis for predicting diagnosis in schizophrenia, but a deeper language-based data-driven investigation of the clinical heterogeneity through the illness course has been generally neglected. Here we used a semiautomated multidimensional linguistic analysis innovatively combined with a machine-driven clustering technique to characterize the speech of 67 individuals with schizophrenia. Clusters were then compared for psychopathological, cognitive, and functional characteristics. We identified two subgroups with distinctive linguistic profiles: one with higher fluency, lower lexical variety but greater use of psychological lexicon; the other with reduced fluency, greater lexical variety but reduced psychological lexicon. The former cluster was associated with lower symptoms and better quality of life, pointing to the existence of specific language profiles, which also show clinically meaningful differences. These findings highlight the importance of considering language disturbances in schizophrenia as multifaceted and approaching them in automated and data-driven ways.
Collapse
Affiliation(s)
- Valentina Bambini
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Federico Frau
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Luca Bischetti
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Federica Cuoco
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Ilaria Ferri
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Bigai
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Affiliation(s)
- Brita Elvevåg
- To whom correspondence should be addressed; Postbox 6124, Tromsø 9291, Norway; Tel: (+47)-919-93-063; E-mail:
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA,Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
34
|
Gargano G, Caletti E, Perlini C, Turtulici N, Bellani M, Bonivento C, Garzitto M, Siri FM, Longo C, Bonetto C, Cristofalo D, Scocco P, Semrov E, Preti A, Lazzarotto L, Gardellin F, Lasalvia A, Ruggeri M, Marini A, Brambilla P, GET UP Group. Language production impairments in patients with a first episode of psychosis. PLoS One 2022; 17:e0272873. [PMID: 35951619 PMCID: PMC9371299 DOI: 10.1371/journal.pone.0272873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Language production has often been described as impaired in psychiatric diseases such as in psychosis. Nevertheless, little is known about the characteristics of linguistic difficulties and their relation with other cognitive domains in patients with a first episode of psychosis (FEP), either affective or non-affective. To deepen our comprehension of linguistic profile in FEP, 133 patients with FEP (95 non-affective, FEP-NA; 38 affective, FEP-A) and 133 healthy controls (HC) were assessed with a narrative discourse task. Speech samples were systematically analyzed with a well-established multilevel procedure investigating both micro- (lexicon, morphology, syntax) and macro-linguistic (discourse coherence, pragmatics) levels of linguistic processing. Executive functioning and IQ were also evaluated. Both linguistic and neuropsychological measures were secondarily implemented with a machine learning approach in order to explore their predictive accuracy in classifying participants as FEP or HC. Compared to HC, FEP patients showed language production difficulty at both micro- and macro-linguistic levels. As for the former, FEP produced shorter and simpler sentences and fewer words per minute, along with a reduced number of lexical fillers, compared to HC. At the macro-linguistic level, FEP performance was impaired in local coherence, which was paired with a higher percentage of utterances with semantic errors. Linguistic measures were not correlated with any neuropsychological variables. No significant differences emerged between FEP-NA and FEP-A (p≥0.02, after Bonferroni correction). Machine learning analysis showed an accuracy of group prediction of 76.36% using language features only, with semantic variables being the most impactful. Such a percentage was enhanced when paired with clinical and neuropsychological variables. Results confirm the presence of language production deficits already at the first episode of the illness, being such impairment not related to other cognitive domains. The high accuracy obtained by the linguistic set of features in classifying groups support the use of machine learning methods in neuroscience investigations.
Collapse
Affiliation(s)
- Giulia Gargano
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elisabetta Caletti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Cinzia Perlini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Verona Hospital Trust–Azienda Ospedaliera Universitaria Integrata Verona–AOUI, Verona, Italy
| | - Nunzio Turtulici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marcella Bellani
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Verona Hospital Trust–Azienda Ospedaliera Universitaria Integrata Verona–AOUI, Verona, Italy
| | - Carolina Bonivento
- IRCCS “E.Medea” Polo Friuli Venezia Giulia, San Vito al Tagliamento, PN, Italy
| | - Marco Garzitto
- Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Francesca Marzia Siri
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Longo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Bonetto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Doriana Cristofalo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Scocco
- Department of Mental Health, Azienda ULSS 16, Padua, Italy
| | | | - Antonio Preti
- Department of Mental Health, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Lorenza Lazzarotto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Antonio Lasalvia
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Verona Hospital Trust–Azienda Ospedaliera Universitaria Integrata Verona–AOUI, Verona, Italy
| | - Mirella Ruggeri
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Verona Hospital Trust–Azienda Ospedaliera Universitaria Integrata Verona–AOUI, Verona, Italy
| | - Andrea Marini
- Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | | |
Collapse
|
35
|
Liang L, Silva AM, Jeon P, Ford SD, MacKinley M, Théberge J, Palaniyappan L. Widespread cortical thinning, excessive glutamate and impaired linguistic functioning in schizophrenia: A cluster analytic approach. Front Hum Neurosci 2022; 16:954898. [PMID: 35992940 PMCID: PMC9390601 DOI: 10.3389/fnhum.2022.954898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Symptoms of schizophrenia are closely related to aberrant language comprehension and production. Macroscopic brain changes seen in some patients with schizophrenia are suspected to relate to impaired language production, but this is yet to be reliably characterized. Since heterogeneity in language dysfunctions, as well as brain structure, is suspected in schizophrenia, we aimed to first seek patient subgroups with different neurobiological signatures and then quantify linguistic indices that capture the symptoms of "negative formal thought disorder" (i.e., fluency, cohesion, and complexity of language production). Methods Atlas-based cortical thickness values (obtained with a 7T MRI scanner) of 66 patients with first-episode psychosis and 36 healthy controls were analyzed with hierarchical clustering algorithms to produce neuroanatomical subtypes. We then examined the generated subtypes and investigated the quantitative differences in MRS-based glutamate levels [in the dorsal anterior cingulate cortex (dACC)] as well as in three aspects of language production features: fluency, syntactic complexity, and lexical cohesion. Results Two neuroanatomical subtypes among patients were observed, one with near-normal cortical thickness patterns while the other with widespread cortical thinning. Compared to the subgroup of patients with relatively normal cortical thickness patterns, the subgroup with widespread cortical thinning was older, with higher glutamate concentration in dACC and produced speech with reduced mean length of T-units (complexity) and lower repeats of content words (lexical cohesion), despite being equally fluent (number of words). Conclusion We characterized a patient subgroup with thinner cortex in first-episode psychosis. This subgroup, identifiable through macroscopic changes, is also distinguishable in terms of neurochemistry (frontal glutamate) and language behavior (complexity and cohesion of speech). This study supports the hypothesis that glutamate-mediated cortical thinning may contribute to a phenotype that is detectable using the tools of computational linguistics in schizophrenia.
Collapse
Affiliation(s)
- Liangbing Liang
- Graduate Program in Neuroscience, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | | | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Sabrina D. Ford
- Robarts Research Institute, Western University, London, ON, Canada
- London Health Sciences Centre, Victoria Hospital, London, ON, Canada
| | - Michael MacKinley
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Girard JM, Vail AK, Liebenthal E, Brown K, Kilciksiz CM, Pennant L, Liebson E, Öngür D, Morency LP, Baker JT. Computational analysis of spoken language in acute psychosis and mania. Schizophr Res 2022; 245:97-115. [PMID: 34456131 PMCID: PMC8881587 DOI: 10.1016/j.schres.2021.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study aimed to (1) determine the feasibility of collecting behavioral data from participants hospitalized with acute psychosis and (2) begin to evaluate the clinical information that can be computationally derived from such data. METHODS Behavioral data was collected across 99 sessions from 38 participants recruited from an inpatient psychiatric unit. Each session started with a semi-structured interview modeled on a typical "clinical rounds" encounter and included administration of the Positive and Negative Syndrome Scale (PANSS). ANALYSIS We quantified aspects of participants' verbal behavior during the interview using lexical, coherence, and disfluency features. We then used two complementary approaches to explore our second objective. The first approach used predictive models to estimate participants' PANSS scores from their language features. Our second approach used inferential models to quantify the relationships between individual language features and symptom measures. RESULTS Our predictive models showed promise but lacked sufficient data to achieve clinically useful accuracy. Our inferential models identified statistically significant relationships between numerous language features and symptom domains. CONCLUSION Our interview recording procedures were well-tolerated and produced adequate data for transcription and analysis. The results of our inferential modeling suggest that automatic measurements of expressive language contain signals highly relevant to the assessment of psychosis. These findings establish the potential of measuring language during a clinical interview in a naturalistic setting and generate specific hypotheses that can be tested in future studies. This, in turn, will lead to more accurate modeling and better understanding of the relationships between expressive language and psychosis.
Collapse
Affiliation(s)
- Jeffrey M. Girard
- Department of Psychology, University of Kansas, Lawrence, Kansas, USA
| | - Alexandria K. Vail
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Einat Liebenthal
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Katrina Brown
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA
| | - Can Misel Kilciksiz
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA
| | - Luciana Pennant
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA
| | - Elizabeth Liebson
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Dost Öngür
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Louis-Philippe Morency
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Justin T. Baker
- Division of Psychotic Disorders, McLean Hospital, Belmont, Massachusetts, USA,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA,Corresponding author. (Justin T. Baker)
| |
Collapse
|
37
|
Automatic language analysis identifies and predicts schizophrenia in first-episode of psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:53. [PMID: 35853943 PMCID: PMC9261086 DOI: 10.1038/s41537-022-00259-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/18/2022] [Indexed: 12/22/2022]
Abstract
Automated language analysis of speech has been shown to distinguish healthy control (HC) vs chronic schizophrenia (SZ) groups, yet the predictive power on first-episode psychosis patients (FEP) and the generalization to non-English speakers remain unclear. We performed a cross-sectional and longitudinal (18 months) automated language analysis in 133 Spanish-speaking subjects from three groups: healthy control or HC (n = 49), FEP (n = 40), and chronic SZ (n = 44). Interviews were manually transcribed, and the analysis included 30 language features (4 verbal fluency; 20 verbal productivity; 6 semantic coherence). Our cross-sectional analysis showed that using the top ten ranked and decorrelated language features, an automated HC vs SZ classification achieved 85.9% accuracy. In our longitudinal analysis, 28 FEP patients were diagnosed with SZ at the end of the study. Here, combining demographics, PANSS, and language information, the prediction accuracy reached 77.5% mainly driven by semantic coherence information. Overall, we showed that language features from Spanish-speaking clinical interviews can distinguish HC vs chronic SZ, and predict SZ diagnosis in FEP patients.
Collapse
|
38
|
Progressive changes in descriptive discourse in First Episode Schizophrenia: a longitudinal computational semantics study. NPJ SCHIZOPHRENIA 2022; 8:36. [PMID: 35853894 PMCID: PMC9261094 DOI: 10.1038/s41537-022-00246-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
AbstractComputational semantics, a branch of computational linguistics, involves automated meaning analysis that relies on how words occur together in natural language. This offers a promising tool to study schizophrenia. At present, we do not know if these word-level choices in speech are sensitive to the illness stage (i.e., acute untreated vs. stable established state), track cognitive deficits in major domains (e.g., cognitive control, processing speed) or relate to established dimensions of formal thought disorder. In this study, we collected samples of descriptive discourse in patients experiencing an untreated first episode of schizophrenia and healthy control subjects (246 samples of 1-minute speech; n = 82, FES = 46, HC = 36) and used a co-occurrence based vector embedding of words to quantify semantic similarity in speech. We obtained six-month follow-up data in a subsample (99 speech samples, n = 33, FES = 20, HC = 13). At baseline, semantic similarity was evidently higher in patients compared to healthy individuals, especially when social functioning was impaired; but this was not related to the severity of clinically ascertained thought disorder in patients. Across the study sample, higher semantic similarity at baseline was related to poorer Stroop performance and processing speed. Over time, while semantic similarity was stable in healthy subjects, it increased in patients, especially when they had an increasing burden of negative symptoms. Disruptions in word-level choices made by patients with schizophrenia during short 1-min descriptions are sensitive to interindividual differences in cognitive and social functioning at first presentation and persist over the early course of the illness.
Collapse
|
39
|
Lundin NB, Jones MN, Myers EJ, Breier A, Minor KS. Semantic and phonetic similarity of verbal fluency responses in early-stage psychosis. Psychiatry Res 2022; 309:114404. [PMID: 35066310 PMCID: PMC8863651 DOI: 10.1016/j.psychres.2022.114404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Linguistic abnormalities can emerge early in the course of psychotic illness. Computational tools that quantify similarity of responses in standardized language-based tasks such as the verbal fluency test could efficiently characterize the nature and functional correlates of these disturbances. Participants with early-stage psychosis (n=20) and demographically matched controls without a psychiatric diagnosis (n=20) performed category and letter verbal fluency. Semantic similarity was measured via predicted context co-occurrence in a large text corpus using Word2Vec. Phonetic similarity was measured via edit distance using the VFClust tool. Responses were designated as clusters (related items) or switches (transitions to less related items) using similarity-based thresholds. Results revealed that participants with early-stage psychosis compared to controls had lower fluency scores, lower cluster-related semantic similarity, and fewer switches; mean cluster size and phonetic similarity did not differ by group. Lower fluency semantic similarity was correlated with greater speech disorganization (Communication Disturbances Index), although more strongly in controls, and correlated with poorer social functioning (Global Functioning: Social), primarily in the psychosis group. Findings suggest that search for semantically related words may be impaired soon after psychosis onset. Future work is warranted to investigate the impact of language disturbances on social functioning over the course of psychotic illness.
Collapse
Affiliation(s)
- Nancy B. Lundin
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Michael N. Jones
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, USA
| | - Evan J. Myers
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Eskenazi Midtown Prevention and Recovery Center for Early Psychosis, Indianapolis, IN, USA.
| | - Kyle S. Minor
- Department of Psychology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA; Eskenazi Midtown Prevention and Recovery Center for Early Psychosis, Indianapolis, IN, USA
| |
Collapse
|
40
|
Hitczenko K, Cowan HR, Goldrick M, Mittal VA. Racial and Ethnic Biases in Computational Approaches to Psychopathology. Schizophr Bull 2022; 48:285-288. [PMID: 34729605 PMCID: PMC8886581 DOI: 10.1093/schbul/sbab131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kasia Hitczenko
- Department of Linguistics, Northwestern University, Evanston, IL, USA
| | - Henry R Cowan
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Matthew Goldrick
- Department of Linguistics, Northwestern University, Evanston, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Cuevas P, He Y, Steines M, Straube B. The Processing of Semantic Complexity and Cospeech Gestures in Schizophrenia: A Naturalistic, Multimodal fMRI Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac026. [PMID: 39144758 PMCID: PMC11205911 DOI: 10.1093/schizbullopen/sgac026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Schizophrenia is marked by aberrant processing of complex speech and gesture, which may contribute functionally to its impaired social communication. To date, extant neuroscientific studies of schizophrenia have largely investigated dysfunctional speech and gesture in isolation, and no prior research has examined how the two communicative channels may interact in more natural contexts. Here, we tested if patients with schizophrenia show aberrant neural processing of semantically complex story segments, and if speech-associated gestures (co-speech gestures) might modulate this effect. In a functional MRI study, we presented to 34 participants (16 patients and 18 matched-controls) an ecologically-valid retelling of a continuous story, performed via speech and spontaneous gestures. We split the entire story into ten-word segments, and measured the semantic complexity for each segment with idea density, a linguistic measure that is commonly used clinically to evaluate aberrant language dysfunction at the semantic level. Per segment, the presence of numbers of gestures varied (n = 0, 1, +2). Our results suggest that, in comparison to controls, patients showed reduced activation for more complex segments in the bilateral middle frontal and inferior parietal regions. Importantly, this neural aberrance was normalized in segments presented with gestures. Thus, for the first time with a naturalistic multimodal stimulation paradigm, we show that gestures reduced group differences when processing a natural story, probably by facilitating the processing of semantically complex segments of the story in schizophrenia.
Collapse
Affiliation(s)
- Paulina Cuevas
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Yifei He
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Miriam Steines
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Benjamin Straube
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| |
Collapse
|
42
|
Palaniyappan L. Dissecting the neurobiology of linguistic disorganisation and impoverishment in schizophrenia. Semin Cell Dev Biol 2021; 129:47-60. [PMID: 34507903 DOI: 10.1016/j.semcdb.2021.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia provides a quintessential disease model of how disturbances in the molecular mechanisms of neurodevelopment lead to disruptions in the emergence of cognition. The central and often persistent feature of this illness is the disorganisation and impoverishment of language and related expressive behaviours. Though clinically more prominent, the periodic perceptual distortions characterised as psychosis are non-specific and often episodic. While several insights into psychosis have been gained based on study of the dopaminergic system, the mechanistic basis of linguistic disorganisation and impoverishment is still elusive. Key findings from cellular to systems-level studies highlight the role of ubiquitous, inhibitory processes in language production. Dysregulation of these processes at critical time periods, in key brain areas, provides a surprisingly parsimonious account of linguistic disorganisation and impoverishment in schizophrenia. This review links the notion of excitatory/inhibitory (E/I) imbalance at cortical microcircuits to the expression of language behaviour characteristic of schizophrenia, through the building blocks of neurochemistry, neurophysiology, and neurocognition.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry,University of Western Ontario, London, Ontario, Canada; Robarts Research Institute,University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
43
|
More than a biomarker: could language be a biosocial marker of psychosis? NPJ SCHIZOPHRENIA 2021; 7:42. [PMID: 34465778 PMCID: PMC8408150 DOI: 10.1038/s41537-021-00172-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Automated extraction of quantitative linguistic features has the potential to predict objectively the onset and progression of psychosis. These linguistic variables are often considered to be biomarkers, with a large emphasis placed on the pathological aberrations in the biological processes that underwrite the faculty of language in psychosis. This perspective offers a reminder that human language is primarily a social device that is biologically implemented. As such, linguistic aberrations in patients with psychosis reflect both social and biological processes affecting an individual. Failure to consider the sociolinguistic aspects of NLP measures will limit their usefulness as digital tools in clinical settings. In the context of psychosis, considering language as a biosocial marker could lead to less biased and more accessible tools for patient-specific predictions in the clinic.
Collapse
|
44
|
Silva A, Limongi R, MacKinley M, Palaniyappan L. Small Words That Matter: Linguistic Style and Conceptual Disorganization in Untreated First-Episode Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab010. [PMID: 33937775 PMCID: PMC8072135 DOI: 10.1093/schizbullopen/sgab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed to shed light on the linguistic style affecting the communication discourse in first-episode schizophrenia (FES) by investigating the analytic thinking index in relation to clinical scores of conceptual and thought disorganization (Positive and Negative Syndrome Scale, PANSS-P2 and Thought and Language Index, TLI). Using robust Bayesian modeling, we report three major findings: (1) FES subjects showed reduced analytic thinking, exhibiting a less categorical linguistic style than healthy control (HC) subjects (Bayes factor, BF10 > 1000), despite using the same proportion of function and content words as HCs; (2) the lower the analytic thinking score, the higher the symptoms scores of conceptual disorganization (PANSS-P2, BF = 22.66) and global disorganization of thinking (TLI, BF10 = 112.73); (3) the linguistic style is a better predictor of conceptual disorganization than the cognitive measure of processing speed in schizophrenia (SZ). These findings provide an objectively detectable linguistic style with a focus on Natural Language Processing Analytics of transcribed speech samples of patients with SZ that require no clinical judgment. These findings also offer a crucial insight into the primacy of linguistic structural disruption in clinically ascertained disorganized thinking in SZ. Our work contributes to an emerging body of literature on the psychopathology of SZ using a first-order lexeme-level analysis and a hypothesis-driven approach. At a utilitarian level, this has implications for improving educational and social outcomes in patients with SZ.
Collapse
Affiliation(s)
| | - Roberto Limongi
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Michael MacKinley
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|