1
|
Davis IR, Fisher H, McLean C, Murray J, Pickens CL. Neither Amphetamine nor Sub-Anesthetic Ketamine Treatment during Adolescence Impairs Devaluation in Rats Tested during Adulthood. J Integr Neurosci 2024; 23:83. [PMID: 38682231 PMCID: PMC11068220 DOI: 10.31083/j.jin2304083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking. METHODS We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training. RESULTS Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure. CONCLUSIONS We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.
Collapse
Affiliation(s)
- Ian R. Davis
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Hayley Fisher
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Caitlin McLean
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackson Murray
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Charles L. Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
2
|
Hughes RB, Whittingham-Dowd J, Clapcote SJ, Broughton SJ, Dawson N. Altered medial prefrontal cortex and dorsal raphé activity predict genotype and correlate with abnormal learning behavior in a mouse model of autism-associated 2p16.3 deletion. Autism Res 2022; 15:614-627. [PMID: 35142069 PMCID: PMC9303357 DOI: 10.1002/aur.2685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14C‐2‐deoxyglucose imaging. We also assess performance in an olfactory‐based discrimination and reversal learning (OB‐DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/− mice. Behaviorally, Nrxn1α+/− mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/− mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/− mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/− mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
3
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
4
|
Tanqueiro SR, Mouro FM, Ferreira CB, Freitas CF, Fonseca-Gomes J, Simões do Couto F, Sebastião AM, Dawson N, Diógenes MJ. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. J Psychopharmacol 2021; 35:730-743. [PMID: 34008450 DOI: 10.1177/02698811211008560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cognitive deficits profoundly impact on the quality of life of patients with schizophrenia. Alterations in brain derived neurotrophic factor (BDNF) signalling, which regulates synaptic function through the activation of full-length tropomyosin-related kinase B receptors (TrkB-FL), are implicated in the aetiology of schizophrenia, as is N-methyl-D-aspartate receptor (NMDA-R) hypofunction. However, whether NMDA-R hypofunction contributes to the disrupted BDNF signalling seen in patients remains unknown. AIMS The purpose of this study was to characterise BDNF signalling and function in a preclinical rodent model relevant to schizophrenia induced by prolonged NMDA-R hypofunction. METHODS Using the subchronic phencyclidine (PCP) model, we performed electrophysiology approaches, molecular characterisation and behavioural analysis. RESULTS The data showed that prolonged NMDA-R antagonism, induced by subchronic PCP treatment, impairs long-term potentiation (LTP) and the facilitatory effect of BDNF upon LTP in the medial prefrontal cortex (PFC) of adult mice. Additionally, TrkB-FL receptor expression is decreased in the PFC of these animals. By contrast, these changes were not present in the hippocampus of PCP-treated mice. Moreover, BDNF levels were not altered in the hippocampus or PFC of PCP-treated mice. Interestingly, these observations are paralleled by impaired performance in PFC-dependent cognitive tests in mice treated with PCP. CONCLUSIONS Overall, these data suggest that NMDA-R hypofunction induces dysfunctional BDNF signalling in the PFC, but not in the hippocampus, which may contribute to the PFC-dependent cognitive deficits seen in the subchronic PCP model. Additionally, these data suggest that targeting BDNF signalling may be a mechanism to improve PFC-dependent cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Céline F Freitas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Simões do Couto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Psiquiatria e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Bristow GC, Thomson DM, Openshaw RL, Mitchell EJ, Pratt JA, Dawson N, Morris BJ. 16p11 Duplication Disrupts Hippocampal-Orbitofrontal-Amygdala Connectivity, Revealing a Neural Circuit Endophenotype for Schizophrenia. Cell Rep 2021; 31:107536. [PMID: 32320645 DOI: 10.1016/j.celrep.2020.107536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Chromosome 16p11.2 duplications dramatically increase risk for schizophrenia, but the mechanisms remain largely unknown. Here, we show that mice with an equivalent genetic mutation (16p11.2 duplication mice) exhibit impaired hippocampal-orbitofrontal and hippocampal-amygdala functional connectivity. Expression of schizophrenia-relevant GABAergic cell markers (parvalbumin and calbindin) is selectively decreased in orbitofrontal cortex, while somatostatin expression is decreased in lateral amygdala. When 16p11.2 duplication mice are tested in cognitive tasks dependent on hippocampal-orbitofrontal connectivity, performance is impaired in an 8-arm maze "N-back" working memory task and in a touchscreen continuous performance task. Consistent with hippocampal-amygdala dysconnectivity, deficits in ethologically relevant social behaviors are also observed. Overall, the cellular/molecular, brain network, and behavioral alterations markedly mirror those observed in schizophrenia patients. Moreover, the data suggest that 16p11.2 duplications selectively impact hippocampal-amygdaloid-orbitofrontal circuitry, supporting emerging ideas that dysfunction in this network is a core element of schizophrenia and defining a neural circuit endophenotype for the disease.
Collapse
Affiliation(s)
- Greg C Bristow
- Department of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YW, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow G12 8QQ, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Neil Dawson
- Department of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YW, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow G12 8QQ, UK.
| |
Collapse
|
6
|
Rushmore RJ, McGaughy JA, Amaral AC, Mokler DJ, Morgane PJ, Galler JR, Rosene DL. The neural basis of attentional alterations in prenatally protein malnourished rats. Cereb Cortex 2021; 31:497-512. [PMID: 33099611 PMCID: PMC7947171 DOI: 10.1093/cercor/bhaa239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 11/13/2022] Open
Abstract
Protein malnutrition during gestation alters brain development and produces specific behavioral and cognitive changes that persist into adulthood and increase the risks of neuropsychiatric disorders. Given evidence for the role of the prefrontal cortex in such diseases, it is significant that studies in humans and animal models have shown that prenatal protein malnutrition specifically affects functions associated with prefrontal cortex. However, the neural basis underlying these changes is unclear. In the current study, prenatally malnourished and control rats performed a sustained attention task with an unpredictable distractor, a task that depends on intact prefrontal cortical function. Radiolabeled 2-deoxyglucose was used to measure neural and brain network activity during the task. Results confirmed that adult prenatally malnourished rats were more distractible than controls and exhibited lower functional activity in prefrontal cortices. Thus, prefrontal activity was a predictor of task performance in controls but not prenatally malnourished animals. Instead, prenatally malnourished animals relied on different brain networks involving limbic structures such as the hippocampus. These results provide evidence that protein reduction during brain development has more wide-reaching effects on brain networks than previously appreciated, resulting in the formation of brain networks that may reflect compensatory responses in prenatally malnourished brains.
Collapse
Affiliation(s)
- R J Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH
| | - A C Amaral
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| | - D J Mokler
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - P J Morgane
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - J R Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| |
Collapse
|
7
|
Li J, Yang X, Zhou F, Liu C, Wei Z, Xin F, Daumann B, Daumann J, Kendrick KM, Becker B. Modafinil enhances cognitive, but not emotional conflict processing via enhanced inferior frontal gyrus activation and its communication with the dorsomedial prefrontal cortex. Neuropsychopharmacology 2020; 45:1026-1033. [PMID: 31995813 PMCID: PMC7162953 DOI: 10.1038/s41386-020-0625-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Cognitive control regulates cognitive and emotional systems to facilitate goal-directed behavior in the context of task-irrelevant distractors. Cognitive control deficits contribute to residual functional impairments across psychiatric disorders and represent a promising novel treatment target. Translational evidence suggests that modafinil may enhance performance in executive functions; however, differential effects on regulatory control in cognitive and emotional domains have not been examined. The present pre-registered randomized-controlled pharmacological fMRI trial examined differential effects of modafinil (single-dose, 200 mg) on cognitive and emotional conflict processing. To further separate objective cognitive enhancing effects from subjective performance perception, a metacognitive paradigm was employed. Results indicated that modafinil specifically enhanced cognitive conflict performance and concomitantly increased activation in the inferior frontal gyrus and its functional communication with the dorsomedial prefrontal cortex. Exploratory analysis further revealed modafinil-enhanced basolateral amygdala reactivity to cognitive conflict, with stronger reactivity being associated with higher cognitive conflict performance. Whereas modafinil enhanced cognitive performance in the metacognitive paradigm, confidence indices remained unaffected. Overall, the present results suggest that modafinil has the potential to enhance cognitive conflict processing while leaving emotional conflict processing unaffected. On the neural level modafinil enhanced the recruitment of a network engaged in general conflict and regulatory control processes, whereas effects on the amygdala may reflect improved arousal-mediated attention processes for conflicting information. The pattern of cognitive enhancing effects in the absence of effects on affective processing suggests a promising potential to enhance cognitive control in clinical populations.
Collapse
Affiliation(s)
- Jialin Li
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Congcong Liu
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenyu Wei
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xin
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Jörg Daumann
- 0000 0000 8580 3777grid.6190.eDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Keith M. Kendrick
- 0000 0004 0369 4060grid.54549.39The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
B Hughes R, Whittingham-Dowd J, Simmons RE, Clapcote SJ, Broughton SJ, Dawson N. Ketamine Restores Thalamic-Prefrontal Cortex Functional Connectivity in a Mouse Model of Neurodevelopmental Disorder-Associated 2p16.3 Deletion. Cereb Cortex 2020; 30:2358-2371. [PMID: 31812984 PMCID: PMC7175007 DOI: 10.1093/cercor/bhz244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic "rich club" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic "rich club" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Rachel E Simmons
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
9
|
Pytka K, Dawson N, Tossell K, Ungless MA, Plevin R, Brett RR, Bushell TJ. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur J Neurosci 2020; 52:2838-2852. [PMID: 31989721 DOI: 10.1111/ejn.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present.
Collapse
Affiliation(s)
- Karolina Pytka
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Neil Dawson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ros R Brett
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
10
|
Openshaw RL, Thomson DM, Thompson R, Penninger JM, Pratt JA, Morris BJ, Dawson N. Map2k7 Haploinsufficiency Induces Brain Imaging Endophenotypes and Behavioral Phenotypes Relevant to Schizophrenia. Schizophr Bull 2020; 46:211-223. [PMID: 31219577 PMCID: PMC6942167 DOI: 10.1093/schbul/sbz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
c-Jun N-terminal kinase (JNK) signaling contributes to functional plasticity in the brain and cognition. Accumulating evidence implicates a role for MAP kinase kinase 7 (MAP2K7), a JNK activator encoded by the Map2k7 gene, and other JNK pathway components in schizophrenia (ScZ). Mice haploinsufficient for Map2k7 (Map2k7+/- mice) display ScZ-relevant cognitive deficits, although the mechanisms are unclear. Here we show that Map2k7+/- mice display translationally relevant alterations in brain function, including hippocampal and mesolimbic system hypermetabolism with a contrasting prefrontal cortex (PFC) hypometabolism, reminiscent of patients with ScZ. In addition Map2k7+/- mice show alterations in functional brain network connectivity paralleling those reported in early ScZ, including PFC and hippocampal hyperconnectivity and compromised mesolimbic system functional connectivity. We also show that although the cerebral metabolic response to ketamine is preserved, the response to dextroamphetamine (d-amphetamine) is significantly attenuated in Map2k7+/- mice, supporting monoamine neurotransmitter system dysfunction but not glutamate/NMDA receptor (NMDA-R) dysfunction as a consequence of Map2k7 haploinsufficiency. These effects are mirrored behaviorally with an attenuated impact of d-amphetamine on sensorimotor gating and locomotion, whereas similar deficits produced by ketamine are preserved, in Map2k7+/- mice. In addition, Map2k7+/- mice show a basal hyperactivity and sensorimotor gating deficit. Overall, these data suggest that Map2k7 modifies brain and monoamine neurotransmitter system function in a manner relevant to the positive and cognitive symptoms of ScZ.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Rhiannon Thompson
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Josef M Penninger
- Institute for Molecular Biotechnology of Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK,To whom correspondence should be addressed; tel: +44 (0)1524 594 896, e-mail:
| |
Collapse
|
11
|
Ortiz‐Orendain J, Covarrubias‐Castillo SA, Vazquez‐Alvarez AO, Castiello‐de Obeso S, Arias Quiñones GE, Seegers M, Colunga‐Lozano LE. Modafinil for people with schizophrenia or related disorders. Cochrane Database Syst Rev 2019; 12:CD008661. [PMID: 31828767 PMCID: PMC6906203 DOI: 10.1002/14651858.cd008661.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND People with schizophrenia have a range of different symptoms, including positive symptoms (hallucinations and delusions), negative symptoms (such as social withdrawal and lack of affect), and cognitive impairment. The standard medication for people with schizophrenia is antipsychotics. However, these medications may not be effective for all symptoms of schizophrenia, as cognitive and negative symptoms are usually hard to treat. Additional therapies or medications are available for the management of these symptoms. Modafinil, a wakefulness-promoting agent most frequently used in narcolepsy or shift work sleep disorder, is one intervention that is theorised to have an effect of these symptoms. OBJECTIVES The primary objective of this review was to assess the effects of modafinil for people with schizophrenia or related disorders. SEARCH METHODS On 27 April 2015, 24 May 2017, and 31 October 2019, we searched the Cochrane Schizophrenia Group's register of trials, which is based on regular searches of CENTRAL, MEDLINE, Embase, AMED, BIOSIS, CINAHL, PsycINFO, PubMed, and registries of clinical trials. There are no language, time, document type, or publication status limitations for the inclusion of records in the register. SELECTION CRITERIA We selected all randomised controlled trials comparing modafinil with placebo or other treatments for people with schizophrenia or schizophrenia-spectrum disorders. DATA COLLECTION AND ANALYSIS We independently extracted data from the included studies. We analysed dichotomous data using risk ratios (RR) and 95% confidence intervals (CI). We analysed continuous data using mean difference (MD) with a 95% CI. We used a random-effects model for the meta-analysis. We used GRADE to complete a 'Summary of findings' table and assessed risk of bias for the included studies. MAIN RESULTS Eleven studies including a total of 422 participants contributed to data analyses. Most studies had a small population size (average 38 people per study) and were of short duration. We also detected a high risk of bias for selective outcome reporting in just under 50% of the trials. We therefore rated the overall methodological quality of the included studies as low. We considered seven main outcomes of interest: clinically important change in overall mental state, clinically important change in cognitive functioning, incidence of a clinically important adverse effect/event, clinically important change in global state, leaving the study early for any reason, clinically important change in quality of life, and hospital admission. All studies assessed the effects of adding modafinil to participants' usual antipsychotic treatment compared to adding placebo to usual antipsychotic treatment. Six studies found that adding modafinil to antipsychotic treatment may have little or no effect on overall mental state of people with schizophrenia, specifically the risk of worsening psychosis (RR 0.91, 95% CI 0.28 to 2.98; participants = 209; studies = 6, low-quality evidence). Regarding the effect of modafinil on cognitive function, the trials did not report clinically important change data, but one study reported endpoint scores on the MATRICS Consensus Cognitive Battery (MCCB): in this study we found no clear difference in scores between modafinil and placebo treatment groups (MD -3.10, 95% CI -10.9 to 4.7; participants = 48; studies = 1, very low-quality evidence). Only one study (N = 35) reported adverse effect/event data. In this study one serious adverse event occurred in each group (RR 0.84, 95% CI 0.06 to 12.42; participants = 35; studies = 1, very low-quality evidence). One study measured change in global state using the Clinical Global Impression - Improvement Scale. This study found that adding modafinil to antipsychotic treatment may have little or no effect on global state (RR 6.36, 95% CI 0.94 to 43.07, participants = 21; studies = 1, very low-quality evidence). Nine studies found that modafinil has no effect on numbers of participants leaving the study early (RR 1.26, 95% CI 0.63 to 2.52 participants = 357; studies = 9, moderate-quality evidence). None of the trials reported clinically important change in quality of life, but one study did report quality of life using endpoint scores on the Quality of Life Inventory, finding no clear difference between treatment groups (MD -0.2, 95% CI -1.18 to 0.78; participants = 20; studies = 1, very low-quality evidence). Finally, one study reported data for number of participants needing hospitalisation: one participant in each group was hospitalised (RR 0.84, 95% CI 0.06 to 12.42; participants = 35; studies = 1, very low-quality evidence). AUTHORS' CONCLUSIONS Due to methodological issues, low sample size, and short duration of the clinical trials as well as high risk of bias for outcome reporting, most of the evidence available for this review is of very low or low quality. For results where quality is low or very low, we are uncertain or very uncertain if the effect estimates are true effects, limiting our conclusions. Specifically, we found that modafinil is no better or worse than placebo at preventing worsening of psychosis; however, we are uncertain about this result. We have more confidence that participants receiving modafinil are no more likely to leave a trial early than participants receiving placebo. However, we are very uncertain about the remaining equivocal results between modafinil and placebo for outcomes such as improvement in global state or cognitive function, incidence of adverse events, and changes in quality of life. More high-quality data are needed before firm conclusions regarding the effects of modafinil for people with schizophrenia or related disorders can be made.
Collapse
Affiliation(s)
- Javier Ortiz‐Orendain
- Mayo ClinicDepartment of Psychiatry and Psychology200 First Street SWRochesterMinnesotaUSA55905
| | - Sergio A. Covarrubias‐Castillo
- Hospital Civil de Guadalajara "Fray Antonio Alcalde"Department of PsychiatryHospital 278. El RetiroGuadalajaraJaliscoMexico44280
| | - Alan Omar Vazquez‐Alvarez
- Health Sciences University Center, University of GuadalajaraInstitute of Experimental and Clinical Therapeutics, Department of PhysiologyGuadalajaraJaliscoMexico
| | - Santiago Castiello‐de Obeso
- Western Institute of Technology and Higher Education (ITESO)Psychophysiology Laboratory#8585 Anillo Perif. Sur Manuel Gómez MorínCol. Santa María TequepexpanGuadalajaraJaliscoMexico45604
| | - Gustavo E Arias Quiñones
- University of GuadalajaraDepartment of Neurosurgery. Hospital Civil "Fray Antonio Alcalde"Hospital 278. El RetiroGuadalajaraJaliscoMexico44340
| | - Maya Seegers
- Ben Gurion UniversityMedical School for International HealthNew YorkUSA
| | - Luis Enrique Colunga‐Lozano
- McMaster UniversityDepartments of Health Research Methods, Evidence, and Impact1280 Main Street WestHamiltonOntarioCanadaL8S 4L8
| | | |
Collapse
|
12
|
Mouro FM, Ribeiro JA, Sebastião AM, Dawson N. Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. J Neurochem 2018; 147:71-83. [PMID: 29989183 PMCID: PMC6220860 DOI: 10.1111/jnc.14549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through 14 C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.
Collapse
Affiliation(s)
- Francisco M. Mouro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Joaquim A. Ribeiro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Ana M. Sebastião
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Neil Dawson
- Division of Biomedical and Life SciencesUniversity of LancasterLancashireUK
| |
Collapse
|
13
|
Vodovar D, Duchêne A, Wimberley C, Leroy C, Pottier G, Dauvilliers Y, Giaume C, Lin JS, Mouthon F, Tournier N, Charvériat M. Cortico-Amygdala-Striatal Activation by Modafinil/Flecainide Combination. Int J Neuropsychopharmacol 2018; 21:687-696. [PMID: 29635319 PMCID: PMC6031015 DOI: 10.1093/ijnp/pyy027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Modafinil, a nonamphetaminic wake-promoting compound, is prescribed as first line therapy in narcolepsy, an invalidating disorder characterized by excessive daytime sleepiness and cataplexy. Although its mode of action remains incompletely known, recent studies indicated that modafinil modulates astroglial connexin-based gap junctional communication as administration of a low dose of flecainide, an astroglial connexin inhibitor, enhanced the wake-promoting and procognitive activity of modafinil in rodents and healthy volunteers. The aim of this study is to investigate changes in glucose cerebral metabolism in rodents, induced by the combination of modafinil+flecainide low dose (called THN102). Methods The impact of THN102 on brain glucose metabolism was noninvasively investigated using 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography imaging in Sprague-Dawley male rats. Animals were injected with vehicle, flecainide, modafinil, or THN102 and further injected with 18F-2-fluoro-2-deoxy-D-glucose followed by 60-minute Positron Emission Tomography acquisition. 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography images were coregistered to a rat brain template and normalized from the total brain Positron Emission Tomography signal. Voxel-to-voxel analysis was performed using SPM8 software. Comparison of brain glucose metabolism between groups was then performed. Results THN102 significantly increased regional brain glucose metabolism as it resulted in large clusters of 18F-2-fluoro-2-deoxy-D-glucose uptake localized in the cortex, striatum, and amygdala compared with control or drugs administered alone. These regions, highly involved in the regulation of sleep-wake cycle, emotions, and cognitive functions were hence quantitatively modulated by THN102. Conclusion Data presented here provide the first evidence of a regional brain activation induced by THN102, currently being tested in a phase II clinical trial in narcoleptic patients.
Collapse
Affiliation(s)
- Dominique Vodovar
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | | | - Catriona Wimberley
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Claire Leroy
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Géraldine Pottier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | - Yves Dauvilliers
- National Reference Centre for Narcolepsy, CHU Montpellier, INSERM, France
| | - Christian Giaume
- Collège de France, Centre for Interdisciplinary Research in Biology, Paris, France
| | - Jian-Sheng Lin
- Laboratory WAKING, CRNL-INSERM U1028-CNRS UMR 5292-UCBL, Lyon, France
| | | | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Univ. Paris Saclay, CEA-SHFJ, Orsay, France
| | | |
Collapse
|
14
|
Yamazaki M, Yamamoto N, Yarimizu J, Okabe M, Moriyama A, Furutani M, Marcus MM, Svensson TH, Harada K. Functional mechanism of ASP5736, a selective serotonin 5-HT 5A receptor antagonist with potential utility for the treatment of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 2018; 28:620-629. [PMID: 29571967 DOI: 10.1016/j.euroneuro.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
The 5-HT5A receptor is arguably the least understood 5-HT receptor. Despite widespread expression in human and rodent brains it lacks specific ligands. Our previous results suggest that 5-HT5A receptor antagonists may be effective against cognitive impairment in schizophrenia. In this study, using behavioral, immunohistochemical, electrophysiological and microdialysis techniques, we examined the mechanism by which ASP5736, a novel and selective 5-HT5A receptor antagonist, exerts a positive effect in animal models of cognitive impairment. We first confirmed the effect of ASP5736 on cognitive deficits in rats treated subchronically with phencyclidine hydrochloride (PCP) using an attentional set shifting task. Subsequently, we identified 5-HT5A receptors in dopaminergic (DAergic) neurons and parvalbumin (PV)-positive interneurons in the ventral tegmental area (VTA) and in PV-positive interneurons in the medial prefrontal cortex (mPFC). Burst firing of the DAergic cells in the parabrachial pigmental nucleus (PBP) in the VTA, which predominantly project to the mPFC, was significantly enhanced by treatment with ASP5736. In contrast, ASP5736 exerted no significant effect on either the firing rate or burst firing in the DA cells in the paranigral nucleus (PN), that project to the nucleus accumbens (N. Acc.). ASP5736 increased the release of DA and gamma-aminobutyric acid (GABA) in the mPFC of subchronically PCP-treated rats. These results support our hypothesis that ASP5736 might block the inhibitory 5-HT5A receptors on DAergic neurons in the VTA that project to the mPFC, and interneurons in the mPFC, and thereby improve cognitive impairment by preferentially enhancing DAergic and GABAergic neurons in the mPFC.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Noriyuki Yamamoto
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Junko Yarimizu
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Mayuko Okabe
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Ai Moriyama
- Analysis & Pharmacokinetics Research, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masako Furutani
- Analysis & Pharmacokinetics Research, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Katsuya Harada
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
15
|
Pratt JA, Morris B, Dawson N. Deconstructing Schizophrenia: Advances in Preclinical Models for Biomarker Identification. Curr Top Behav Neurosci 2018; 40:295-323. [PMID: 29721851 DOI: 10.1007/7854_2018_48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Schizophrenia is considered to develop as a consequence of genetic and environmental factors impacting on brain neural systems and circuits during vulnerable neurodevelopmental periods, thereby resulting in symptoms in early adulthood. Understanding of the impact of schizophrenia risk factors on brain biology and behaviour can help in identifying biologically relevant pathways that are attractive for informing clinical studies and biomarker development. In this chapter, we emphasize the importance of adopting a reciprocal forward and reverse translation approach that is iteratively updated when additional new information is gained, either preclinically or clinically, for offering the greatest opportunity for discovering panels of biomarkers for the diagnosis, prognosis and treatment of schizophrenia. Importantly, biomarkers for identifying those at risk may inform early intervention strategies prior to the development of schizophrenia.Given the emerging nature of this approach in the field, this review will highlight recent research of preclinical biomarkers in schizophrenia that show the most promise for informing clinical needs with an emphasis on relevant imaging, electrophysiological, cognitive behavioural and biochemical modalities. The implementation of this reciprocal translational approach is exemplified firstly by the production and characterization of preclinical models based on the glutamate hypofunction hypothesis, genetic and environmental risk factors for schizophrenia (reverse translation), and then the recent clinical recognition of the thalamic reticular thalamus (TRN) as an important locus of brain dysfunction in schizophrenia as informed by preclinical findings (forward translation).
Collapse
Affiliation(s)
- Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Brian Morris
- Institute of Neuroscience and Psychology, College of Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
16
|
Han J, Chen D, Liu D, Zhu Y. Modafinil attenuates inflammation via inhibiting Akt/NF-κB pathway in apoE-deficient mouse model of atherosclerosis. Inflammopharmacology 2017; 26:385-393. [PMID: 28828622 DOI: 10.1007/s10787-017-0387-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Modafinil, an FDA approved wakefulness drug prescribed to narcolepsy patients, has recently been shown to have anti-inflammatory effects and provides protection against neuroinflammation. It is unknown if modafinil can also protect against atherosclerosis, pathogenesis of which implicates inflammation. Using an apoE-deficient mouse model, we tried to elucidate the effects of modafinil treatment on the development of atherosclerosis. We tested serum levels of cytokines. We isolated mouse bone marrow-derived macrophages (BMDMs), detected effect of modafinil on the viability and proliferation of BMDMs, and on oxidized low-density lipoprotein-induced IL-6 and TNF-α, and supernatant level of IFN-γ as well as NF-κB activity in BMDMs. Modafinil inhibited the development of atherosclerosis in apoE-/- mice. Modafinil suppressed the secretion of pro-inflammatory cytokines IL-6, TNF and IFN-γ, and promoted secretion of anti-inflammatory cytokines IL-4 and IL-10. Modafinil inhibited viability and proliferation of macrophages by negatively regulating levels of pro-inflammatory cytokines, p-Akt, p-IKBα and NF-κB activity in macrophages. Modafinil mitigates inflammation in apoE-/- atherosclerosis mice via inhibiting NF-κB activity in macrophages, and could potentially serve as a therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Jinxia Han
- Department of Cardiology, Daqing Oil Field General Hospital, NO. 9 Saertu District, Daqing, 163000, Heilongjiang, China.
| | - Dongwei Chen
- Department of Geriatrics, Daqing Longnan Hospital, NO. 35 Patriotic Road, Ranghulu District, Daqing, 163000, Heilongjiang, China
| | - Dayi Liu
- Department of Cardiology, Daqing Oil Field General Hospital, NO. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| | - Yanan Zhu
- Department of Cardiology, Daqing Oil Field General Hospital, NO. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| |
Collapse
|
17
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
18
|
Punzi M, Gili T, Petrosini L, Caltagirone C, Spalletta G, Sensi SL. Modafinil-Induced Changes in Functional Connectivity in the Cortex and Cerebellum of Healthy Elderly Subjects. Front Aging Neurosci 2017; 9:85. [PMID: 28424611 PMCID: PMC5371677 DOI: 10.3389/fnagi.2017.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
In the past few years, cognitive enhancing drugs (CEDs) have gained growing interest and the focus of investigations aimed at exploring their use to potentiate the cognitive performances of healthy individuals. Most of this exploratory CED-related research has been performed on young adults. However, CEDs may also help to maintain optimal brain functioning or compensate for subtle and or subclinical deficits associated with brain aging or early-stage dementia. In this study, we assessed effects on resting state brain activity in a group of healthy elderly subjects undergoing acute administration of modafinil, a wakefulness-promoting agent. To that aim, participants (n = 24) were investigated with resting state functional Magnetic Resonance Imaging (rs-fMRI) before and after the administration of a single dose (100 mg) of modafinil. Effects were compared to age and size-matched placebo group. Rs-fMRI effects were assessed, employing a graph-based approach and Eigenvector Centrality (EC) analysis, by taking in account topological changes occurring in functional brain networks. The main finding of the study is that modafinil promotes enhanced centrality, a measure of the importance of nodes within functional networks, of the bilateral primary visual (V1) cortex. EC analysis also revealed that modafinil-treated subjects show increased functional connectivity between the V1 and specific cerebellar (Crus I, Crus II, VIIIa lobule) and frontal (right inferior frontal sulcus and left middle frontal gyrus) regions. Present findings provide functional data supporting the hypothesis that modafinil can modulate the cortico-cerebellar connectivity of the aging brain.
Collapse
Affiliation(s)
- Miriam Punzi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy.,Molecular Neurology Unit, Center of Excellence on Aging and Translational Medicine (Ce.S.I.-Me.T.), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Tommaso Gili
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico FermiRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Laura Petrosini
- Santa Lucia FoundationRome, Italy.,Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of RomeRome, Italy
| | - Carlo Caltagirone
- Santa Lucia FoundationRome, Italy.,Department of Medicine of Systems, University of Rome Tor VergataRome, Italy
| | | | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy.,Molecular Neurology Unit, Center of Excellence on Aging and Translational Medicine (Ce.S.I.-Me.T.), "G. d'Annunzio" University of Chieti-PescaraChieti, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California, Irvine, IrvineCA, USA
| |
Collapse
|
19
|
Subchronic anesthetic ketamine injections in rats impair choice reversal learning, but have no effect on reinforcer devaluation. Behav Pharmacol 2017; 28:294-302. [PMID: 28118210 DOI: 10.1097/fbp.0000000000000289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous exposure to a variety of drugs of abuse has been shown to cause long-term impairments in reversal learning and reinforcer devaluation tasks. However, there is mixed evidence in the literature for a long-term effect of ketamine exposure on reversal learning and the long-term effect of ketamine exposure on devaluation is not known. We determined whether repeated injections of an anesthetic dose of ketamine would lead to impairments in choice reversal learning after discrimination learning or impairments in reinforcer devaluation. In two experiments, rats received three injections once-daily of ketamine (100 mg/kg, intraperitoneally) or saline and then began behavioral training 19 days later so that the key reversal learning and devaluation tests would occur about 1 month after the final ketamine injection. This ketamine exposure regimen did not impair learning in our discrimination task, but led to an increase in perseverative errors in reversal learning. However, the same ketamine exposure regimen (or injections of a lower 50 mg/kg dose) had no effect on behavior in the devaluation task. The behavioral patterns observed suggest possible neural mechanisms for the effects of ketamine, but future neurobiological investigations will be needed to isolate these mechanisms.
Collapse
|
20
|
Janhunen SK, Svärd H, Talpos J, Kumar G, Steckler T, Plath N, Lerdrup L, Ruby T, Haman M, Wyler R, Ballard TM. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia. Psychopharmacology (Berl) 2015; 232:4059-83. [PMID: 26070547 DOI: 10.1007/s00213-015-3954-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-D-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals. OBJECTIVES The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks. METHODS Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination. RESULTS Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation. CONCLUSIONS The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.
Collapse
Affiliation(s)
- Sanna K Janhunen
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland.
| | - Heta Svärd
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland
| | - John Talpos
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Gaurav Kumar
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Niels Plath
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Linda Lerdrup
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Trine Ruby
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Marie Haman
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger Wyler
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Theresa M Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
21
|
McAllister KAL, Mar AC, Theobald DE, Saksida LM, Bussey TJ. Comparing the effects of subchronic phencyclidine and medial prefrontal cortex dysfunction on cognitive tests relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26194915 DOI: 10.1007/s00213-015-4018-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE It is becoming increasingly clear that the development of treatments for cognitive symptoms of schizophrenia requires urgent attention, and that valid animal models of relevant impairments are required. With subchronic psychotomimetic agent phencyclidine (scPCP), a putative model of such impairment, the extent to which changes following scPCP do or do not resemble those following dysfunction of the prefrontal cortex is of importance. OBJECTIVES The present study carried out a comparison of the most common scPCP dosing regimen with excitotoxin-induced medial prefrontal cortex (mPFC) dysfunction in rats, across several cognitive tests relevant to schizophrenia. METHODS ScPCP subjects were dosed intraperitoneal with 5 mg/kg PCP or vehicle twice daily for 1 week followed by 1 week washout prior to behavioural testing. mPFC dysfunction was induced via fibre-sparing excitotoxin infused into the pre-limbic and infralimbic cortex. Subjects were tested on spontaneous novel object recognition, touchscreen object-location paired-associates learning and touchscreen reversal learning. RESULTS A double-dissociation was observed between object-location paired-associates learning and object recognition: mPFC dysfunction impaired acquisition of the object-location task but not spontaneous novel object recognition, while scPCP impaired spontaneous novel object recognition but not object-location associative learning. Both scPCP and mPFC dysfunction resulted in a similar facilitation of reversal learning. CONCLUSIONS The pattern of impairment following scPCP raises questions around its efficacy as a model of cognitive impairment in schizophrenia, particularly if importance is placed on faithfully replicating the effects of mPFC dysfunction.
Collapse
Affiliation(s)
- K A L McAllister
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK. .,, 20 Manchester Sq., London, W1U 3PZ, UK.
| | - A C Mar
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - D E Theobald
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- University of Cambridge Department of Psychology, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
22
|
Michalopoulou PG, Lewis SW, Drake RJ, Reichenberg A, Emsley R, Kalpakidou AK, Lees J, Bobin T, Gilleen JK, Pandina G, Applegate E, Wykes T, Kapur S. Modafinil combined with cognitive training: pharmacological augmentation of cognitive training in schizophrenia. Eur Neuropsychopharmacol 2015; 25:1178-89. [PMID: 25921551 DOI: 10.1016/j.euroneuro.2015.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/20/2015] [Accepted: 03/22/2015] [Indexed: 01/10/2023]
Abstract
Several efforts to develop pharmacological treatments with a beneficial effect on cognition in schizophrenia are underway, while cognitive remediation has shown modest effects on cognitive performance. Our goal was to test if pharmacological augmentation of cognitive training would result in enhancement of training-induced learning. We chose modafinil as the pharmacological augmenting agent, as it is known to have beneficial effects on learning and cognition. 49 participants with chronic schizophrenia were enroled in a double-blind, placebo-controlled study across two sites and were randomised to either modafinil (200mg/day) or placebo. All participants engaged in a cognitive training program for 10 consecutive weekdays. The primary outcome measure was the performance on the trained tasks and secondary outcome measures included MATRICS cognitive battery, proxy measures of everyday functioning and symptom measures. 84% of the participants completed all study visits. Both groups showed significant improvement in the performance of the trained tasks suggesting potential for further learning. Modafinil did not induce differential enhancement on the performance of the trained tasks or any differential enhancement of the neuropsychological and functional measures compared to placebo. Modafinil showed no significant effects on symptom severity. Our study demonstrated that combining pharmacological compounds with cognitive training is acceptable to patients and can be implemented in large double-blind randomised controlled trials. The lack of differential enhancement of training-induced learning raises questions, such as choice and optimal dose of drug, cognitive domains to be trained, type of cognitive training, intervention duration and chronicity of illness that require systematic investigation in future studies.
Collapse
Affiliation(s)
- Panayiota G Michalopoulou
- Section on Schizophrenia, Imaging and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, PO Box 053, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Shôn W Lewis
- Institute of Brain, Behaviour and Mental Health, University of Manchester, UK
| | - Richard J Drake
- Institute of Brain, Behaviour and Mental Health, University of Manchester, UK
| | - Abraham Reichenberg
- Icahn School of Medicine, Mount Sinai, New York, USA; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, UK
| | - Richard Emsley
- Institute of Population Health, University of Manchester, UK
| | - Anastasia K Kalpakidou
- Section on Schizophrenia, Imaging and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, PO Box 053, 16 De Crespigny Park, London SE5 8AF, UK
| | - Jane Lees
- Institute of Brain, Behaviour and Mental Health, University of Manchester, UK
| | - Tracey Bobin
- Section on Schizophrenia, Imaging and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, PO Box 053, 16 De Crespigny Park, London SE5 8AF, UK
| | - James K Gilleen
- Section on Schizophrenia, Imaging and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, PO Box 053, 16 De Crespigny Park, London SE5 8AF, UK
| | | | - Eve Applegate
- Institute of Brain, Behaviour and Mental Health, University of Manchester, UK
| | - Til Wykes
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, UK
| | - Shitij Kapur
- Section on Schizophrenia, Imaging and Therapeutics, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, PO Box 053, 16 De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
23
|
Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1. Transl Psychiatry 2015; 5:e569. [PMID: 25989143 PMCID: PMC4471291 DOI: 10.1038/tp.2015.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 02/08/2023] Open
Abstract
Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity.
Collapse
|
24
|
Dawson N, Morris BJ, Pratt JA. Functional brain connectivity phenotypes for schizophrenia drug discovery. J Psychopharmacol 2015; 29:169-77. [PMID: 25567554 DOI: 10.1177/0269881114563635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While our knowledge of the pathophysiology of schizophrenia has increased dramatically, this has not translated into the development of new and improved drugs to treat this disorder. Human brain imaging and electrophysiological studies have provided dramatic new insight into the mechanisms of brain dysfunction in the disease, with a swathe of recent studies highlighting the differences in functional brain network and neural system connectivity present in the disorder. Only recently has the value of applying these approaches in preclinical rodent models relevant to the disorder started to be recognised. Here we highlight recent findings of altered functional brain connectivity in preclinical rodent models and consider their relevance to those alterations seen in the brains of schizophrenia patients. Furthermore, we highlight the potential translational value of using the paradigm of functional brain connectivity phenotypes in the context of preclinical schizophrenia drug discovery, as a means both to understand the mechanisms of brain dysfunction in the disorder and to reduce the current high attrition rate in schizophrenia drug discovery.
Collapse
Affiliation(s)
- Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, School of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Young JW, Geyer MA. Developing treatments for cognitive deficits in schizophrenia: the challenge of translation. J Psychopharmacol 2015; 29:178-96. [PMID: 25516372 PMCID: PMC4670265 DOI: 10.1177/0269881114555252] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a life-long debilitating mental disorder affecting tens of millions of people worldwide. The serendipitous discovery of antipsychotics focused pharmaceutical research on developing a better antipsychotic. Our understanding of the disorder has advanced however, with the knowledge that cognitive enhancers are required for patients in order to improve their everyday lives. While antipsychotics treat psychosis, they do not enhance cognition and hence are not antischizophrenics. Developing pro-cognitive therapeutics has been extremely difficult, however, especially when no approved treatment exists. In lieu of stumbling on an efficacious treatment, developing targeted compounds can be facilitated by understanding the neural mechanisms underlying altered cognitive functioning in patients. Equally importantly, these cognitive domains will need to be measured similarly in animals and humans so that novel targets can be tested prior to conducting expensive clinical trials. To date, the limited similarity of testing across species has resulted in a translational bottleneck. In this review, we emphasize that schizophrenia is a disorder characterized by abnormal cognitive behavior. Quantifying these abnormalities using tasks having cross-species validity would enable the quantification of comparable processes in rodents. This approach would increase the likelihood that the neural substrates underlying relevant behaviors will be conserved across species. Hence, we detail cross-species tasks which can be used to test the effects of manipulations relevant to schizophrenia and putative therapeutics. Such tasks offer the hope of providing a bridge between non-clinical and clinical testing that will eventually lead to treatments developed specifically for patients with deficient cognition.
Collapse
Affiliation(s)
- JW Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - MA Geyer
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
26
|
Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study. PLoS One 2014; 9:e107145. [PMID: 25237810 PMCID: PMC4169531 DOI: 10.1371/journal.pone.0107145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC) and Dorsal Attention (DAN) networks. No changes were found in the Salience Network (SN), a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions. Methodology Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC) of insular subregions. Principal Findings Analysis of FC with resting state fMRI (rs-FMRI) revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group. Conclusions Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action. Trial Registration ClinicalTrials.gov NCT01684306
Collapse
|
27
|
Risk genes for schizophrenia: Translational opportunities for drug discovery. Pharmacol Ther 2014; 143:34-50. [DOI: 10.1016/j.pharmthera.2014.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
|
28
|
Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology 2014; 39:1786-98. [PMID: 24492765 PMCID: PMC4023152 DOI: 10.1038/npp.2014.26] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 01/07/2023]
Abstract
Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia.
Collapse
|
29
|
Brown JW, Rueter LE, Zhang M. Predictive validity of a MK-801-induced cognitive impairment model in mice: implications on the potential limitations and challenges of modeling cognitive impairment associated with schizophrenia preclinically. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:53-62. [PMID: 24269664 DOI: 10.1016/j.pnpbp.2013.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) is a major and disabling symptom domain of the disease that is generally unresponsive to current pharmacotherapies. Critically important to the discovery of novel therapeutics for CIAS is the utilization of preclinical models with robust predictive validity. We investigated the predictive validity of MK-801-induced memory impairments in mouse inhibitory avoidance (MK-IA) as a preclinical model for CIAS by investigating compounds that have been tested in humans, including antipsychotics, sodium channel blocker mood stabilizers, and putative cognitive enhancers. The atypical antipsychotic clozapine, as well as risperidone and olanzapine (see Brown et al., 2013), had no effect on MK-801-induced memory impairments. For sodium channel blockers, carbamazepine significantly attenuated memory impairments induced by MK-801, whereas lamotrigine had no effect. Nicotine, donepezil, modafinil, and xanomeline all significantly attenuated MK-801-induced memory impairments, but the magnitude of effects and the dose-responses observed varied across compounds. Clinically, only acute administration of nicotine has demonstrated consistent positive effects on CIAS, while inconsistent results have been reported for lamotrigine, donepezil, and modafinil; atypical antipsychotics produce only moderate improvements at best. A positive clinical signal has been observed with xanomeline, but only in a small pilot trial. The results presented here suggest that the MK-IA model lacks robust predictive validity for CIAS as the model is likely permissive and may indicate false positive signals for compounds and mechanisms that lack clear clinical efficacy for CIAS. Our findings also highlight the potential limitations and challenges of using NMDA receptor antagonists in rodents to model CIAS.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Min Zhang
- Neuroscience Discovery, AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
30
|
Kasparek T, Prikryl R, Rehulova J, Marecek R, Mikl M, Prikrylova H, Vanicek J, Ceskova E. Brain functional connectivity of male patients in remission after the first episode of schizophrenia. Hum Brain Mapp 2013. [PMID: 23520601 DOI: 10.1002/hbm.21469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Abnormal task-related activation and connectivity is present in schizophrenia. The aim of this study was the analysis of functional networks in schizophrenia patients in remission after the first episode. EXPERIMENTAL DESIGN Twenty-nine male patients in remission after the first episode of schizophrenia and 22 healthy controls underwent examination by functional magnetic resonance during verbal fluency tasks (VFT). The functional connectivity of brain networks was analyzed using independent component analysis. RESULTS The patients showed lower activation of the salience network during VFT. They also showed lower deactivation of the default mode network (DMN) during VFT processing. Spectral analysis of the component time courses showed decreased power in slow frequencies of signal fluctuations in the salience and DMNs and increased power in higher frequencies in the left frontoparietal cortex reflecting higher fluctuations of the network activity. Moreover, there was decreased similarity of component time courses in schizophrenia—the patients had smaller negative correlation between VFT activated and deactivated networks, and smaller positive correlations between DMN subcomponents. CONCLUSIONS There is still an abnormal functional connectivity of several brain networks in remission after the first episode of schizophrenia. The effect of different treatment modalities on brain connectivity, together with temporal dynamics of this functional abnormality should be the objective of further studies to assess its potential as a marker of disease stabilization.
Collapse
Affiliation(s)
- Tomas Kasparek
- Department of Psychiatry, Masaryk University and University hospital Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Esposito R, Cilli F, Pieramico V, Ferretti A, Macchia A, Tommasi M, Saggino A, Ciavardelli D, Manna A, Navarra R, Cieri F, Stuppia L, Tartaro A, Sensi SL. Acute effects of modafinil on brain resting state networks in young healthy subjects. PLoS One 2013; 8:e69224. [PMID: 23935959 PMCID: PMC3723829 DOI: 10.1371/journal.pone.0069224] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background There is growing debate on the use of drugs that promote cognitive enhancement. Amphetamine-like drugs have been employed as cognitive enhancers, but they show important side effects and induce addiction. In this study, we investigated the use of modafinil which appears to have less side effects compared to other amphetamine-like drugs. We analyzed effects on cognitive performances and brain resting state network activity of 26 healthy young subjects. Methodology A single dose (100 mg) of modafinil was administered in a double-blind and placebo-controlled study. Both groups were tested for neuropsychological performances with the Raven’s Advanced Progressive Matrices II set (APM) before and three hours after administration of drug or placebo. Resting state functional magnetic resonance (rs-FMRI) was also used, before and after three hours, to investigate changes in the activity of resting state brain networks. Diffusion Tensor Imaging (DTI) was employed to evaluate differences in structural connectivity between the two groups. Protocol ID: Modrest_2011; NCT01684306; http://clinicaltrials.gov/ct2/show/NCT01684306. Principal Findings Results indicate that a single dose of modafinil improves cognitive performance as assessed by APM. Rs-fMRI showed that the drug produces a statistically significant increased activation of Frontal Parietal Control (FPC; p<0.04) and Dorsal Attention (DAN; p<0.04) networks. No modifications in structural connectivity were observed. Conclusions and Significance Overall, our findings support the notion that modafinil has cognitive enhancing properties and provide functional connectivity data to support these effects. Trial Registration ClinicalTrials.gov NCT01684306 http://clinicaltrials.gov/ct2/show/NCT01684306.
Collapse
Affiliation(s)
- Roberto Esposito
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Franco Cilli
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Valentina Pieramico
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Antonella Macchia
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Marco Tommasi
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Aristide Saggino
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Domenico Ciavardelli
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
- School of Engineering, Architecture, and Motor Science, Kore University of Enna, Enna, Italy
| | - Antonietta Manna
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Riccardo Navarra
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Filippo Cieri
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological sciences, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Armando Tartaro
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
| | - Stefano L. Sensi
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Molecular Neurology Unit, Center of Excellence on Aging, University “G. d’Annunzio” Chieti-Pescara, Italy
- Departments of Neurology and Pharmacology, University of California-Irvine, Irvine, California, United States of America
- Institute for Mind Impairments and Neurological Disorders, University of California-Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sekar S, Jonckers E, Verhoye M, Willems R, Veraart J, Van Audekerke J, Couto J, Giugliano M, Wuyts K, Dedeurwaerdere S, Sijbers J, Mackie C, Ver Donck L, Steckler T, Van der Linden A. Subchronic memantine induced concurrent functional disconnectivity and altered ultra-structural tissue integrity in the rodent brain: revealed by multimodal MRI. Psychopharmacology (Berl) 2013; 227:479-91. [PMID: 23354531 DOI: 10.1007/s00213-013-2966-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND An effective NMDA antagonist imaging model may find key utility in advancing schizophrenia drug discovery research. We investigated effects of subchronic treatment with the NMDA antagonist memantine by using behavioural observation and multimodal MRI. METHODS Pharmacological MRI (phMRI) was used to map the neuroanatomical binding sites of memantine after acute and subchronic treatment. Resting state fMRI (rs-fMRI) and diffusion MRI were used to study the changes in functional connectivity (FC) and ultra-structural tissue integrity before and after subchronic memantine treatment. Further corroborating behavioural evidences were documented. RESULTS Dose-dependent phMRI activation was observed in the prelimbic cortex following acute doses of memantine. Subchronic treatment revealed significant effects in the hippocampus, cingulate, prelimbic and retrosplenial cortices. Decreases in FC amongst the hippocampal and frontal cortical structures (prelimbic, cingulate) were apparent through rs-fMRI investigation, indicating a loss of connectivity. Diffusion kurtosis MRI showed decreases in fractional anisotropy and mean diffusivity changes, suggesting ultra-structural changes in the hippocampus and cingulate cortex. Limited behavioural assessment suggested that memantine induced behavioural effects comparable to other NMDA antagonists as measured by locomotor hyperactivity and that the effects could be reversed by antipsychotic drugs. CONCLUSION Our findings substantiate the hypothesis that repeated NMDA receptor blockade with nonspecific, noncompetitive NMDA antagonists may lead to functional and ultra-structural alterations, particularly in the hippocampus and cingulate cortex. These changes may underlie the behavioural effects. Furthermore, the present findings underscore the utility and the translational potential of multimodal MR imaging and acute/subchronic memantine model in the search for novel disease-modifying treatments for schizophrenia.
Collapse
Affiliation(s)
- S Sekar
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, D.UC.109, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kirshenbaum GS, Dawson N, Mullins JGL, Johnston TH, Drinkhill MJ, Edwards IJ, Fox SH, Pratt JA, Brotchie JM, Roder JC, Clapcote SJ. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice. PLoS One 2013; 8:e60141. [PMID: 23527305 PMCID: PMC3603922 DOI: 10.1371/journal.pone.0060141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/21/2013] [Indexed: 12/29/2022] Open
Abstract
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.
Collapse
Affiliation(s)
- Greer S. Kirshenbaum
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neil Dawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jonathan G. L. Mullins
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Tom H. Johnston
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Mark J. Drinkhill
- Division of Cardiovascular and Neuronal Remodelling, Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, Leeds, United Kingdom
| | - Ian J. Edwards
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Susan H. Fox
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Judith A. Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jonathan M. Brotchie
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - John C. Roder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven J. Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Dawson N, Morris BJ, Pratt JA. Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophr Bull 2013; 39:366-77. [PMID: 22114100 PMCID: PMC3576175 DOI: 10.1093/schbul/sbr144] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Acute treatment with subanaesthetic doses of NMDA receptor antagonists, such as ketamine, provides a translational model with relevance to many of the symptoms of schizophrenia. Previous studies have focused specifically on the prefrontal cortex (PFC) because this region is implicated in many of the functional deficits associated with this disorder and shows reduced activity (hypofrontality) in schizophrenia patients. Chronic NMDA antagonist treatment in rodents can also induce hypofrontality, although paradoxically acute NMDA receptor antagonist administration induces metabolic hyperfrontality. METHODS In this study, we use 2-deoxyglucose imaging data in mice to characterize acute ketamine-induced alterations in regional functional connectivity, a deeper analysis of the consequences of acute NMDA receptor hypofunction. RESULTS We show that acute ketamine treatment increases PFC metabolic activity while reducing metabolic activity in the dorsal reticular thalamic nucleus (dRT). This is associated with abnormal functional connectivity between the PFC and multiple thalamic nuclei, including the dRT, mediodorsal (MDthal), and anteroventral (AVthal) thalamus. In addition, we show that acute NMDA receptor blockade alters the functional connectivity of the serotonergic (dorsal raphe [DR]), noradrenergic (locus coeruleus [LC]), and cholinergic (vertical limb of the diagonal band of broca [VDB]) systems. CONCLUSIONS Together with other emerging data, these findings suggest that the reticular nucleus of the thalamus, along with the diffusely projecting subcortical aminergic/cholinergic systems, represent a primary site of action for ketamine in reproducing the diverse symptoms of schizophrenia. Our results also demonstrate the added scientific insight gained by characterizing the functional connectivity of discrete brain regions from brain imaging data gained in a preclinical context.
Collapse
Affiliation(s)
- Neil Dawson
- Psychiatric Research Institute of Neuroscience in Glasgow, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Brian J. Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow, Glasgow, G12 8QQ, UK,Institute of Neuroscience and Psychology, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
35
|
Dawson N, Xiao X, McDonald M, Higham DJ, Morris BJ, Pratt JA. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks. ACTA ACUST UNITED AC 2012; 24:452-64. [PMID: 23081884 DOI: 10.1093/cercor/bhs322] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.
Collapse
Affiliation(s)
- Neil Dawson
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), Glasgow, UK
| | | | | | | | | | | |
Collapse
|
36
|
Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology 2012; 64:168-84. [PMID: 22820555 DOI: 10.1016/j.neuropharm.2012.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 02/04/2023]
Abstract
Modafinil is a central nervous system wake promoting agent used for the treatment of excessive daytime sleeping. Its vigilance promoting properties and low abuse potential has intrigued the scientific community and has led to use it as a cognitive enhancer, before its neural functions were understood. Here, we review the effects of modafinil in human cognition and emotion and its specific actions on symptoms in patients with schizophrenia and whether these are consistently effective throughout the literature. We also performed a systematic review on the effects of modafinil on neurotransmitter signalling in different areas of the brain in order to better understand the neuromechanisms of its cognitive and emotional enhancing properties. A review of its effects in schizophrenia suggests that modafinil facilitates cognitive functions, with pro-mnemonic effects and problem solving improvements. Emotional processing also appears to be enhanced by the drug, although to date there are only a limited number of studies. The systematic review on the neurochemical modulation of the modafinil suggests that its mnemonic enhancing properties might be the result of glutamatergic and dopaminergic increased neuronal activation in the hippocampus and in the prefrontal cortex respectively. Other neurotransmitters were also activated by modafinil in various limbic brain areas, suggesting that the drug acts on these brain regions to influence emotional responses. These reviews seek to delineate the neuronal mechanisms by which modafinil affects cognitive and emotional function. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
37
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Wittkampf LC, Arends J, Timmerman L, Lancel M. A review of modafinil and armodafinil as add-on therapy in antipsychotic-treated patients with schizophrenia. Ther Adv Psychopharmacol 2012; 2:115-25. [PMID: 23983964 PMCID: PMC3736916 DOI: 10.1177/2045125312441815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is characterized by reality distortion, psychomotor poverty and cognitive disturbances. These characteristics contribute to a lesser social functioning and lower quality of life in patients with schizophrenia. It has been suggested that modafinil and its isomer armodafinil as an add-on strategy to antipsychotic treatment in patients with schizophrenia may improve cognitive functioning, attenuate fatigue, inactiveness and other negative functions as well as weight gain. In this paper we review the literature relevant to the question of whether modafinil and armodafinil are beneficial as add-on therapy in antipsychotic-treated patients with schizophrenia. A total of 15 articles were included in this review; of the 15 articles, 10 were randomized controlled trials (RCTs). Evidence for the use of modafinil or armodafinil as add-on therapy to antipsychotic drugs to alleviate fatigue, sleepiness and inactivity is inconclusive. One cohort study and one out of two single-dose crossover RCTs in which modafinil addition was studied could demonstrate a positive effect. All five RCTs of modafinil (three RCTs) and armodafinil (two RCTs) addition with a longer study duration could not demonstrate a positive effect. With respect to cognitive disturbances, animal models of cognitive deficits show clear improvements with modafinil. In RCTs with a treatment duration of 4 weeks or more, however, no positive effect could be demonstrated on cognitive functioning with modafinil and armodafinil addition. Yet, four single-dose crossover RCTs of modafinil addition show significant positive effects on executive functioning, verbal memory span, visual memory, working memory, spatial planning, slowing in latency, impulse control and recognition of faces expressing sadness and sadness misattribution in the context of disgust recognition. The addition of modafinil or armodafinil to an antipsychotic regime, despite theoretical and preclinical considerations, has not been proved to enhance cognitive function, attenuate fatigue, enhance activity, improve negative symptoms and reduce weight in patients with schizophrenia.
Collapse
|
39
|
Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat. Neuropsychopharmacology 2012; 37:822-37. [PMID: 22048464 PMCID: PMC3260987 DOI: 10.1038/npp.2011.260] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modafinil (MOD) is a wake-promoting drug with pro-cognitive properties. Despite its increasing use, the neuronal substrates of MOD action remain elusive. In particular, animal studies have highlighted a putative role of diencephalic areas as primary neuronal substrate of MOD action, with inconsistent evidence of recruitment of fronto-cortical areas despite the established pro-cognitive effects of the drug. Moreover, most animal studies have employed doses of MOD of limited clinical relevance. We used pharmacological magnetic resonance imaging (phMRI) in the anesthetized rat to map the circuitry activated by a MOD dose producing clinically relevant plasma exposure, as here ascertained by pharmacokinetic measurements. We observed prominent and sustained activation of the prefrontal and cingulate cortex, together with weaker but significant activation of the somatosensory cortex, medial thalamic domains, hippocampus, ventral striatum and dorsal raphe. Correlation analysis of phMRI data highlighted enhanced connectivity within a neural network including dopamine projections from the ventral tegmental area to the nucleus accumbens. The pro-arousing effect of MOD was assessed using electroencephalographic recording under anesthetic conditions comparable to those used for phMRI, together with the corresponding Fos immunoreactivity distribution. MOD produced electroencephalogram desynchronization, resulting in reduced delta and increased theta frequency bands, and a pattern of Fos induction largely consistent with the phMRI study. Altogether, these findings show that clinically relevant MOD doses can robustly activate fronto-cortical areas involved in higher cognitive functions and a network of pro-arousing areas, which provide a plausible substrate for the wake-promoting and pro-cognitive effects of the drug.
Collapse
|
40
|
Nikiforuk A, Popik P. Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl) 2012; 220:65-74. [PMID: 21918808 PMCID: PMC3276756 DOI: 10.1007/s00213-011-2487-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/10/2011] [Indexed: 01/13/2023]
Abstract
RATIONALE Prefrontal cortical dysfunctions, including an impaired ability to shift perceptual attentional set, are core features of schizophrenia. Nevertheless, the effectiveness of second-generation antipsychotic drugs in treating specific prefrontal dysfunctions remains equivocal. OBJECTIVES To model schizophrenia-like cognitive inflexibility in rats, we evaluated the effects of repeated administration of ketamine, the noncompetitive antagonist of the N-methyl-D: -aspartate receptor, after a washout period of 14 days in the attentional set-shifting task (ASST). Next, we investigated whether the atypical antipsychotics quetiapine and sertindole would alleviate the ketamine-induced set-shifting impairment. METHODS Ketamine (30 mg/kg) was administered intraperitoneally to rats once daily for 5 or 10 consecutive days to assess its efficacy in producing cognitive impairment. The ASST was performed 14 days following the final drug administration. Quetiapine (0.63, 1.25 or 2.5 mg/kg) or sertindole (2.5 mg/kg) was administered per os 120 min before testing. RESULTS The results of the present study demonstrate that ketamine treatment for 10 but not 5 days significantly and specifically impaired rats' performance in the extra-dimensional shift (EDs) stage of the ASST. This cognitive inflexibility was reversed by acute administration of sertindole or quetiapine. Quetiapine also promoted set-shifting in cognitively unimpaired control animals. CONCLUSION The data presented here show that subchronic administration of ketamine induces cognitive inflexibility after a washout period. This cognitive deficit likely reflects clinically relevant aspects of cognitive dysfunction encountered in schizophrenic patients. The beneficial effects of quetiapine on set-shifting may have therapeutic implications for the treatment of schizophrenia and other disorders associated with frontal-dependent cognitive impairments.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
41
|
Xiao X, Dawson N, MacIntyre L, Morris BJ, Pratt JA, Watson DG, Higham DJ. Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition. BMC SYSTEMS BIOLOGY 2011; 5:72. [PMID: 21575198 PMCID: PMC3239845 DOI: 10.1186/1752-0509-5-72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/16/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND The quantification of experimentally-induced alterations in biological pathways remains a major challenge in systems biology. One example of this is the quantitative characterization of alterations in defined, established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate in multiple pathways, but it also ignores useful information available through the pairwise correlations between metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data. RESULTS We present and justify a new technique for comparing pairs of networks--in our case these networks are based on the same set of nodes and there are two distinct types of weighted edges. The algorithm is based on the Generalized Singular Value Decomposition (GSVD), which may be regarded as an extension of Principle Components Analysis to the case of two data sets. We show how the GSVD can be interpreted as a technique for reordering the two networks in order to reveal clusters that are exclusive to only one. Here we apply this algorithm to a new set of metabolomic data from the prefrontal cortex (PFC) of a translational model relevant to schizophrenia, rats treated subchronically with the N-methyl-D-Aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). This provides us with a means to quantify which predefined metabolic pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolite pathway database) were altered in the PFC of PCP-treated rats. Several significant changes were discovered, notably: 1) neuroactive ligands active at glutamate and GABA receptors are disrupted in the PFC of PCP-treated animals, 2) glutamate dysfunction in these animals was not limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways linked to glutamate; and 3) a specific series of purine reactions Xanthine ← Hypoxyanthine ↔ Inosine ← IMP → adenylosuccinate is also disrupted in the PFC of PCP-treated animals. CONCLUSIONS Network reordering via the GSVD provides a means to discover statistically validated differences in clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data, allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new computational technique we identified metabolic pathway alterations that are consistent with known results. Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC dysfunction and cognitive deficits seen in schizophrenia.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK
| | - Neil Dawson
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), Universities of Glasgow and Strathclyde, G12 8QQ, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0NR, UK
- Center for Neuroscience, University of Strathclyde (CeNsUS), Glasgow, G4 0NR, UK
| | - Lynsey MacIntyre
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0NR, UK
| | - Brian J Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), Universities of Glasgow and Strathclyde, G12 8QQ, UK
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Judith A Pratt
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), Universities of Glasgow and Strathclyde, G12 8QQ, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0NR, UK
- Center for Neuroscience, University of Strathclyde (CeNsUS), Glasgow, G4 0NR, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0NR, UK
- Center for Neuroscience, University of Strathclyde (CeNsUS), Glasgow, G4 0NR, UK
| | - Desmond J Higham
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland, UK
- Center for Neuroscience, University of Strathclyde (CeNsUS), Glasgow, G4 0NR, UK
| |
Collapse
|