1
|
Yamada Y, Mishima K, Ohnishi T, Suzuki M, Nemoto T, Mizuno M, Kishimoto T, Tomita H, Ozone M, Kitamura S, Hashimoto K, Nakagome K, Sumiyoshi T. Identification of Factors to Predict Transition to Schizophrenia in Subjects with Ultra-high Risk for Psychosis: A Protocol for a Multicenter, Longitudinal Study of Sleep Parameters and Cytokine Levels. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:266-277. [PMID: 40223261 PMCID: PMC12000660 DOI: 10.9758/cpn.24.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 04/15/2025]
Abstract
Objective Schizophrenia is a major psychiatric illness which mostly begins in adolescence and leads to impairments of social functioning. Some patients with schizophrenia have been associated with ultra-high risk state for psychosis (UHR), a condition used to operationally represent the prodromal stage of the illness. In previous studies, the UHR and the progression to overt psychosis has been reported to be accompanied with alterations in the quality of sleep and the immune system, as represented by change of blood levels of cytokines. Currently, biomarkers to predict the development of psychosis in persons at UHR have not yet reached a steady consensus. Therefore, we present a study protocol to explore predictors of transitions to psychosis, in the realm of monitoring of sleep condition and cytokine measurement, in subjects with the UHR. Methods This is a multicenter, longitudinal cohort study participated by 7 hospitals in Japan. We will recruit 50 UHR people and 30 healthy volunteers as a control group, and measure positive symptom, depressive symptoms, cognitive function, and social function. Blood cytokines levels and sleep indices, as well as actigraphy data will be monitored. After the baseline assessment, clinical symptoms, sleep indices, and cytokine levels will be measured every 12 weeks for 52 weeks. Actigraphy devices will continue to be worn for 52 weeks, while social function will be assessed over 104 weeks. The results of this study are expected to facilitate the development of novel intervention therapies to reduce the risk of psychosis and improve functional outcomes.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuo Mishima
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takashi Ohnishi
- Medical Affairs Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | | | - Toshifumi Kishimoto
- Akitsukounoike Hospital, Nara, Japan
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Motohiro Ozone
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Shingo Kitamura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kazuyuki Nakagome
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
2
|
Blake L, Williams KC, Uhlmann AA, Temmingh H, Burger A, Stein DJ, Naudé PJW. Subcortical volumes, frontal cortical thickness, and pro-inflammatory cytokines in schizophrenia versus methamphetamine-induced psychosis. Brain Imaging Behav 2025:10.1007/s11682-025-01022-9. [PMID: 40425916 DOI: 10.1007/s11682-025-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Schizophrenia is associated with alterations in subcortical volumes, cortical thickness and pro-inflammatory cytokines, that may correlate with clinical features. However, analogous work on methamphetamine-induced psychosis is lacking. This study examines subcortical volumes, frontal cortical thickness and pro-inflammatory cytokines in schizophrenia and methamphetamine-induced psychosis.Diagnosis and symptom severity were determined using the Structured Clinical Interview for Axis I Disorders and the Positive and Negative Syndrome Scale, respectively. Structural T1-weighted images were acquired using a 3-Tesla magnetic resonance imaging scanner. Serum peripheral cytokine concentrations were measured using a multiplex bead array.Schizophrenia (n = 36) and methamphetamine-induced psychosis (n = 27) participants showed decreased left amygdala volumes and frontal cortical thickness compared to healthy controls (n = 32). Schizophrenia participants had increased bilateral caudate, putamen, and nucleus accumbens volumes compared to controls, and greater right globus pallidus and nucleus accumbens volumes compared to the methamphetamine-induced psychosis group. No significant differences were found in cytokine levels between groups or associations with neuroimaging measures.The novel discovery of increased globus pallidus and nucleus accumbens volumes in schizophrenia group compared with methamphetamine-induced psychosis group may show important distinctions in the neurobiology between these conditions. Future investigations should employ larger sample sizes, incorporate longitudinal study designs, and integrate magnetic resonance spectroscopy which may show important neurometabolic signatures in these brain regions in methamphetamine-induced psychosis.
Collapse
Affiliation(s)
- Lauren Blake
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Kimberley C Williams
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anne A Uhlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
| | - Antoinette Burger
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- University of Missouri, Columbia, United States of America
| | - Dan J Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Perkins DO, Jeffries CD, Clark SR, Upthegrove R, Wannan CMJ, Wray NR, Li QS, Do KQ, Walker E, Paul Amminger G, Anticevic A, Cotter D, Ellman LM, Mongan D, Phassouliotis C, Barbee J, Roth S, Billah T, Corcoran C, Calkins ME, Cerrato F, Khadimallah I, Klauser P, Winter-van Rossum I, Nunez AR, Bleggi RS, Martin AR, Bouix S, Pasternak O, Shah JL, Toben C, Wolf DH, Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ), Kahn RS, Kane JM, McGorry PD, Bearden CE, Nelson B, Shenton ME, Woods SW. Body fluid biomarkers and psychosis risk in The Accelerating Medicines Partnership® Schizophrenia Program: design considerations. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:78. [PMID: 40399418 PMCID: PMC12095529 DOI: 10.1038/s41537-025-00610-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 05/23/2025]
Abstract
Advances in proteomic assay methodologies and genomics have significantly improved our understanding of the blood proteome. Schizophrenia and psychosis risk are linked to polygenic scores for schizophrenia and other mental disorders, as well as to altered blood and saliva levels of biomarkers involved in hormonal signaling, redox balance, and chronic systemic inflammation. The Accelerating Medicines Partnership® Schizophrenia (AMP®SCZ) aims to ascertain biomarkers that both predict clinical outcomes and provide insights into the biological processes driving clinical outcomes in persons meeting CHR criteria. AMP®SCZ will follow almost 2000 CHR and 640 community study participants for two years, assessing biomarkers at baseline and two-month follow-up including the collection of blood and saliva samples. The following provides the rationale and methods for plans to utilize polygenic risk scores for schizophrenia and other disorders, salivary cortisol levels, and a discovery-based proteomic platform for plasma analyses. We also provide details about the standardized methods used to collect and store these biological samples, as well as the study participant metadata and quality control measures related to preanalytical factors that could influence the values of the biomarkers. Finally, we discuss our plans for analyzing the results of blood- and saliva-based biomarkers. Watch Dr. Perkins discuss their work and this article: https://vimeo.com/1062879582?share=copy#t=0 .
Collapse
Affiliation(s)
- Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clark D Jeffries
- Rennaisance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Woodville, SA, Australia
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Birmingham Womens and Childrens, NHS Foundation Trust, Birmingham, UK
| | - Cassandra M J Wannan
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Naomi R Wray
- Department of Psychiatry, University of Oxford, Oxford, UK
- Institute for Molecular Biosciences, University of Queensland, Queensland, Australia
| | - Qingqin S Li
- JRD Data Science, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Elaine Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States of America
| | - G Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Christina Phassouliotis
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Jenna Barbee
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharin Roth
- Genomics and Biomarker Research, Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, MD, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cheryl Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ines Khadimallah
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, UK
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Angela R Nunez
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Rachel S Bleggi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia R Martin
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Jai L Shah
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Catherine Toben
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rene S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hempstead, N.Y, USA
- Institute for Behavioral Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, MGB, Massachusetts General Hospital, Boston, MA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
4
|
Zhou F, He Y, Xie X, Guo N, Chen W, Zhao Y. Homocysteine and Multiple Health Outcomes: An Outcome-Wide Umbrella Review of Meta-analyses and Mendelian Randomization Studies. Adv Nutr 2025; 16:100434. [PMID: 40288491 PMCID: PMC12144516 DOI: 10.1016/j.advnut.2025.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Elevated levels of homocysteine (Hcy) are associated with various health outcomes. We aimed to systematically assess the credibility and certainty of evidence of associations of Hcy and Hcy-lowering therapies with various health outcomes. We retrieved observational meta-analyses examining the associations between Hcy and health outcomes, interventional meta-analyses investigating health outcomes related to Hcy-lowering treatments, and Mendelian randomization (MR) studies exploring the causal associations of Hcy with health outcomes to perform an umbrella review. A total of 135 observational meta-analyses, 106 MR studies, and 26 interventional meta-analyses were included. Among observational studies, 10 associations of diseases/outcomes were classified as highly suggestive; only 1 outcome (digestive tract cancer) was supported by convincing evidence (class I; odd ratio = 1.27, 95% confidence interval = 1.16, 1.40; P = 6.79 × 10-7; I2 = 0, 95% prediction interval excluding null, >1000 cases; P > 0.1 for tests of both small-study effects and excess significance bias). In MR studies, 5 outcomes associated with Hcy presented robust evidence (P < 0.01, power >80%). Among 25 outcomes explored by both observational meta-analyses and MR studies, 7 had consistent results, indicating that elevated Hcy is causally associated with an increased risk of these outcomes. The 3 types of studies collectively suggested that the association of stroke with Hcy was supported by observational studies, causally by MR studies, and further validated by intervention meta-analyses showing that Hcy-lowering with folic acid significantly reduced risk of stroke. For dementia and colorectal cancer, Hcy was significantly associated in meta-analyses of observational studies and folic acid decreased disease risks in interventional meta-analyses. The current umbrella review indicates that convincing evidence for a definitive role of Hcy exposure solely exists in the context of digestive tract cancer excluding bias; however, Hcy may not be causal for this disease. All the 3 types of studies collectively support that Hcy is a key causal risk factor, and Hcy-lowering (specifically with folic acid) may serve as an effective intervention for stroke. This trial was registered at PROSPERO as CRD42024541335.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China.
| | - Yue He
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Xinhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Ning Guo
- Department of Dujiakan Outpatient, Jingnan Medical District of PLA General Hospital, Beijing, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
5
|
Jaskiw GE, Obrenovich ME, Donskey CJ, Briggs FBS, Chung SS, Kalinina AI, Bolomey A, Hayes LN, Yang K, Yolken RH, Sawa A. Targeted and Non-Targeted Metabolomic Evaluation of Cerebrospinal Fluid in Early Phase Schizophrenia: A Pilot Study from the Hopkins First Episode Psychosis Project. Metabolites 2025; 15:275. [PMID: 40278404 PMCID: PMC12029220 DOI: 10.3390/metabo15040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
(1) Background: The lack of reliable biomarkers remains a significant barrier to improving outcomes for patients with schizophrenia. While metabolomic analyses of blood, urine, and feces have been explored, results have been inconsistent. Compared to peripheral compartments, cerebrospinal fluid (CSF) more closely reflects the chemical composition of brain extracellular fluid. Given that brain dysregulation may be more pronounced during the first episode of psychosis (FEP), we hypothesized that metabolomic analysis of CSF from FEP patients could reveal disease-associated biomarkers. (2) Methods: We recruited 15 patients within 24 months of psychosis onset (DSM-4 criteria) and 14 control participants through the Johns Hopkins Schizophrenia Center. CSF samples were analyzed using both non-targeted and targeted liquid chromatography-mass spectrometry. (3) Results: The non-targeted analysis identified lower levels of N-acetylneuraminic acid and N-acetyl-L-aspartic acid in the FEP group, while levels of uric acid were elevated. The targeted analysis focused on indolic and phenolic molecules previously linked to neuropsychiatric disorders. Notably, L-phenylalanine and 4-hydroxycinnamic acid levels were lower in the FEP group, and this difference remained significant after adjusting for age and sex. However, none of the significant differences in analyte levels between the groups survived an adjustment for multiple comparisons. (4) Conclusions: Our intriguing but preliminary associations align with results from other investigational approaches and highlight potential CSF analytes that warrant further study in larger samples.
Collapse
Affiliation(s)
- George E. Jaskiw
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark E. Obrenovich
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43606, USA
| | - Curtis J. Donskey
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Farren B. S. Briggs
- Department Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Sun Sunnie Chung
- Department of Computer Science, Cleveland State University, Cleveland, OH 44115, USA; (S.S.C.); (A.I.K.)
| | - Anastasiya I. Kalinina
- Department of Computer Science, Cleveland State University, Cleveland, OH 44115, USA; (S.S.C.); (A.I.K.)
| | - Austin Bolomey
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
| | - Lindsay N. Hayes
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, The Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Zhang T, Xu L, Wei Y, Tang X, Ju M, Liu X, Zhang D, Liu H, Wang Z, Chen T, Gao J, Hu Q, Zeng L, Yi Z, Li C, Wang J. Investigating the disconnection between cytokine and symptom clusters in clinical high risk populations: Towards a comprehensive cross-dimensional analysis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111356. [PMID: 40180012 DOI: 10.1016/j.pnpbp.2025.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/08/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE Clustering individuals at the Clinical High-Risk(CHR) stage of psychosis often relies on single dimensions, and the independence or overlap of clustering results across different dimensions lacks sufficient evidence. Additionally, it remains unclear whether combining different dimensions-such as biological markers(e.g., cytokines) and symptomatic dimensions-can enhance predictive efficacy. METHODS This study included 370 individuals with CHR and conducted a three-year follow-up, 50 CHR individuals transitioned to psychosis. The participants underwent thorough symptom assessments, encompassing both clinical symptoms and cognitive impairments. Baseline measurements of eight cytokines were obtained. Latent Class Analysis(LCA) was employed to construct clusters based on both symptom profiles and cytokine levels separately. Survival analysis was utilized to explore differences in conversion rates among different clusters. RESULTS The LCA determined the selection of the four-cluster solution for symptoms, cytokines, and the integrated clusters. Symptom-Cluster-2 exhibited the most severe clinical symptoms and cognitive impairments, while Symptom-Cluster-4 displayed the mildest clinical symptoms and cognitive impairments. Cytokine-Cluster-1 was characterized by the highest levels of inflammatory cytokines, excluding vascular endothelial growth factor, whereas Symptom-Cluster-4 exhibited the lowest levels of cytokines. The clusters identified based on symptoms and cytokines showed substantial inconsistency. Survival analysis comparing conversion rates across four clusters revealed no significant difference in symptom(χ2 = 6.731, p = 0.081) and cytokine(χ2 = 7.139, p = 0.068) clusters but was significant in integrated clusters(χ2 = 9.234, p = 0.026). CONCLUSION The study emphasizes the distinct perspectives on psychosis risk offered by symptom and cytokine dimensions, advocating for the integration of these dimensions in a cross-modal approach to enhance predictive accuracy.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - MingLiang Ju
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - XiaoHua Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - ZiXuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Qiang Hu
- Department of Psychiatry, ZhenJiang Mental Health Center, Zhenjiang, China
| | - LingYun Zeng
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, ShenZhen, GuangDong, China
| | - ZhengHui Yi
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu 226000, China.
| |
Collapse
|
7
|
Faugere M, Maakaron É, Achour V, Verney P, Andrieu-Haller C, Obadia J, Fond G, Lançon C, Korchia T. Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders. Nutrients 2025; 17:1167. [PMID: 40218925 PMCID: PMC11990871 DOI: 10.3390/nu17071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Severe mental illnesses such as schizophrenia, major depressive disorder, and bipolar disorder are often accompanied by metabolic comorbidities. While the role of vitamins in physical health is well-established, their involvement in psychiatric disorders has garnered increasing attention in recent years. Methods: We conducted a cross-sectional analysis of 1003 patients diagnosed with severe mental illnesses. Vitamin D, B9, and B12 serum levels were measured, and deficiencies were defined using established clinical cutoffs. Multivariate regression analyses were performed to identify associations between vitamin deficiencies and clinical outcomes. Results: Our findings revealed that vitamin deficiencies were prevalent across all diagnostic groups, with particularly high rates in patients with schizophrenia and major depressive disorder. Vitamin D deficiency was significantly associated with worse psychiatric outcomes, including increased depressive symptoms (adjusted OR = 1.89, p = 0.018), lower Global Assessment of Functioning scores (adjusted OR = -0.18, p < 0.001), and higher rates of metabolic syndrome (adjusted OR = 1.97, p = 0.007). Folate and B12 deficiencies were also linked to greater psychiatric symptom severity and metabolic disturbances, including increased risks of obesity and dyslipidemia. Conclusions: Our study highlights the critical role of vitamins deficiencies in both psychiatric and metabolic health of patients with severe mental illnesses. These findings underscore the importance of routine screening and correction of these deficiencies as part of comprehensive care in psychiatric populations. The integration of nutritional interventions may offer a novel and holistic approach to improving both mental and physical health outcomes.
Collapse
Affiliation(s)
- Mélanie Faugere
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
- Groupement de Coopération Sanitaire, Centre de Recherche en Santé Mentale et Psychiatrie de la Région PACA, 13100 Aix en Provence, France
- Service du Pr Christophe Lançon, CHU Sainte Marguerite, Pavillon Solaris, 270 Boulevard de Sainte Marguerite, 13009 Marseille, France
| | - Éloïse Maakaron
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Vincent Achour
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Pierre Verney
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Christelle Andrieu-Haller
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Jade Obadia
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Guillaume Fond
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| | - Christophe Lançon
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
- Groupement de Coopération Sanitaire, Centre de Recherche en Santé Mentale et Psychiatrie de la Région PACA, 13100 Aix en Provence, France
| | - Théo Korchia
- Department of Academic Psychiatry, Sainte Marguerite University Hospital, Assistance Publique des Hôpitaux de Marseille, 13009 Marseille, France; (É.M.); (V.A.); (P.V.); (C.A.-H.); (J.O.); (G.F.); (C.L.); (T.K.)
- Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, UR3279: Health Service Research and Quality of Life Center—CEReSS, 13005 Marseille, France
| |
Collapse
|
8
|
Xu R, Liu H, Shu C, Li Y, Wang S, Xiong Y, Chen F, Wang X, Huang H, Liu Z, Wang G, Wang H. Association of TRPV1 and the SIRT3/SOD2 Signaling Pathway in Mononuclear Cells and Astrocyte-Derived Extracellular Vesicles in Patients with Schizophrenia. Brain Sci 2025; 15:339. [PMID: 40309794 PMCID: PMC12025208 DOI: 10.3390/brainsci15040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES The transient receptor potential vanilloid type 1 (TRPV1) is a factor that mediates glial cell response with effects on mitochondrial function. It may affect the occurrence and development of schizophrenia. The aim of this study is to further explore schizophrenia biomarkers by analyzing TRPV1 and oxidative stress in astrocyte-derived extracellular vesicles (ADEs) and peripheral blood mononuclear cells (PBMCs). METHODS A case-control study was conducted. The Positive and Negative Syndrome Scale and the Brief Assessment of Cognition in Schizophrenia (BACS) clinical data were obtained from 50 symptomatic patients with schizophrenia and 50 controls, and fasting peripheral blood samples were collected for the isolation of PBMCs and ADEs. Western blotting was used to assess TRPV1, Sirtuin3 (Sirt3), SOD2, and acetyl-SOD2. RESULTS The patient group exhibited significantly reduced TRPV1 and Sirt3 expression levels in PBMCs and ADEs compared with the control group. In addition, there was a marked increase in SOD2 and acetyl-SOD2 levels. TRPV1 was negatively correlated with the negative symptom score in the patient PBMCs and ADEs. SOD2 showed positive correlations with the general psychopathology symptom score, and acetyl-SOD2 was positively correlated with the negative symptom score. The BACS total score was positively correlated with TRPV1 levels and negatively correlated with acetyl-SOD2 levels in the patient group. CONCLUSION TRPV1 expressions in PBMCs and ADEs were reduced and closely correlated, and TRPV1 levels were associated with psychiatric symptoms and cognitive function in patients with schizophrenia. It was indicated that TRPV1 could be a biomarker for schizophrenia and reflect the disease severity.
Collapse
Affiliation(s)
- Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Hao Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Yuan Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Shijing Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Fashuai Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Xiaowei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- Hubei Institute of Neurology and Psychiatry Research, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.X.); (H.L.); (C.S.); (Y.L.); (S.W.); (Y.X.); (F.C.); (X.W.); (H.H.); (Z.L.); (G.W.)
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
9
|
Anmella G, Varela E, Prades N, Giménez-Palomo A, Espinosa L, de Castro C, Deulofeu R, Solerdelcoll M, Morer Á, Baeza I. Association of low vitamin B 12 levels with depressive and schizophrenia spectrum disorders in child and adolescent psychiatric inpatients. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02662-4. [PMID: 40100400 DOI: 10.1007/s00787-025-02662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
Folate and vitamin B12 are associated with neurodevelopment and neurotransmitter synthesis and insufficiencies of these nutrients could be linked to psychiatric disorders in children and adolescents. To assess serum levels of folate and B12 in child and adolescent psychiatric inpatients and examine possible links between these levels and different psychiatric disorders. Child and adolescent psychiatric inpatients admitted in a general hospital during a 3-year period were included for analysis. Folate and B12 levels were measured when the subjects were admitted. Psychiatric diagnoses were made following DSM-5 criteria and grouped into categories. Logistic regression analysis was used to study the effects of socio-demographic variables as well as folate and B12 levels, insufficiencies and deficits as possible predictors of outcome (psychiatric diagnostic category). 729 inpatients (60.6% female, mean age: 15.1 ± 2 years) were included. A total of 42.9% presented insufficient folate levels and 19.4% insufficient B12 levels. Insufficient B12 levels were associated with depressive disorders in the multivariate model (OR = 0.82, p = 0.002) as was female sex (OR = 1.65, p = 0.007). Moreover, low vitamin B12 levels were linked to schizophrenia spectrum disorders (SSD, OR = 0.9982, p = 0.024). In contrast, higher folate (OR = 1.15, p < 0.001) and vitamin B12 levels (1.0024, p = 0.002) as well as female sex (OR = 7.86, p < 0.001) were associated with eating disorders. Insufficient or low B12 levels could help predict depressive and SSD respectively in child and adolescent psychiatric inpatients. Further study could help us better understand the impact of this insufficiency during the neurodevelopmental period and the potential benefits of nutritional interventions.
Collapse
Affiliation(s)
| | - Eva Varela
- Centro Educativo Terapéutico Mentalia Área Norte, Madrid, Spain
| | - Nuria Prades
- Hospital universitario La Plana, Villarreal, Spain
| | | | | | - Clara de Castro
- CSMIJ Granollers, Hospital Sant Joan de Déu, Granollers, Spain
| | - Ramon Deulofeu
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Mireia Solerdelcoll
- Hospital Clínic de Barcelona, Barcelona, Spain
- Neuroscience Institute, deoartment of Medicine, University of Barcelona, Barcelona, Spain
| | - Ástrid Morer
- Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Inmaculada Baeza
- Hospital Clínic de Barcelona, Barcelona, Spain.
- Neuroscience Institute, deoartment of Medicine, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| |
Collapse
|
10
|
Dai S, Long Y, Xiao J, Wang Y, Wang X, Shao P, Huang M, Xu Y, Liu F, Tang Y, Xu X, Wu X, Zheng Y, Mo J, Yang J, Huang J, Wu R. A comprehensive metabolomic and lipidomic study of olanzapine in the treatment of first-episode schizophrenia. Asian J Psychiatr 2025; 105:104387. [PMID: 40015078 DOI: 10.1016/j.ajp.2025.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Despite advances in research, critical gaps remain in understanding the molecular mechanisms of antipsychotic medications such as olanzapine. This study investigated the molecular pathways by which olanzapine exerts its therapeutic effects and causes metabolic side effects by analyzing changes in the serum metabolic and lipid profiles of patients with first-episode schizophrenia. METHODS Clinical symptoms were assessed using the Positive and Negative Symptom Scale (PANSS) in 43 patients with first-episode schizophrenia. Body mass index (BMI) and fasting glucose (GLU) and tetraplex lipids levels were measured before and after treatment. Changes in patient serum metabolic and lipid profiles before and after treatment were examined. Correlation analysis was used to identify differential metabolites and lipid molecules that were significantly associated with changes in clinical symptoms and metabolic side-effect indicators. RESULTS After 8 weeks of olanzapine treatment, there was a significant decrease in all PANSS scores and a significant increase in BMI and GLU, total cholesterol, and low-density lipoprotein cholesterol levels in patients with first-episode schizophrenia. Metabolomic and lipidomic analyses identified 70 metabolites and 67 lipids in the serum that changed significantly after treatment. Correlation analysis revealed that the clinical symptom changes in the patients before and after treatment were significantly associated with 11 metabolites (most related to inflammation and oxidative stress), while the metabolic side-effect indicators were significantly associated with 14 lipid molecules. CONCLUSIONS Olanzapine may improve psychotic symptoms by modulating inflammation and oxidative stress-related metabolites; however, olanzapine may also cause metabolic disturbances by affecting lipid metabolic pathways.
Collapse
Affiliation(s)
- Si Dai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jingmei Xiao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jianzhong Mo
- Department of Psychiatry, Changsha County Third Hospital, Changsha, Hunan 410100, China
| | - Jin Yang
- Department of Psychiatry,The Second People's Hospital of Dali Bai Autonomous Prefecture, Dali, Yunnan 671000, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Psychiatry, The Third Peoples Hospital of Tongren, Tongren, Guizhou 554300, China.
| | - Rerong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Lieberman JA, Mendelsohn A, Goldberg TE, Emsley R. Preventing disease progression in schizophrenia: What are we waiting for. J Psychiatr Res 2025; 181:716-727. [PMID: 39754992 DOI: 10.1016/j.jpsychires.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Despite research advances and progress in health care, schizophrenia remains a debilitating and costly disease. Onset occurs typically during youth and can lead to a relapsing and ultimately chronic course with persistent symptoms and functional impairment if not promptly and properly treated. Consequently, over time, schizophrenia causes substantial distress and disability for patients, their families and accrues to a collective burden to society. Recent research has revealed much about the pathophysiology that underlies the progressive nature of schizophrenia. Additionally, treatment strategies for disease management have been developed that have the potential to not just control psychotic symptoms but limit the cumulative morbidity of the illness. Given the evidence for their effectiveness and feasibility for their application, it is perplexing that this model of care has not yet become the standard of care and widely implemented to reduce the burden of illness on patients and society. This begs the question of whether the failure of implementation of a potentially disease-modifying strategy is due to the lack of evidence of efficacy (or belief in it) and readiness for implementation, or whether it's the lack of motivation and political will to support their utilization. To address this question, we reviewed and summarized the literature describing the natural history, pathophysiology and therapeutic strategies that can alleviate symptoms, prevent relapse, and potentially modify the course of schizophrenia. We conclude that, while we await further advances in mental health care from research, we must fully appreciate and take advantage of the effectiveness of existing treatments and overcome the attitudinal, policy, and infrastructural barriers to providing optimal mental health care capable of providing a disease-modifying treatment to patients with schizophrenia.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Alana Mendelsohn
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Terry E Goldberg
- Division of Geriatric Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
González-Blanco L, Dal Santo F, García-Portilla MP, Alfonso M, Hernández C, Sánchez-Autet M, Anmella G, Amoretti S, Safont G, Martín-Hernández D, Malan-Müller S, Bernardo M, Arranz B. Intestinal permeability biomarkers in patients with schizophrenia: Additional support for the impact of lifestyle habits. Eur Psychiatry 2024; 67:e84. [PMID: 39676547 PMCID: PMC11733614 DOI: 10.1192/j.eurpsy.2024.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Emerging evidence suggests a potential association between "leaky gut syndrome" and low-grade systemic inflammation in individuals with psychiatric disorders, such as schizophrenia. Gut dysbiosis could increase intestinal permeability, allowing the passage of toxins and bacteria into the systemic circulation, subsequently triggering immune-reactive responses. This study delves into understanding the relationship between plasma markers of intestinal permeability and symptom severity in schizophrenia. Furthermore, the influence of lifestyle habits on these intestinal permeability markers was determined. METHODS Biomarkers of intestinal permeability, namely lipopolysaccharide-binding protein (LBP), lipopolysaccharides (LPS), and intestinal fatty acid binding protein (I-FABP), were analyzed in 242 adult schizophrenia patients enrolled in an observational, cross-sectional, multicenter study from four centers in Spain (PI17/00246). Sociodemographic and clinical data were collected, including psychoactive drug use, lifestyle habits, the Positive and Negative Syndrome Scale to evaluate schizophrenia symptom severity, and the Screen for Cognitive Impairment in Psychiatry to assess cognitive performance. RESULTS Results revealed elevated levels of LBP and LPS in a significant proportion of patients with schizophrenia (62% and 25.6%, respectively). However, no statistically significant correlation was observed between these biomarkers and the overall clinical severity of psychotic symptoms or cognitive performance, once confounding variables were controlled for. Interestingly, adherence to a Mediterranean diet was negatively correlated with I-FABP levels (beta = -0.186, t = -2.325, p = 0.021), suggesting a potential positive influence on intestinal barrier function. CONCLUSIONS These findings underscore the importance of addressing dietary habits and promoting a healthy lifestyle in individuals with schizophrenia, with potential implications for both physical and psychopathological aspects of the disorder.
Collapse
Affiliation(s)
- Leticia González-Blanco
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Francesco Dal Santo
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Maria Paz García-Portilla
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | | | | | | | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Safont
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Mútua Terrassa, ISIC Medical Center, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
| | - Belén Arranz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| |
Collapse
|
13
|
Yu H, Li R, Liang XJ, Yang WM, Guo L, Liu L, Tan QRR, Peng ZW. A cross-section study of the comparison of plasma inflammatory cytokines and short-chain fatty acid in patients with depression and schizophrenia. BMC Psychiatry 2024; 24:834. [PMID: 39567940 PMCID: PMC11577661 DOI: 10.1186/s12888-024-06277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and schizophrenia (SCH) are common and severe mental disorders that are mainly diagnosed depending on the subjective identification by psychiatrists. Finding potential objective biomarkers that can distinguish these two diseases is still meaningful. METHODS In the present study, we investigate the differences in plasma inflammatory cytokines and short-chain fatty acids (SCFAs) among patients with MDD (n = 24) and SCH (n = 24), and gender- and age-matched healthy controls (HC, n = 27) and identify potential plasma biomarkers. RESULTS We found that the concentrations of pro-inflammatory cytokines were increased, whereas the anti-inflammatory cytokines were decreased in both MDD and SCH. Meanwhile, except for an increase in 4-Methylvaleric acid, other SCFAs with statistical differences were reduced in both MDD and SCH. Moreover, potential biomarker panels were developed that can effectively discriminate MDD from HC (AUC = 0.997), SCH from HC (AUC = 0.999), and from each other (MDD from SCH, AUC = 0.983). CONCLUSIONS These data suggest that alterations in plasma cytokines and SCFAs might be one of the potential features for distinguishing MDD and SCH. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2100051243, registration date: 2021/09/16.
Collapse
Affiliation(s)
- Huan Yu
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Xue-Jun Liang
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
- Mental Diseases Prevention and Treatment Institute of Chinese PLA,No.988, Hospital of Joint Logistic Support Force, Jiaozuo, Henan Province, Jiaozuo, Henan Province, 454003, China
| | - Wen-Mao Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China
| | - Ling Liu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, China
| | - Qing-Rong R Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an, 710000, China.
- Military Medical Innovation Center, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Mongan D, Perry BI, Healy C, Susai SR, Zammit S, Cannon M, Cotter DR. Longitudinal Trajectories of Plasma Polyunsaturated Fatty Acids and Associations With Psychosis Spectrum Outcomes in Early Adulthood. Biol Psychiatry 2024; 96:772-781. [PMID: 38631425 DOI: 10.1016/j.biopsych.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Evidence supports associations between polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and psychosis. However, polyunsaturated fatty acid trajectories in the general population have not been characterized, and associations with psychosis spectrum outcomes in early adulthood are unknown. METHODS Plasma omega-6 to omega-3 ratio and DHA (expressed as percentage of total fatty acids) were measured by nuclear magnetic spectroscopy at 7, 15, 17, and 24 years of age in participants of ALSPAC (Avon Longitudinal Study of Parents and Children). Curvilinear growth mixture modeling evaluated body mass index-adjusted trajectories of both measures. Outcomes were assessed at 24 years. Psychotic experiences (PEs), at-risk mental state status, psychotic disorder, and number of PEs were assessed using the Psychosis-Like Symptoms interview (n = 3635; 2247 [61.8%] female). Negative symptoms score was measured using the Community Assessment of Psychic Experiences (n = 3484; 2161 [62.0%] female). Associations were adjusted for sex, ethnicity, parental social class, and cumulative smoking and alcohol use. RESULTS Relative to stable average, the persistently high omega-6 to omega-3 ratio trajectory was associated with increased odds of PEs and psychotic disorder, but attenuated on adjustment for covariates (PEs adjusted odds ratio [aOR] = 1.63, 95% CI = 0.92-2.89; psychotic disorder aOR = 1.69, 95% CI = 0.71-4.07). This was also the case for persistently low DHA (PEs aOR = 1.42, 95% CI = 0.84-2.37; psychotic disorder aOR = 1.14, 95% CI = 0.49-2.67). Following adjustment, persistently high omega-6 to omega-3 ratio was associated with increased number of PEs (β = 0.41, 95% CI = 0.05-0.78) and negative symptoms score (β = 0.43, 95% CI = 0.14-0.72), as was persistently low DHA (number of PEs β = 0.45, 95% CI = 0.14-0.76; negative symptoms β = 0.35, 95% CI = 0.12-0.58). CONCLUSIONS Optimization of polyunsaturated fatty acid status during development warrants further investigation in relation to psychotic symptoms in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland.
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
15
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Krsek A, Ostojic L, Zivalj D, Baticic L. Navigating the Neuroimmunomodulation Frontier: Pioneering Approaches and Promising Horizons-A Comprehensive Review. Int J Mol Sci 2024; 25:9695. [PMID: 39273641 PMCID: PMC11396210 DOI: 10.3390/ijms25179695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Leona Ostojic
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dorotea Zivalj
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
17
|
Dunleavy C, Elsworthy RJ, Wood SJ, Allott K, Spencer F, Upthegrove R, Aldred S. Exercise4Psychosis: A randomised control trial assessing the effect of moderate-to-vigorous exercise on inflammatory biomarkers and negative symptom profiles in men with first-episode psychosis. Brain Behav Immun 2024; 120:379-390. [PMID: 38906488 DOI: 10.1016/j.bbi.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION First-Episode Psychosis (FEP) is a devastating mental health condition that commonly emerges during early adulthood, and is characterised by a disconnect in perceptions of reality. Current evidence suggests that inflammation and perturbed immune responses are involved in the pathology of FEP and may be associated specifically with negative symptoms. Exercise training is a potent anti-inflammatory stimulus that can reduce persistent inflammation, and can improve mood profiles in general populations. Therefore, exercise may represent a novel adjunct therapy for FEP. The aim of this study was to assess the effect of exercise on biomarkers of inflammation, negative symptoms of psychosis, and physiological health markers in FEP. METHODS Seventeen young males (26.67 ± 6.64 years) were recruited from Birmingham Early Intervention in Psychosis Services and randomised to a 6-week exercise programme consisting of two-to-three sessions per week that targeted 60-70 % heart-rate max (HRMax), or a treatment as usual (TAU) condition. Immune T-helper (Th-) cell phenotypes and cytokines, symptom severity, functional wellbeing, and cognition were assessed before and after 6-weeks of regular exercise. RESULTS Participants in the exercise group (n = 10) achieved 81.11 % attendance to the intervention, with an average exercise intensity of 67.54 % ± 7.75 % HRMax. This led to favourable changes in immune cell phenotypes, and a significant reduction in the Th1:Th2 ratio (-3.86 %) compared to the TAU group (p = 0.014). After the exercise intervention, there was also a significant reduction in plasma IL-6 concentration (-22.17 %) when compared to the TAU group (p = 0.006). IL-8, and IL-10 did not show statistically significant differences between the groups after exercise. Symptomatically, there was a significant reduction in negative symptoms after exercise (-13.54 %, Positive and Negative Syndrome Scale, (PANSS) Negative) when compared to the TAU group (p = 0.008). There were no significant change in positive or general symptoms, functional outcomes, or cognition (all p > 0.05). DISCUSSION Regular moderate-to-vigorous physical activity is feasible and attainable in clinical populations. Exercise represents a physiological tool that is capable of causing significant inflammatory biomarker change and concomitant symptom improvements in FEP cohorts, and may be useful for treatment of symptom profiles that are not targeted by currently prescribed antipsychotic medication.
Collapse
Affiliation(s)
- Connor Dunleavy
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Richard J Elsworthy
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom
| | - Stephen J Wood
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom; Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly Allott
- Orygen, Parkville, Melbourne, Victoria 3052, Australia; Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Felicity Spencer
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Rachel Upthegrove
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Birmingham Women and Children's NHS Foundation Trust, Early Intervention in Psychosis Service, Birmingham, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, United Kingdom.
| |
Collapse
|
18
|
Cecerska-Heryć E, Polikowska A, Serwin N, Michalczyk A, Stodolak P, Goszka M, Zoń M, Budkowska M, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Samochowiec A, Misiak B, Sagan L, Samochowiec J, Dołęgowska B. The importance of oxidative biomarkers in diagnosis, treatment, and monitoring schizophrenia patients. Schizophr Res 2024; 270:44-56. [PMID: 38851167 DOI: 10.1016/j.schres.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The etiology of schizophrenia (SCZ), an incredibly complex disorder, remains multifaceted. Literature suggests the involvement of oxidative stress (OS) in the pathophysiology of SCZ. OBJECTIVES Determination of selected OS markers and brain-derived neurotrophic factor (BDNF) in patients with chronic SCZ and those in states predisposing to SCZ-first episode psychosis (FP) and ultra-high risk (UHR). MATERIALS AND METHODS Determination of OS markers and BDNF levels by spectrophotometric methods and ELISA in 150 individuals (116 patients diagnosed with SCZ or in a predisposed state, divided into four subgroups according to the type of disorder: deficit schizophrenia, non-deficit schizophrenia, FP, UHR). The control group included 34 healthy volunteers. RESULTS Lower activities of analyzed antioxidant enzymes and GSH and TAC concentrations were found in all individuals in the study group compared to controls (p < 0.001). BDNF concentration was also lower in all groups compared to controls except in the UHR subgroup (p = 0.01). Correlations were observed between BDNF, R-GSSG, GST, GPx activity, and disease duration (p < 0.02). A small effect of smoking on selected OS markers was also noted (rho<0.06, p < 0.03). CONCLUSIONS OS may play an important role in the pathophysiology of SCZ before developing the complete clinical pattern of the disorder. The redox imbalance manifests itself with such severity in individuals with SCZ and in a state predisposing to the development of this psychiatric disease that natural antioxidant systems become insufficient to compensate against it completely. The discussed OS biomarkers may support the SCZ diagnosis and predict its progression.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Martyn Zoń
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Marta Budkowska
- Department of Analytical Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
Murphy J, Zierotin A, Mongan D, Healy C, Susai SR, O'Donoghue B, Clarke M, O'Connor K, Cannon M, Cotter DR. Associations between soluble urokinase plasminogen activator receptor (suPAR) concentration and psychiatric disorders - A systematic review and meta-analysis. Brain Behav Immun 2024; 120:327-338. [PMID: 38857636 DOI: 10.1016/j.bbi.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND There is some evidence of an association between inflammation in the pathogenesis of mental disorders. Soluble urokinase plasminogen activator receptor (suPAR) is a biomarker of chronic inflammation, which provides a more stable index of systemic inflammation than more widely used biomarkers. This review aims to synthesise studies that measured suPAR concentrations in individuals with a psychiatric disorder, to determine if these concentrations are altered in comparison to healthy participants. METHOD Comprehensive literature searches from inception to October 2023 were conducted of five relevant databases (PubMed, Web of Science, Embase, Scopus, APA PsychInfo). Random-effects meta-analyses were performed to compare the standardised mean difference of blood suPAR levels (i.e. plasma or serum) for individuals with any psychiatric disorder relative to controls. Separate meta-analyses of suPAR levels were conducted for individuals with schizophrenia or other psychotic disorder and depressive disorder. Risk of bias was assessed using the Newcastle Ottawa Scale. Post-hoc sensitivity analyses included excluding studies at high risk of bias, and analyses of studies that measured suPAR concentrations either in serum or in plasma separately. RESULTS The literature search identified 149 records. Ten full-text studies were screened for eligibility and 9 studies were included for review. Primary analyses revealed no significant difference in suPAR levels between individuals with any psychiatric disorder compared to controls (k = 7, SMD = 0.42, 95 % CI [-0.20, 1.04]). However, those with depressive disorder had elevated suPAR levels relative to controls (k = 3, SMD = 0.61, 95 % CI [0.34, 0.87]). Similarly, secondary analyses showed no evidence of a significant difference in suPAR levels in individuals with any psychiatric disorder when studies at high risk of bias were excluded (k = 6, SMD = 0.54, 95 % CI [-0.14, 1.22]), but elevated suPAR concentrations for those with schizophrenia or other psychotic disorder were found (k = 3, SMD = 0.98, 95 % CI [0.39, 1.58]). Furthermore, studies that analysed plasma suPAR concentrations found elevated plasma suPAR levels in individuals with any psychiatric disorder relative to controls (k = 5, SMD = 0.84, 95 % CI [0.38, 1.29]), while studies measuring serum suPAR levels in any psychiatric disorder did not find a difference (k = 2, SMD = -0.61, 95 % CI [-1.27, 0.04]). For plasma, elevated suPAR concentrations were also identified for those with schizophrenia or other psychotic disorder (k = 3, SMD = 0.98, 95 % CI [0.39, 1.58]). DISCUSSION When studies measuring either only serum or only plasma suPAR were considered, no significant difference in suPAR levels were observed between psychiatric disorder groups, although significantly elevated suPAR levels were detected in those with moderate to severe depressive disorder. However, plasma suPAR levels were significantly elevated in those with any psychiatric disorder relative to controls, while no difference in serum samples was found. A similar finding was reported for schizophrenia or other psychotic disorder. The plasma findings suggest that chronic inflammatory dysregulation may contribute to the pathology of schizophrenia and depressive disorder. Future longitudinal studies are required to fully elucidate the role of this marker in the psychopathology of these disorders.
Collapse
Affiliation(s)
- Jennifer Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Anna Zierotin
- Department of Psychiatry, University College Dublin, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Public Health, Queen's University Belfast, United Kingdom
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Subash R Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian O'Donoghue
- Department of Psychiatry, University College Dublin, Ireland; Department of Psychiatry, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Mary Clarke
- Department of Psychiatry, University College Dublin, Ireland; DETECT Early Intervention for Psychosis Service, Blackrock, Co. Dublin, Ireland
| | - Karen O'Connor
- RISE, Early Intervention in Psychosis Team, South Lee Mental Health Services, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
20
|
Etyemez S, Mehta K, Tutino E, Zaidi A, Atif N, Rahman A, Malik A, Voegtline KM, Surkan PJ, Osborne LM. The immune phenotype of perinatal anxiety in an anxiety-focused behavioral intervention program in Pakistan. Brain Behav Immun 2024; 120:141-150. [PMID: 38777289 DOI: 10.1016/j.bbi.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Dysregulation of the immune system has been associated with psychiatric disorders and pregnancy-related complications, such as perinatal depression. However, the immune characteristics specific to perinatal anxiety remain poorly understood. In this study, our goal was to examine specific immune characteristics related to prenatal anxiety within the context of a randomized controlled trial designed to alleviate anxiety symptoms-the Happy Mother - Healthy Baby (HMHB) study in Rawalpindi, Pakistan. MATERIALS AND METHODS Pregnant women (n = 117) were followed prospectively in the 1st, 2nd, and 3rd trimesters (T1, T2, T3) and at 6 weeks postpartum (PP6). Each visit included a blood draw and anxiety evaluation (as measured by the anxiety subscale of the Hospital Anxiety and Depression Scale - HADS -using a cutoff ≥ 8). We enrolled both healthy controls and participants with anxiety alone; those with concurrent depression were excluded. RESULTS K-means cluster analysis revealed three anxiety clusters: Non-Anxiety, High and Consistent Anxiety, and Decreasing Anxiety. Principal components analysis revealed two distinct clusters of cytokine and chemokine activity. Women within the High and Consistent Anxiety group had significantly elevated chemokine activity across pregnancy (in trimester 1 (β = 0.364, SE = 0.178, t = 2.040, p = 0.043), in trimester 2 (β = 0.332, SE = 0.164, t = 2.020, p = 0.045), and trimester 3 (β = 0.370, SE = 0.179, t = 2.070, p = 0.040) compared to Non-Anxiety group. Elevated chemokine activity was associated with low birthweight (LBW) and small for gestational age (SGA). CONCLUSION Our findings reveal a unique pattern of immune dysregulation in pregnant women with anxiety in a Pakistani population and offer preliminary evidence that immune dysregulation associated with antenatal anxiety may be associated with birth outcomes. The dysregulation in this population is distinct from that in our other studies, indicating that population-level factors other than anxiety may play a substantial role in the differences found. (Clinicaltrials.gov # NCT04566861).
Collapse
Affiliation(s)
- Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Kruti Mehta
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Emily Tutino
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ahmed Zaidi
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Najia Atif
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Atif Rahman
- Department of Primary Care and Mental Health, University of Liverpool, Liverpool, United Kingdom
| | - Abid Malik
- Human Development Research Foundation, Rawalpindi, Pakistan
| | - Kristin M Voegtline
- Division of General Pediatrics, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, MD, USA; Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lauren M Osborne
- Department of Obstetrics & Gynecology, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
21
|
Peng P, Wang D, Wang Q, Zhou Y, Hao Y, Chen S, Wu Q, Liu T, Zhang X. Positive association between increased homocysteine and deficit syndrome in Chinese patients with chronic schizophrenia: a large-scale cross-sectional study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1105-1113. [PMID: 37943336 DOI: 10.1007/s00406-023-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Emerging studies indicate that oxidative stress may contribute to deficit syndrome (DS) in patients with schizophrenia. Homocysteine (Hcy) is a well-known marker and mediator of oxidative stress that exhibits tight associations with schizophrenia. However, no previous studies have assessed the relationship of DS with Hcy. This study evaluated the prevalence, clinical characteristics, and association of DS with Hcy in 491 patients with schizophrenia. Plasma levels of Hcy and other metabolic parameters were measured. Positive and Negative Syndrome Scale and the proxy scale for deficit syndrome were employed to assess psychiatric symptoms and DS. The logistic regression model was conducted to assess independent factors associated with DS, and the Area Under the Curve (AUC) was used to assess the performance of our model. There was a high incidence of hyperhomocysteinemia (58.8%) and DS (24.4%). Plasma Hcy levels were significantly higher in patients with DS. Age, Hcy levels, and psychiatric symptoms were independently associated with DS. The combination of these variables perfectly differentiated DS and non-DS patients with an AUC value of 0.89. Our study suggests that elevated Hcy levels may be related to DS. Routine monitoring of Hcy is essential and may facilitate early detection of DS in patients with schizophrenia.
Collapse
Affiliation(s)
- Pu Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanan Zhou
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People's Hospital), Changsha, China
| | - Yuzhu Hao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shubao Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Qiuxia Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tieqiao Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
23
|
Kennedy L, Holt T, Hunter A, Golshan S, Cadenhead K, Mirzakhanian H. Development of an anti-inflammatory diet for first-episode psychosis (FEP): a feasibility study protocol. Front Nutr 2024; 11:1397544. [PMID: 39131737 PMCID: PMC11310932 DOI: 10.3389/fnut.2024.1397544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Evidence suggests inflammation plays a role in the pathophysiology of psychosis even in early illness, indicating a potential avenue for anti-inflammatory interventions that simultaneously address high rates of metabolic disease in this population. The aim of this study is to design a novel anti-inflammatory diet intervention (DI) that is feasible to implement in a first-episode psychosis (FEP) population. Methods Eligible FEP Participants are aged 15-30. The DI is currently being refined through a multi-phase process that includes the recruitment of focus groups that provide insight into feasibility of measures and nutritional education, as well as the implementation of the DI. The phases in the study are the Development Phase, Formative Phase, and the Feasibility Phase. Results The Development phase has resulted in the creation of a flexible DI for FEP based on existing research on nutritional health and informed by providers. This study has just completed the Formative phase, recruiting eligible participants to join focus groups that gleaned information about dietary habits, preferences, and food environments to further refine the DI. Conclusion Findings from earlier phases have advised the current Feasibility Phase in which this novel DI is being administered to a small cohort of FEP participants (N = 12) to determine acceptability of the DI from a lived experience perspective. Naturalistic changes in inflammatory biomarkers, metabolic health, and symptoms will also be measured.
Collapse
Affiliation(s)
- Leda Kennedy
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Tiffany Holt
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Anna Hunter
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Shahrokh Golshan
- Center for Integrative Medicine, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| | - Heline Mirzakhanian
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, United States
| |
Collapse
|
24
|
Giorgianni CM, Martino G, Brunetto S, Buta F, Lund-Jacobsen T, Tonacci A, Gangemi S, Ricciardi L. Allergic Sensitization and Psychosomatic Involvement in Outdoor and Indoor Workers: A Preliminary and Explorative Survey of Motorway Toll Collectors and Office Employees. Healthcare (Basel) 2024; 12:1429. [PMID: 39057572 PMCID: PMC11276685 DOI: 10.3390/healthcare12141429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of respiratory and cutaneous allergic disorders may be variable if we consider work activity. These disorders are reported in the current literature to have a relevant psychosomatic involvement. The aim of the study was to submit a survey on the self-reported occurrence of allergic respiratory and cutaneous diseases in outdoor and indoor workers to verify the onset or exacerbations of such pathologies, encourage surveillance, and suggest the need for further studies. Two groups of workers were compared when exposed and not exposed to air pollutants. An outdoor population of motorway toll collectors (153 workers; M: 58.03 years old, SD: 6.1; and female prevalence of 66.01%) and an indoor group of office employees (59 workers; mean age 54.44 years, SD: 8.50; and male prevalence of 61.02%) entered the study. The results of three multivariate analyses of the obtained data, investigating contributions of external factors, including age, sex, smoking habits, working type, and seniority, on allergic conditions were significant in both workers' groups. The findings highlighted that age and smoking habits were significant contributors to allergic conditions, both independently and in combination with other factors, such as sex and working type. The data suggest the presence of phenomena related to different etiological domains, as already reported in the literature. Through the collection of these data, it was possible to highlight the need to analyze clinical signs from different perspectives.
Collapse
Affiliation(s)
- Concetto Mario Giorgianni
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, 98124 Messina, Italy;
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (G.M.); (S.B.); (F.B.); (S.G.)
| | - Silvia Brunetto
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (G.M.); (S.B.); (F.B.); (S.G.)
- School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98124 Messina, Italy
| | - Federica Buta
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (G.M.); (S.B.); (F.B.); (S.G.)
- School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98124 Messina, Italy
| | - Trine Lund-Jacobsen
- Department of Endocrinology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (G.M.); (S.B.); (F.B.); (S.G.)
- School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98124 Messina, Italy
| | - Luisa Ricciardi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (G.M.); (S.B.); (F.B.); (S.G.)
- School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98124 Messina, Italy
| |
Collapse
|
25
|
Li K, Zhu L, Lv H, Bai Y, Guo C, He K. The Role of microRNA in Schizophrenia: A Scoping Review. Int J Mol Sci 2024; 25:7673. [PMID: 39062916 PMCID: PMC11277492 DOI: 10.3390/ijms25147673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Schizophrenia is a serious mental disease that is regulated by multiple genes and influenced by multiple factors. Due to the complexity of its etiology, the pathogenesis is still unclear. MicroRNAs belong to a class of small non-coding RNAs that are highly conserved in endogenous evolution and play critical roles in multiple biological pathways. In recent years, aberrant miRNA expression has been implicated in schizophrenia, with certain miRNAs emerging as potential diagnostic and prognostic biomarkers for this disorder. In this review, our objective is to investigate the differential expression of miRNAs in schizophrenia, elucidate their potential mechanisms of action, and assess their feasibility as biomarkers. The PubMed electronic database and Google Scholar were searched for the years 2003 to 2024. The study focused on schizophrenia and miRNA as the research topic, encompassing articles related to biomarkers, etiology, action mechanisms, and differentially expressed genes associated with schizophrenia and miRNA. A total of 1488 articles were retrieved, out of which 49 were included in this scope review. This study reviewed 49 articles and identified abnormal expression of miRNA in different tissues of both schizophrenia patients and healthy controls, suggesting its potential role in the pathogenesis and progression of schizophrenia. Notably, several specific miRNAs, including miR-34a, miR-130b, miR-193-3p, miR-675-3p, miR-1262, and miR-218-5p, may serve as promising biological markers for diagnosing schizophrenia. Furthermore, this study summarized potential mechanisms through which miRNAs may contribute to the development of schizophrenia. The studies within the field of miRNA's role in schizophrenia encompass a broad spectrum of focus. Several selected studies have identified dysregulated miRNAs associated with schizophrenia across various tissues, thereby highlighting the potential utility of specific miRNAs as diagnostic biomarkers for this disorder. Various mechanisms underlying dysregulated miRNAs in schizophrenia have been explored; however, further investigations are needed to determine the exact mechanisms by which these dysregulated miRNAs contribute to the pathogenesis of this condition. The exploration of miRNA's involvement in the etiology and identification of biomarkers for schizophrenia holds significant promise in informing future clinical trials and advancing our understanding in this area.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (K.L.); (L.Z.); (H.L.); (Y.B.); (C.G.)
| |
Collapse
|
26
|
Zhang T, Wei Y, Xu L, Tang X, Hu Y, Liu H, Wang Z, Chen T, Li C, Wang J. Association between serum cytokines and timeframe for conversion from clinical high-risk to psychosis. Psychiatry Clin Neurosci 2024; 78:385-392. [PMID: 38591426 DOI: 10.1111/pcn.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
AIM Although many studies have explored the link between inflammatory markers and psychosis, there is a paucity of research investigating the temporal progression in individuals at clinical high-risk (CHR) who eventually develop full psychosis. To address this gap, we investigated the correlation between serum cytokine levels and Timeframe for Conversion to Psychosis (TCP) in individuals with CHR. METHODS We enrolled 53 individuals with CHR who completed a 5-year follow-up with a confirmed conversion to psychosis. Granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1β, 2, 6, 8, 10, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) levels were measured at baseline and 1-year. Correlation and quantile regression analyses were performed. RESULTS The median TCP duration was 14 months. A significantly shorter TCP was associated with higher levels of TNF-α (P = 0.022) and VEGF (P = 0.016). A negative correlation was observed between TCP and TNF-α level (P = 0.006) and VEGF level (P = 0.04). Quantile regression indicated negative associations between TCP and GM-CSF levels below the 0.5 quantile, IL-10 levels below the 0.3 quantile, IL-2 levels below the 0.25 quantile, IL-6 levels between the 0.65 and 0.75 quantiles, TNF-α levels below the 0.8 quantile, and VEGF levels below the 0.7 quantile. A mixed linear effects model identified significant time effects for IL-10 and IL-2, and significant group effects for changes in IL-2 and TNF-α. CONCLUSIONS Our findings underscore that a more pronounced baseline inflammatory state is associated with faster progression of psychosis in individuals with CHR. This highlights the importance of considering individual inflammatory profiles during early intervention and of tailoring preventive measures for risk profiles.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - ZiXuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, Massachusetts, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
28
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
29
|
Rami FZ, Li L, Le TH, Kang C, Han MA, Chung YC. Risk and protective factors for severe mental disorders in Asia. Neurosci Biobehav Rev 2024; 161:105652. [PMID: 38608827 DOI: 10.1016/j.neubiorev.2024.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Among 369 diseases and injuries, the years lived with disability (YLDs) and disability-adjusted life-years (DALYs) rates for severe mental illnesses (SMIs) are within the top 20 %. Research on risk and protective factors for SMIs is critically important, as acting on modifiable factors may reduce their incidence or postpone their onset, while early detection of new cases enables prompt treatment and improves prognosis. However, as most of the studies on these factors are from Western countries, the findings are not generalizable across ethnic groups. This led us to conduct a systematic review of the risk and protective factors for SMIs identified in Asian studies. There were common factors in Asian and Western studies and unique factors in Asian studies. In-depth knowledge of these factors could help reduce disability, and the economic and emotional burden of SMIs. We hope that this review will inform future research and policy-making on mental health in Asian countries.
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Thi Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Chaeyeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Mi Ah Han
- Department of Preventive Medicine, College of Medicine, Chosun University, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
30
|
Svancer P, Capek V, Skoch A, Kopecek M, Vochoskova K, Fialova M, Furstova P, Jakob L, Bakstein E, Kolenic M, Hlinka J, Knytl P, Spaniel F. Longitudinal assessment of ventricular volume trajectories in early-stage schizophrenia: evidence of both enlargement and shrinkage. BMC Psychiatry 2024; 24:309. [PMID: 38658884 PMCID: PMC11040899 DOI: 10.1186/s12888-024-05749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Lateral ventricular enlargement represents a canonical morphometric finding in chronic patients with schizophrenia; however, longitudinal studies elucidating complex dynamic trajectories of ventricular volume change during critical early disease stages are sparse. METHODS We measured lateral ventricular volumes in 113 first-episode schizophrenia patients (FES) at baseline visit (11.7 months after illness onset, SD = 12.3) and 128 age- and sex-matched healthy controls (HC) using 3T MRI. MRI was then repeated in both FES and HC one year later. RESULTS Compared to controls, ventricular enlargement was identified in 18.6% of patients with FES (14.1% annual ventricular volume (VV) increase; 95%CI: 5.4; 33.1). The ventricular expansion correlated with the severity of PANSS-negative symptoms at one-year follow-up (p = 0.0078). Nevertheless, 16.8% of FES showed an opposite pattern of statistically significant ventricular shrinkage during ≈ one-year follow-up (-9.5% annual VV decrease; 95%CI: -23.7; -2.4). There were no differences in sex, illness duration, age of onset, duration of untreated psychosis, body mass index, the incidence of Schneiderian symptoms, or cumulative antipsychotic dose among the patient groups exhibiting ventricular enlargement, shrinkage, or no change in VV. CONCLUSION Both enlargement and ventricular shrinkage are equally present in the early stages of schizophrenia. The newly discovered early reduction of VV in a subgroup of patients emphasizes the need for further research to understand its mechanisms.
Collapse
Affiliation(s)
- Patrik Svancer
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vaclav Capek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloslav Kopecek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Vochoskova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Fialova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Furstova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eduard Bakstein
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marian Kolenic
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Pavel Knytl
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
31
|
Bioque M, Llorca-Bofí V, Salmerón S, García-Bueno B, MacDowell KS, Moreno C, Sáiz PA, González-Pinto A, Hidalgo-Figueroa M, Barcones MF, Rodriguez-Jimenez R, Bernardo M, Leza JC. Association between neutrophil to lymphocyte ratio and inflammatory biomarkers in patients with a first episode of psychosis. J Psychiatr Res 2024; 172:334-339. [PMID: 38437766 DOI: 10.1016/j.jpsychires.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Neutrophil to lymphocyte ratio (NLR) has been proposed as an emerging marker of the immune system alterations in psychotic disorders. However, it is not entirely clear whether NLR elevation is a characteristic of the psychotic disorder itself, which inflammatory pathways activation is detecting, or which possible confounding variables could alter its interpretation. We aimed to analyze the relationship of NLR values with a panel of inflammatory and oxidative/nitrosative stress biomarkers and main potential confounding factors in a well-characterized cohort of 97 patients with a first episode of psychosis (FEP) and 77 matched healthy controls (HC). In the FEP group, NLR values presented a moderate, positive correlation with the pro-inflammatory mediator Prostaglandin E2 levels (r = 0.36, p < 0.001) and a small but significant, positive correlation with cannabis use (r = 0.25, p = 0.017). After controlling for cannabis use, the association between NLR and PGE2 remained significant (beta = 0.31, p = 0.012). In the HC group, NLR values negatively correlated with body mass index (BMI, r = -0.24, p = 0.035) and positively correlated with tobacco use (r = 0.25, p = 0.031). These findings support a relationship between the elevation of NLR values and an elevated expression of proinflammatory pathways related to stress response in patients with a FEP. In addition, our study highlights the importance of considering variables such as cannabis or tobacco consumption, and BMI when interpreting the results of studies aimed to establish a clinical use of NLR. These considerations may help future research to use NLR as a reliable biomarker to determine immune system status in this population.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Barcelona, Spain.
| | - Vicent Llorca-Bofí
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sergi Salmerón
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUIN, Madrid, Spain
| | - Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUIN, Madrid, Spain
| | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Pilar A Sáiz
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto de Neurociencias Del Principado de Asturias (INEUROPA), Servicio de Salud Del Principado de Asturias (SESPA), Oviedo, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Psychiatry, Hospital Universitario de Alava, BIOARABA, EHU, Vitoria-Gasteiz, Spain
| | - María Hidalgo-Figueroa
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Psychology, Psychobiology Area, Universidad de Cádiz, Spain; Biomedical Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta Del Mar University Hospital, Cádiz, Spain
| | - María Fe Barcones
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Medicine and Psychiatry, University of Zaragoza, Instituto de Investigación Sanitaria, Aragón, Spain
| | - Roberto Rodriguez-Jimenez
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)/Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM), Spain; Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUIN, Madrid, Spain
| |
Collapse
|
32
|
Torbic H, Chen A, Lumpkin M, Yerke J, Mehkri O, Abraham S, Wang X, Duggal A, Scheraga RG. Antipsychotic Use for ICU Delirium and Associated Inflammatory Markers. J Intensive Care Med 2024; 39:313-319. [PMID: 37724016 PMCID: PMC10922065 DOI: 10.1177/08850666231201567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Purpose: We sought to evaluate critically ill patients with delirium to evaluate inflammatory cytokine production and delirium progression and the role of antipsychotics. Materials and Methods: Adult critically ill patients with confirmed delirium according to a positive CAM-ICU score were included and IL-6 and IL-8 levels were trended for 24 h in this single-center, prospective, observational cohort study. Results: A total of 23 patients were consented and had blood samples drawn for inclusion. There was no difference in IL-6 and IL-8 levels at baseline, 4 to 8 h, and 22 to 28 h after enrollment when comparing patients based on antipsychotic exposure. We identified 2 patient clusters based on age, APACHE III, need for mechanical ventilation, and concomitant infection. In cluster 1, 5 (33.3%) patients received antipsychotics versus 5 (62.5%) patients in cluster 2 (P = .18). Patients in cluster 1 had more co-inflammatory conditions (P < .0001), yet numerically lower baseline IL-6 (P = .18) and IL-8 levels (P = .80) compared to cluster 2. Patients in cluster 1 had a greater median number of delirium-free days compared to cluster 2 (17.0 vs 6.0 days; P = .05). Conclusions: In critically ill patients with delirium, IL-6 and IL-8 levels were variable and antipsychotics were not associated with improvements in delirium or inflammatory markers.
Collapse
Affiliation(s)
- Heather Torbic
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Alyssa Chen
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Mollie Lumpkin
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Jason Yerke
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Omar Mehkri
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Susamma Abraham
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Abhijit Duggal
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel G. Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Critical Care and Pulmonary Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Lu Z, Yang Y, Zhao G, Zhang Y, Sun Y, Liao Y, Kang Z, Feng X, Sun J, Yue W. The Association of Redox Regulatory Drug Target Genes with Psychiatric Disorders: A Mendelian Randomization Study. Antioxidants (Basel) 2024; 13:398. [PMID: 38671846 PMCID: PMC11047424 DOI: 10.3390/antiox13040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Redox regulatory drug (RRD) targets may be considered potential novel drug targets of psychosis due to the fact that the brain is highly susceptible to oxidative stress imbalance. The aim of the present study is to identify potential associations between RRD targets' perturbation and the risk of psychoses; to achieve this, Mendelian randomization analyses were conducted. The expression quantitative trait loci (eQTL) and protein QTL data were used to derive the genetic instrumental variables. We obtained the latest summary data of genome-wide association studies on seven psychoses as outcomes, including schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder (MDD), attention-deficit/hyperactivity disorder, autism, obsessive-compulsive disorder and anorexia nervosa. In total, 95 unique targets were included in the eQTL panel, and 48 targets in the pQTL one. Genetic variations in the vitamin C target (OGFOD2, OR = 0.784, p = 2.14 × 10-7) and melatonin target (RORB, OR = 1.263, p = 8.80 × 10-9) were significantly related to the risk of SCZ. Genetic variation in the vitamin E (PRKCB, OR = 0.248, p = 1.24 × 10-5) target was related to an increased risk of BD. Genetic variation in the vitamin C target (P4HTM: cerebellum, OR = 1.071, p = 4.64 × 10-7; cerebellar hemisphere, OR = 1.092, p = 1.98 × 10-6) was related to an increased risk of MDD. Cognitive function mediated the effects on causal associations. In conclusion, this study provides supportive evidence for a causal association between RRD targets and risk of SCZ, BD or MDD, which were partially mediated by cognition.
Collapse
Affiliation(s)
- Zhe Lu
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yang Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Guorui Zhao
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yuyanan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yaoyao Sun
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Yundan Liao
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Zhewei Kang
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Junyuan Sun
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, No. 51 Hua Yuan Bei Road, Beijing 100191, China; (Z.L.); (G.Z.); (Y.Z.); (Y.S.); (Y.L.); (Z.K.); (X.F.); (J.S.)
- NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
34
|
Tabata K, Son S, Miyata J, Toriumi K, Miyashita M, Suzuki K, Itokawa M, Takahashi H, Murai T, Arai M. Association of homocysteine with white matter dysconnectivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:39. [PMID: 38509166 PMCID: PMC10954654 DOI: 10.1038/s41537-024-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several studies have shown white matter (WM) dysconnectivity in people with schizophrenia (SZ). However, the underlying mechanism remains unclear. We investigated the relationship between plasma homocysteine (Hcy) levels and WM microstructure in people with SZ using diffusion tensor imaging (DTI). Fifty-three people with SZ and 83 healthy controls (HC) were included in this retrospective observational study. Tract-Based Spatial Statistics (TBSS) were used to evaluate group differences in WM microstructure. A significant negative correlation between plasma Hcy levels and WM microstructural disruption was noted in the SZ group (Spearman's ρ = -.330, P = 0.016) but not in the HC group (Spearman's ρ = .041, P = 0.712). These results suggest that increased Hcy may be associated with WM dysconnectivity in SZ, and the interaction between Hcy and WM dysconnectivity could be a potential mechanism of the pathophysiology of SZ. Further, longitudinal studies are required to investigate whether high Hcy levels subsequently cause WM microstructural disruption in people with SZ.
Collapse
Grants
- 19K17061 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H02749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05130 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04979 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02849 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05173 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H02844 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18dm0307008 Japan Agency for Medical Research and Development (AMED)
- JP21uk1024002 Japan Agency for Medical Research and Development (AMED)
- JPMJCR22P3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- The Novartis Pharma Research Grant; SENSHIN Medical Research Foundation; SUZUKEN Memorial Foundation; the Takeda Science Foundation.
- the Brain/MINDS Beyond program (23dm0307008) from the Japan Agency for Medical Research
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
35
|
Saccaro LF, Aimo A, Panichella G, Sentissi O. Shared and unique characteristics of metabolic syndrome in psychotic disorders: a review. Front Psychiatry 2024; 15:1343427. [PMID: 38501085 PMCID: PMC10944869 DOI: 10.3389/fpsyt.2024.1343427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction People with psychosis spectrum disorders (PSD) face an elevated risk of metabolic syndrome (MetS), which may reduce their life expectancy by nearly 20%. Pinpointing the shared and specific characteristics and clinical implications of MetS in PSD is crucial for designing interventions to reduce this risk, but an up-to-date review on MetS across the psychosis spectrum is lacking. Methods This narrative review fills this gap by examining the clinical literature on characteristics and implications of MetS in both distinct PSD and transdiagnostically, i.e., across traditional categorical diagnoses, with a focus on psychiatric and cardio-metabolic management. Results We discuss common and specific characteristics of MetS in PSD, as well as factors contributing to MetS development in PSD patients, including unhealthy lifestyle factors, genetic predisposition, pro-inflammatory state, drugs consumption, antipsychotic medication, and psychotic symptoms. We highlight the importance of early identification and management of cardio-metabolic risk in PSD patients, as well as the existing gaps in the literature, for instance in the screening for MetS in younger PSD patients. We compare hypotheses-generating clinical associations and characteristics of MetS in different PSD, concluding by reviewing the existing recommendations and challenges in screening, monitoring, and managing MetS in PSD. Conclusion Early identification and management of MetS are crucial to mitigate the long-term cardio-metabolic toll in PSD patients. Interventions should focus on healthy lifestyle and appropriate pharmacological and behavioral interventions. Further translational and clinical research is needed to develop targeted interventions and personalized treatment approaches for this vulnerable population, aiming at improving physical health and overall well-being.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giorgia Panichella
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Othman Sentissi
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
36
|
Misiak B, Pawlak E, Rembacz K, Kotas M, Żebrowska-Różańska P, Kujawa D, Łaczmański Ł, Piotrowski P, Bielawski T, Samochowiec J, Samochowiec A, Karpiński P. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J Psychiatr Res 2024; 171:152-160. [PMID: 38281465 DOI: 10.1016/j.jpsychires.2024.01.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The present study had the following aims: 1) to compare gut microbiota composition in patients with schizophrenia and controls and 2) to investigate the association of differentially abundant bacterial taxa with markers of inflammation, intestinal permeability, lipid metabolism, and glucose homeostasis as well as clinical manifestation. A total of 115 patients with schizophrenia during remission of positive and disorganization symptoms, and 119 controls were enrolled. Altogether, 32 peripheral blood markers were assessed. A higher abundance of Eisenbergiella, Family XIII AD3011 group, Eggerthella, Hungatella, Lactobacillus, Olsenella, Coprobacillus, Methanobrevibacter, Ligilactobacillus, Eubacterium fissicatena group, and Clostridium innocuum group in patients with schizophrenia was found. The abundance of Paraprevotella and Bacteroides was decreased in patients with schizophrenia. Differentially abundant genera were associated with altered levels of immune-inflammatory markers, zonulin, lipid profile components, and insulin resistance. Moreover, several correlations of differentially abundant genera with cognitive impairment, higher severity of negative symptoms, and worse social functioning were observed. The association of Methanobrevibacter abundance with the level of negative symptoms, cognition, and social functioning appeared to be mediated by the levels of interleukin-6 and RANTES. In turn, the association of Hungatella with the performance of attention was mediated by the levels of zonulin. The findings indicate that compositional alterations of gut microbiota observed in patients with schizophrenia correspond with clinical manifestation, intestinal permeability, subclinical inflammation, lipid profile alterations, and impaired glucose homeostasis. Subclinical inflammation and impaired gut permeability might mediate the association of gut microbiota alterations with psychopathological symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| | - Edyta Pawlak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Rembacz
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Kotas
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Poland
| | - Paweł Karpiński
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
37
|
Healy C, Byrne J, Raj Suasi S, Föcking M, Mongan D, Kodosaki E, Heurich M, Cagney G, Wynne K, Bearden CE, Woods SW, Cornblatt B, Mathalon D, Stone W, Cannon TD, Addington J, Cadenhead KS, Perkins D, Jeffries C, Cotter D. Differential expression of haptoglobin in individuals at clinical high risk of psychosis and its association with global functioning and clinical symptoms. Brain Behav Immun 2024; 117:175-180. [PMID: 38219978 DOI: 10.1016/j.bbi.2023.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Immune dysregulation has been observed in patients with schizophrenia or first-episode psychosis, but few have examined dysregulation in those at clinical high-risk (CHR) for psychosis. The aim of this study was to examine whether the peripheral blood-based proteome was dysregulated in those with CHR. Secondly, we examined whether baseline dysregulation was related to current and future functioning and clinical symptoms. METHODS We used data from participants of the North American Prodromal Longitudinal Studies (NAPLS) 2 and 3 (n = 715) who provided blood samples (Unaffected Comparison subjects (UC) n = 223 and CHR n = 483). Baseline proteomic data was quantified from plasma samples using mass spectrometry. Differential expression was examined between CHR and UC using logistic regression. Psychosocial functioning was measured using the Global Assessment of Functioning scale (GAF). Symptoms were measured using the subscale scores from the Scale of Psychosis-risk Symptoms; positive, negative, general, and disorganised. Three measures of each outcome were included: baseline, longest available follow-up (last follow-up) and most severe follow-up (MSF). Associations between the proteomic data, GAF and symptoms were assessed using ordinal regression. RESULTS Of the 99 proteins quantified, six were differentially expressed between UC and CHR. However, only haptoglobin (HP) survived FDR-correction (OR:1.45, 95 %CI:1.23-1.69, padj = <0.001). HP was cross-sectionally and longitudinally associated with functioning and symptoms such that higher HP values were associated with poorer functioning and more severe symptoms. Results were evident after stringent adjustment and poorer functioning was observed in both NAPLS cohort separately. CONCLUSION We demonstrate that elevated HP is robustly observed in those at CHR for psychosis, irrespective of transition to psychosis. HP is longitudinally associated with poorer functioning and greater symptom severity. These results agree with previous reports of increased HP gene expression in individuals at-risk for psychosis and with the dysfunction of the acute phase inflammatory response seen in psychotic disorders.
Collapse
Affiliation(s)
- Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Psychology, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Jonah Byrne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Subash Raj Suasi
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - David Mongan
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Medicine Dentistry and Biomedical Science, Queen's University, Belfast Northern Ireland
| | - Eleftheria Kodosaki
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales United Kingdom
| | - Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales United Kingdom
| | - Gerard Cagney
- University College Dublin, School of Biomolecular and Biomedical Science, Conway Institute Belfield Dublin 4
| | - Kieran Wynne
- University College Dublin, School of Biomolecular and Biomedical Science, Conway Institute Belfield Dublin 4
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences and Psychology, University of California, Los Angeles CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Barbara Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks NY, USA
| | - Daniel Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco CA, USA
| | - William Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston MA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Department of Psychology, Yale University, New Haven CT, USA
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary Canada
| | | | - Diana Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - David Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Psychiatry, Beaumont Hospital, Dublin 9 Ireland
| |
Collapse
|
38
|
Stiernborg M, Prast-Nielsen S, Melas PA, Skott M, Millischer V, Boulund F, Forsell Y, Lavebratt C. Differences in the gut microbiome of young adults with schizophrenia spectrum disorder: using machine learning to distinguish cases from controls. Brain Behav Immun 2024; 117:298-309. [PMID: 38280535 DOI: 10.1016/j.bbi.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
While an association between the gut microbiome and schizophrenia spectrum disorders (SSD) has been suggested, the existing evidence is still inconclusive. To this end, we analyzed bacteria and bacterial genes in feces from 52 young adult SSD patients and 52 controls using fecal shotgun metagenomic sequencing. Compared to controls, young SSD patients were found to have significantly lower α-diversity and different β-diversity both regarding bacterial species (i.e., taxonomic diversity) and bacterial genes (i.e., functional diversity). Furthermore, the α-diversity measures 'Pielou's evenness' and 'Shannon' were significantly higher for both bacterial species, bacterial genes encoding enzymes and gut brain modules in young SSD patients on antipsychotic treatment (young SSD not on antipsychotics=9 patients, young SSD on antipsychotics=43 patients). We also applied machine learning classifiers to distinguish between young SSD patients and healthy controls based on their gut microbiome. Results showed that taxonomic and functional data classified young SSD individuals with an accuracy of ≥ 70% and with an area under the receiver operating characteristic curve (AUROC) of ≥ 0.75. Differential abundance analysis on the most important features in the classifier models revealed that most of the species with higher abundance in young SSD patients had their natural habitat in the oral cavity. In addition, many of the modules with higher abundance in young SSD patients were amino acid biosynthesis modules. Moreover, the abundances of gut-brain modules of butyrate synthesis and acetate degradation were lower in the SSD patients compared to controls. Collectively, our findings continue to support the presence of gut microbiome alterations in SSD and provide support for the use of machine learning algorithms to distinguish patients from controls based on gut microbiome profiles.
Collapse
Affiliation(s)
- Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Maria Skott
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
39
|
Taylor JH, Bermudez-Gomez J, Zhou M, Gómez O, Ganz-Leary C, Palacios-Ordonez C, Huque ZM, Barzilay R, Goldsmith DR, Gur RE. Immune and oxidative stress biomarkers in pediatric psychosis and psychosis-risk: Meta-analyses and systematic review. Brain Behav Immun 2024; 117:1-11. [PMID: 38141839 PMCID: PMC10932921 DOI: 10.1016/j.bbi.2023.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE While genetic and cohort studies suggest immune and reduction/oxidation (redox) alterations occur in psychosis, less is known about potential alterations in children and adolescents. METHODS We conducted a systematic review to identify immune and redox biomarker studies in children and adolescents (mean age ≤ 18 years old) across the psychosis spectrum: from psychotic like experiences, which are common in children, to threshold psychotic disorders like schizophrenia. We conducted meta-analyses when at least three studies measured the same biomarker. RESULTS The systematic review includes 38 pediatric psychosis studies. The meta-analyses found that youth with threshold psychotic disorders had higher neutrophil/lymphocyte ratio (Hedge's g = 0.40, 95 % CI 0.17 - 0.64), tumor necrosis factor (Hedge's g = 0.38, 95 % CI 0.06 - 0.69), C-reactive protein (Hedge's g = 0.38, 95 % CI 0.05 - 0.70), interleukin-6 (Hedge's g = 0.35; 95 % CI 0.11 - 0.64), and total white blood cell count (Hedge's g = 0.29, 95 % CI 0.12 - 0.46) compared to youth without psychosis. Other immune and oxidative stress meta-analytic findings were very heterogeneous. CONCLUSION Results from several studies are consistent with the hypothesis that signals often classified as "proinflammatory" are elevated in threshold pediatric psychotic disorders. Data are less clear for immune markers in subthreshold psychosis and redox markers across the subthreshold and threshold psychosis spectrum. Immune and redox biomarker intervention studies are lacking, and research investigating interventions targeting the immune system in threshold pediatric psychosis is especially warranted.
Collapse
Affiliation(s)
- Jerome Henry Taylor
- Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Lifespan Brain Institute of CHOP and Penn Medicine, Philadelphia, PA, USA.
| | - Julieta Bermudez-Gomez
- National Institute of Psychiatry Ramon de la Fuente Muñiz, Mexico City, Mexico; Statiscripts, LLC, USA
| | - Marina Zhou
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oscar Gómez
- Statiscripts, LLC, USA; Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Casey Ganz-Leary
- Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Lifespan Brain Institute of CHOP and Penn Medicine, Philadelphia, PA, USA
| | - Cesar Palacios-Ordonez
- Statiscripts, LLC, USA; Monterrey Institute of Technology and Higher Education, Monterrey, Mexico
| | - Zeeshan M Huque
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Lifespan Brain Institute of CHOP and Penn Medicine, Philadelphia, PA, USA; Temple University, Philadelphia, PA, USA
| | - Ran Barzilay
- Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Lifespan Brain Institute of CHOP and Penn Medicine, Philadelphia, PA, USA
| | | | - Raquel E Gur
- Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Lifespan Brain Institute of CHOP and Penn Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Korkmaz ŞA, Kaymak SU, Neşelioğlu S, Erel Ö. Thiol-disulphide Homeostasis in Patients with Schizophrenia: The Potential Biomarkers of Oxidative Stress in Acute Exacerbation of Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:139-150. [PMID: 38247420 PMCID: PMC10811387 DOI: 10.9758/cpn.23.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 01/23/2024]
Abstract
Objective : Recent evidence suggests that oxidative stress contributes to the pathophysiology of schizophrenia. This study aimed to compare thiol-disulphide homeostasis in acute and stable phases of schizophrenia for the first time. Methods : Among the patients with schizophrenia, 61 in the acute-phase and 61 in the stable phase of their illness were enrolled in the study. Native thiol (NT), total thiol (TT), disulphide (SS), disulphide/native thiol, disulphide/total thiol, and native thiol/total thiol for thiol-disulphide homeostasis were compared between the groups. The Brief Psychiatric Rating Scale (BPRS), Scale for the Assessment of Positive/Negative Symptoms (SAPS/SANS), Clinical Global Impression-Severity Scale (CGI-S), Barnes Akathisia Rating Scale, and Simpson-Angus Scale were used to assess symptoms. Results : After controlling for age, sex, body mass index, and smoking status there were significant differences in NT, TT, SS/NT, SS/TT, and NT/TT, but not SS. Thiol/disulphide homeostasis has shifted in favour of the oxidative side in patients with acute-phase compared to that in stable schizophrenia. BPRS, SAPS, and CGI-S scores were significantly correlated with all six thiol-disulphide parameters, but not SANS, when controlling for age and sex. Significant receiver operating characteristic (ROC) curves were obtained for all thiol-disulphide homeostasis parameters. Discriminant analysis was found to be statistically significant in discriminating between groups. Conclusion : These results show that oxidative status increases thiol-disulphide homeostasis in patients with acute-phase schizophrenia compared to those with stable schizophrenia. These findings suggest that thiol-disulphide parameters can be used as biomarkers for the acute exacerbation of schizophrenia.
Collapse
Affiliation(s)
- Şükrü Alperen Korkmaz
- Department of Psychiatry, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Semra Ulusoy Kaymak
- Department of Psychiatry, Gülhane Education and Research Hospital, University of Health Science, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
41
|
Laaboub N, Locatelli I, Grosu C, Piras M, Ngoc TH, Ranjbar S, Preisig M, Elowe J, von Gunten A, Conus P, Eap CB. Metabolic disturbances are risk factors for readmission to psychiatric hospitals in non-smokers but not in smokers: results from a Swiss psychiatric cohort and in first-episode psychosis patients. Front Psychiatry 2024; 15:1256416. [PMID: 38414502 PMCID: PMC10896922 DOI: 10.3389/fpsyt.2024.1256416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Background Psychiatric patients are at high risk of readmission, and a high body mass index has previously been shown as a risk factor. We sought to replicate this finding and 1) to prospectively assess the association of metabolic syndrome and its five components with readmission in psychiatric hospitals and 2) to identify other clinical and sociodemographic predictors of readmission. Methods Between 2007 and 2019, data on 16727 admissions of 7786 adult and elderly patients admitted to the Department of Psychiatry of the Lausanne University Hospital, were collected. Metabolic syndrome was defined according to the International Diabetes Federation definition. Cox frailty models were used to investigate the associations between readmission and metabolic disturbances. Results A total of 2697 (35%) patients were readmitted to our psychiatric hospital. Novel risk factors for readmission in non-smokers were identified, including being overweight (HR=1.26; 95%CI=[1.05; 1.51]) or obese (HR=1.33; 95%CI=[1.08; 1.62]), displaying hypertriglyceridemia (HR=1.21; 95%CI=[1.04; 1.40]) and metabolic syndrome (HR=1.26; 95%CI=[1.02; 1.55]). Central obesity and hyperglycemia increased the risk of readmission when considering the Health of the Nation Outcome Scales variable. In first-episode psychosis patients, obesity (HR=2.23; 95%CI=[1.14; 4.30]) and high-density lipoprotein hypocholesterolemia (HR=1.90; 95%CI=[1.14; 3.20]) doubled the risk of readmission. Conclusion The observed interaction between smoking and metabolic variables are compatible with a ceiling effect; metabolic variables increase the risk of readmission in non-smokers but not in smokers who are already at higher risk. Future studies should determine whether better metabolic monitoring and treatment can reduce readmission risk.
Collapse
Affiliation(s)
- Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Isabella Locatelli
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Tram Ho Ngoc
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Martin Preisig
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Julien Elowe
- Service of Adult Psychiatry North-West, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
42
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
43
|
Yang C, Tian Y, Yang X, Liu L, Ling C, Xia L, Liu H. Hematological and inflammatory markers in Han Chinese patients with drug-free schizophrenia: relationship with symptom severity. Front Immunol 2024; 15:1337103. [PMID: 38352871 PMCID: PMC10861680 DOI: 10.3389/fimmu.2024.1337103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background There is a growing amount of evidence suggesting that immunity and inflammation play an important role in the pathophysiology of schizophrenia. In this study, we aimed to examine the relationship between hematological and inflammatory markers with symptom severity in Han Chinese patients with drug-free schizophrenia. Methods This retrospective study was conducted at Chaohu Hospital of Anhui Medical University and data were extracted from the electronic medical record system over a 5-year period (May 2017 to April 2022), including participants' general and clinical information as well as Brief Psychiatric Rating Scale (BPRS) scores and hematological parameters. Results A total of 2,899 patients with schizophrenia were identified through the initial search. After screening, 91 patients and 141 healthy controls (HCs) were included. The patients had a higher value of neutrophils/lymphocytes ratio (NLR), monocyte/lymphocyte ratio (MLR), and platelet/lymphocyte ratio (PLR) than HCs (all P < 0.001). MLR was positively correlated with BPRS total score (r = 0.337, P = 0.001) and resistance subscale score (r = 0.350, P = 0.001). Binary logistic regression analyses revealed that severely ill was significantly associated with being male and a higher value of MLR (Natural Logaruthm, Ln) (all P < 0.05), and the receiver operating characteristic (ROC) analysis showed good performance of a regression model with an area under the curve (AUC) value of 0.787. Conclusion Patients with drug-free schizophrenia have an unbalanced distribution of peripheral blood granulocytes, and elevated NLR, MLR and PLR. Patients with higher value of MLR tend to have more psychotic symptoms, especially those symptoms of hostility, uncooperativeness, and suspiciousness. Our study gives a preliminary indication that MLR is a potential predictor of disease severity in patients with drug-free schizophrenia.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yinghan Tian
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Xiaoxue Yang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Lewei Liu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Chen Ling
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry 2024; 14:63. [PMID: 38272880 PMCID: PMC10810856 DOI: 10.1038/s41398-024-02778-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The question of whether immune dysfunction contributes to risk of psychiatric disorders has long been a subject of interest. To assert this hypothesis a plethora of correlative evidence has been accumulated from the past decades; however, a variety of technical and practical obstacles impeded on a cause-effect interpretation of these data. With the advent of large-scale omics technology and advanced statistical models, particularly Mendelian randomization, new studies testing this old hypothesis are accruing. Here we synthesize these new findings from genomics and genetic causal inference studies on the role of immune dysfunction in major psychiatric disorders and reconcile these new data with pre-omics findings. By reconciling these evidences, we aim to identify key gaps and propose directions for future studies in the field.
Collapse
Affiliation(s)
- Olena Iakunchykova
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Esten H Leonardsen
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Yunpeng Wang
- Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
45
|
Chen EYH, Wong SMY. Unique Challenges in Biomarkers for Psychotic Disorders. Brain Sci 2024; 14:106. [PMID: 38275526 PMCID: PMC10814134 DOI: 10.3390/brainsci14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024] Open
Abstract
Biomarkers are observations that provide information about the risk of certain conditions (predictive) or their underlying mechanisms (explanatory) [...].
Collapse
Affiliation(s)
- Eric Y. H. Chen
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie M. Y. Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong;
| |
Collapse
|
46
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
47
|
Fuentes-Claramonte P, Estradé A, Solanes A, Ramella-Cravaro V, Garcia-Leon MA, de Diego-Adeliño J, Molins C, Fung E, Valentí M, Anmella G, Pomarol-Clotet E, Oliver D, Vieta E, Radua J, Fusar-Poli P. Biomarkers for Psychosis: Are We There Yet? Umbrella Review of 1478 Biomarkers. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae018. [PMID: 39228676 PMCID: PMC11369642 DOI: 10.1093/schizbullopen/sgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Hypothesis This umbrella review aims to comprehensively synthesize the evidence of association between peripheral, electrophysiological, neuroimaging, neuropathological, and other biomarkers and diagnosis of psychotic disorders. Study Design We selected systematic reviews and meta-analyses of observational studies on diagnostic biomarkers for psychotic disorders, published until February 1, 2018. Data extraction was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Evidence of association between biomarkers and psychotic disorders was classified as convincing, highly suggestive, suggestive, weak, or non-significant, using a standardized classification. Quality analyses used the Assessment of Multiple Systematic Reviews (AMSTAR) tool. Study Results The umbrella review included 110 meta-analyses or systematic reviews corresponding to 3892 individual studies, 1478 biomarkers, and 392 210 participants. No factor showed a convincing level of evidence. Highly suggestive evidence was observed for transglutaminase autoantibodies levels (odds ratio [OR] = 7.32; 95% CI: 3.36, 15.94), mismatch negativity in auditory event-related potentials (standardized mean difference [SMD] = 0.73; 95% CI: 0.5, 0.96), P300 component latency (SMD = -0.6; 95% CI: -0.83, -0.38), ventricle-brain ratio (SMD = 0.61; 95% CI: 0.5, 0.71), and minor physical anomalies (SMD = 0.99; 95% CI: 0.64, 1.34). Suggestive evidence was observed for folate, malondialdehyde, brain-derived neurotrophic factor, homocysteine, P50 sensory gating (P50 S2/S1 ratio), frontal N-acetyl-aspartate, and high-frequency heart rate variability. Among the remaining biomarkers, weak evidence was found for 626 and a non-significant association for 833 factors. Conclusions While several biomarkers present highly suggestive or suggestive evidence of association with psychotic disorders, methodological biases, and underpowered studies call for future higher-quality research.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrés Estradé
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Aleix Solanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| | - Valentina Ramella-Cravaro
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Conrad Molins
- Psychiatric Service, Hospital Universitari Santa Maria, Lleida, Catalonia, Spain
| | - Eric Fung
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Marc Valentí
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Gerard Anmella
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Dominic Oliver
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford OX3 7JX, UK
- OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Eduard Vieta
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Negah SS, Forouzanfar F. Oxidative Stress is a New Avenue for Treatment of Neuropsychiatric Disorders: Hype of Hope? Curr Mol Med 2024; 24:1494-1505. [PMID: 37670697 DOI: 10.2174/1566524023666230904150907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 09/07/2023]
Abstract
The biochemical integrity of the brain is critical in maintaining normal central nervous system (CNS) functions. One of the factors that plays an important role in causing biochemical impairment of the brain is known as oxidative stress. Oxidative stress is generally defined as the excessive formation of free radicals relative to antioxidant defenses. The brain is particularly susceptible to oxidative stress because of its high oxygen consumption and lipid-rich content. Therefore, oxidative stress damage is associated with abnormal CNS function. Psychiatric disorders are debilitating diseases. The underlying pathophysiology of psychiatric disorders is poorly defined and may involve the interplay of numerous clinical factors and mechanistic mechanisms. Considerable evidence suggests that oxidative stress plays a complex role in several neuropsychiatric disorders, including anxiety, bipolar disorder, depression, obsessivecompulsive disorder, panic disorder, and schizophrenia. To address these issues, we reviewed the literature and considered the role of oxidative stress as one of the first pathological changes in the course of neuropsychiatric disorders, which should receive more attention in future research.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Zhilyaeva TV, Kasyanov ED, Rukavishnikov GV, Piatoikina AS, Bavrina AP, Kostina OV, Zhukova ES, Shcherbatyuk TG, Mazo GE. Pterin metabolism, inflammation and oxidative stress biochemical markers in schizophrenia: Factor analysis and assessment of clinical symptoms associations. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110823. [PMID: 37437837 DOI: 10.1016/j.pnpbp.2023.110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Various aspects of folate and tetrahydrobiopterin (BH4) metabolism disturbances have been detected in patients with schizophrenia.Data were obtained that disturbances in the pterins (folates and BH4) metabolism can be associated with oxidative stress and inflammation, but has not yet been confirmed in clinical studies in schizophrenia. Within the framework of this study, a correlation and factor analysis of biochemical markersof pterin metabolism, inflammation and redox imbalance in patients with schizophrenia was performed in order to test the hypothesis of the single etiopathogenetic node, including the studied biochemical processes. Methods: 125 patients with schizophrenia and 95 healthy volunteers were randomly selected and evaluated with a biochemical examination of BH4, folate, B12, homocysteine, C-reactive protein, interleukin-6, reduced glutathione levels in the blood serum; activity of superoxide dismutase and catalase - in erythrocytes; malondialdehyde - in blood plasma. All patients underwent an examination using standardized psychopathology rating scales. Spearman rank coefficient (ρ) with Benjamini-Hochberg correction was used for the correlation analysis. The principal components analysis (PCA) was used as a factor analysis. Results: Significant correlations were found within groups of pterin metabolism, inflammatory markers and redox-imbalance, and also between separate inflammation, oxidative stress and markers of pterin metabolism. The performed factor analysis made it possible to distinguish two components: 1 - pterin metabolism, 2 - oxidativeinflammatory markers. Despite the weak statistical associations and, possibly, functional relationships between pterin metabolism and oxidative/inflammation markers, each of the components has its own clinical correlates and, probably, a separate contribution to the pathology of schizophrenia.
Collapse
Affiliation(s)
- T V Zhilyaeva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia; V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.
| | - E D Kasyanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - G V Rukavishnikov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - A S Piatoikina
- Nizhny Novgorod Clinical Psychiatric, Hospital No. 1, Nizhny Novgorod, Russia
| | - A P Bavrina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - O V Kostina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - E S Zhukova
- Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology, Nizhny Novgorod, Russia
| | - T G Shcherbatyuk
- Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology, Nizhny Novgorod, Russia; Pushchino State Institute of Natural Science, Pushchino, Russia
| | - G E Mazo
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
50
|
Zheng Y, Zhang Q, Zhou X, Yao L, Zhu Q, Fu Z. Altered levels of cytokine, T- and B-lymphocytes, and PD-1 expression rates in drug-naïve schizophrenia patients with acute phase. Sci Rep 2023; 13:21711. [PMID: 38066312 PMCID: PMC10709554 DOI: 10.1038/s41598-023-49206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Many studies have investigated the changes of immune cells and proinflammatory cytokines in patients with acute schizophrenia, but few studies have investigated the functional phenotypes of immune cells and the expression rate of programmed cell death protein 1 (PD-1)/ programmed cell death-Ligand 1 (PD-L1). The aim of this study was to investigate the extent of immune cells activation, PD-1/PD-L1 expressions, and altered cytokine levels in drug-naïve schizophrenia patients with acute-phase. 23 drug-naïve schizophrenia patients in acute-phase and 23 healthy individuals were enrolled in this study as experimental and control groups, separately. Socio-demographic information including gender, age, duration of illness, and smoking status was collected for each subject. Beckman DXFLEX triple laser thirteen-color flow cytometer and self-contained software CytoFLEX flow cytometric analysis software were used to detect the expressions of PD-1/PD-L1 on CD4+/CD8+ T lymphocytes, B lymphocytes, monocytes and NK cells. BD Bioscience was used to examine the levels of cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, Interleukin (IL)-2, IL-4, IL-6, and IL-10. Drug-naïve schizophrenia patients in acute-phase had higher levels of peripheral blood CD4+ T lymphocytes and B lymphocytes, higher PD-1 expression in B lymphocytes, and lower levels of CD8+ T lymphocytes. In addition, IL-6 levels of peripheral blood were higher in schizophrenia patients (all P < 0.05). Significant immune stress was present in schizophrenia patients with acute-phase.
Collapse
Affiliation(s)
- Yali Zheng
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qi Zhang
- Hangzhou Normal University, Hangzhou, China
| | - Xianqin Zhou
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Linjuan Yao
- Hangzhou Di'an Medical Laboratory Center Co., Ltd, Hangzhou, China
| | | | | |
Collapse
|