1
|
Silva RM, Rosa SS, Santos JAL, Azevedo AM, Fernandes-Platzgummer A. Enabling Mesenchymal Stromal Cells and Their Extracellular Vesicles Clinical Availability-A Technological and Economical Evaluation. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70037. [PMID: 40104174 PMCID: PMC11913891 DOI: 10.1002/jex2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/05/2025] [Accepted: 01/30/2025] [Indexed: 03/20/2025]
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have shown significant therapeutic potential across a wide range of clinical conditions, complementing the progress of MSC-based therapies, some of which have already received regulatory approval. However, the high cost of these therapies has limited their accessibility, creating an urgent need to explore manufacturing strategies that reduce the cost of goods and selling prices. This study presents the design and simulation of a scalable manufacturing platform for the co-production of clinical-grade MSC and MSC-EVs using SuperPro Designer. Various production scenarios were evaluated to maximise manufacturing capacity while analysing their impact on economic performance. Our findings demonstrate that for MSC-EVs doses containing 1010 and 1011 particles, selling prices range from 166 to 309€ and from 1659 to 3082€, respectively. For clinical doses of MSC, selling prices vary between 965 and 42,673€ depending on dose size and production scale. Importantly, the co-production approach enables cost-sharing between products, contributing to significantly lower prices compared to individual production. Overall, the proposed platform achieved an attractive payback time of 3 years and a return on investment of 36%. By increasing the number of staggered production units, further price reductions and improved economic metrics could be attained. In conclusion, this study highlights the potential of the proposed manufacturing platform to deliver cost-effective, clinical-grade MSC and MSC-EVs products, advancing the field of regenerative medicine and enhancing the accessibility of these innovative treatments.
Collapse
Affiliation(s)
- Ricardo M Silva
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Sara Sousa Rosa
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - José A L Santos
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana M Azevedo
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| | - Ana Fernandes-Platzgummer
- Institute for Bioengineering and Biosciences, Department of Bioengineering Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy Instituto Superior Técnico, Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
2
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
3
|
Piñeiro-Ramil M, Gómez-Seoane I, Rodríguez-Cendal AI, Fuentes-Boquete I, Díaz-Prado S. Mesenchymal stromal cells-derived extracellular vesicles in cartilage regeneration: potential and limitations. Stem Cell Res Ther 2025; 16:11. [PMID: 39849578 PMCID: PMC11755911 DOI: 10.1186/s13287-025-04135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Articular cartilage injuries can lead to pain, stiffness, and reduced mobility, and may eventually progress to osteoarthritis (OA). Despite substantial research efforts, effective therapies capable of regenerating cartilage are still lacking. Mesenchymal stromal cells (MSCs) are known for their differentiation and immunomodulatory capabilities, yet challenges such as limited survival post-injection and inconsistent therapeutic outcomes hinder their clinical application. Recent evidence suggests that the beneficial effects of MSCs are largely mediated by their secreted small extracellular vesicles (sEVs), which have been shown to promote tissue repair and reduce inflammation. MSC-derived sEVs have shown promise in mitigating cartilage degradation and chondrocyte apoptosis, positioning them as a promising alternative to MSC-based therapies for OA treatment. This review explores the potential and limitations of MSC-derived sEVs in cartilage regeneration. MAIN TEXT This systematic review was conducted following PRISMA guidelines, with a comprehensive search of the Web of Science and Scopus databases for studies published between 2019 and 2024. A total of 223 records were identified, of which 132 articles were assessed for eligibility based on general selection criteria. After full-text screening, 60 articles were initially selected, comprising 58 in vitro studies and 40 in vivo studies. Following further exclusion based on specific criteria, 33 in vitro and 28 in vivo studies from a total of 47 scientific papers were included in the final qualitative synthesis. Most studies indicate that MSC-derived sEVs enhance chondrocyte proliferation, improve cartilage extracellular matrix composition, and reduce matrix-degrading enzymes and inflammation, thereby delaying OA progression. CONCLUSION A growing body of evidence supports the use of MSC-derived sEVs as a therapeutic tool for preventing OA progression, with most studies reporting beneficial effects on cartilage structure and function. However, challenges remain in optimizing and standardizing sEVs isolation, dosage, and delivery methods for clinical application. Further research is necessary to elucidate the mechanisms underlying sEVs-mediated cartilage regeneration and to facilitate their translation into effective OA therapies.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
| | - Iván Gómez-Seoane
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
| | - Ana Isabel Rodríguez-Cendal
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER- BBN), Madrid, 28029, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain.
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain.
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER- BBN), Madrid, 28029, Spain.
| |
Collapse
|
4
|
Franko R, de Almeida Monteiro Melo Ferraz M. Exploring the potential of in vitro extracellular vesicle generation in reproductive biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70007. [PMID: 39238549 PMCID: PMC11375532 DOI: 10.1002/jex2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The interest in the growing field of extracellular vesicle (EV) research highlights their significance in intercellular signalling and the selective transfer of biological information between donor and recipient cells. EV studies have provided valuable insights into intercellular communication mechanisms, signal identification and their involvement in disease states, offering potential avenues for manipulating pathological conditions, detecting biomarkers and developing drug-delivery systems. While our understanding of EV functions in reproductive tissues has significantly progressed, exploring their potential as biomarkers for infertility, therapeutic interventions and enhancements in assisted reproductive technologies remains to be investigated. This knowledge gap stems partly from the difficulties associated with large-scale EV production relevant to clinical applications. Most existing studies on EV production rely on conventional 2D cell culture systems, characterized by suboptimal EV yields and a failure to replicate in vivo conditions. This results in the generation of EVs that differ from their in vivo counterparts. Hence, this review firstly delves into the importance of EVs in reproduction to then expand on current techniques for in vitro EV production, specifically examining diverse methods of culture and the potential of bioengineering technologies to establish innovative systems for enhanced EV production.
Collapse
Affiliation(s)
- Roksan Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| | - Marcia de Almeida Monteiro Melo Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| |
Collapse
|
5
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
7
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Extracellular Vesicles Generated by Mesenchymal Stem Cells in Stirred Suspension Bioreactors Promote Angiogenesis in Human-Brain-Derived Endothelial Cells. Int J Mol Sci 2024; 25:5219. [PMID: 38791256 PMCID: PMC11121007 DOI: 10.3390/ijms25105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
| | - David A. Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Alim P. Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29 Street N.W., Calgary, AB T2N 2T9, Canada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Otahal A, Kramer K, Neubauer M, Gulová S, Lacza Z, Nehrer S, De Luna A. Culture of Hoffa fat pad mesenchymal stem/stromal cells on microcarrier suspension in vertical wheel bioreactor for extracellular vesicle production. Stem Cell Res Ther 2024; 15:61. [PMID: 38439108 PMCID: PMC10913578 DOI: 10.1186/s13287-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are increasingly employed in regenerative medicine approaches for their immunomodulatory and anti-inflammatory properties, which are encoded in their secretome including extracellular vesicles (EVs). The Hoffa fat pad (HFP) located infrapatellarly harbours MSCs that could assist in tissue homeostasis in osteoarthritic joints. Intraarticular injection therapies based on blood products could modulate the populations of released HFP-MSC-EVs in a quantitative manner. METHODS To obtain amounts of HFP-MSC-derived EVs that allow pre-clinical evaluation, suitable EV production systems need to be developed. This work investigates the release of EVs from primary HFP-MSCs cultivated in a 3D environment using microcarrier suspension culture in a vertical wheel bioreactor in comparison to conventional 2D culture. To simulate an intraarticular blood product therapy, cultures were treated with citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) before EV collection. HFP-MSC-EVs are enriched via ultrafiltration and characterised via Western Blot, nanoparticle tracking analysis in scatter as well as fluorescence mode. EV potency was determined via RT-qPCR analysing the expression of type II and X collagen (COL2 and COL10), as well as inducible nitric oxide synthase (iNOS) in primary OA chondrocytes. RESULTS Blood product supplementation elevated HFP-MSC metabolic activity as determined via XTT assay over the course of 14 days. 3D culture resulted in a roughly 100-fold EV yield compared to 2D culture and elevated number of EVs released per cell. Total protein content correlated with the EV concentration. While typical EV marker proteins such as CD9, CD63 or Alix were detected in total protein extracts, CD9 and CD73 colocalised on individual EVs highlighting their cell origin. The type of blood product treatment did not affect the size or concentration of EVs obtained from HFP-MSCs. Assessing potency of 3D culture EVs in comparison to 2D EVs revealed superior biological activity with regard to inhibition of inflammation, inhibition of chondrocyte hypertrophy and induction of cartilage-specific ECM production. CONCLUSIONS HFP-MSCs proliferate in presence of human blood products indicating that animal serum in culture media can be avoided in the future. The culture of HFP-MSCs in the employed bioreactor was successfully used to generate quantities of EVs that could allow evaluation of HFP-MSC-EV-mediated effects in pre-clinical settings. In addition, EV potency of 3D EVs is superior to EVs obtained in conventional 2D culture flasks.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria.
| | - Karina Kramer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria
| | - Markus Neubauer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria
- Department of Orthopaedics and Traumatology, Universitätsklinikum Krems, Krems, Austria
| | - Slavomira Gulová
- Associated Tissue Bank, Faculty of Medicine, Pavel Jozef Safarik University and Louis Pasteur University Hospital, Kosice, Slovakia
| | - Zsombor Lacza
- Department of Sport Physiology, University of Physical Education, Budapest, Hungary
- Inst. Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria
- Department of Orthopaedics and Traumatology, Universitätsklinikum Krems, Krems, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
9
|
Wu S, Lv K, Zheng T, Zhang T, Nan Y, Wang R. Roles of adipose-derived stem cells and derived exosomes in therapeutic applications to testicular injury caused by cisplatin. PLoS One 2024; 19:e0297076. [PMID: 38315670 PMCID: PMC10843130 DOI: 10.1371/journal.pone.0297076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024] Open
Abstract
In recent years, adipose-derived stem cells (ADSCs) and derived exosomes (ADSC-Ex) have been investigated for their therapeutic potential in various diseases due to their satisfactory differentiation and regeneration ability. We aimed to explore the potential treatment of ADSCs and ADSC-Ex for testicular injury caused by cisplatin. ADSCs and ADSC-Ex s were identified and extracted to treat the rat model with testicular injury caused by cisplatin. Then the immunohistochemistry and Enzyme linked immunosorbent assay (ELISA) were used to detect the potential treatment of ADSCs and ADSC-Ex. We found that ADSCs and ADSC-Ex significantly improved the testicular tissue damage, increased the number of germ cells, and improved the arrangement of the seminiferous tubules. The levels of malondialdehyde and testosterone were also improved. We speculated that ADSCs and ADSC-Ex may alleviate the testicular injury caused by cisplatin.
Collapse
Affiliation(s)
- Shixuan Wu
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunlong Lv
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Zheng
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianbiao Zhang
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonghao Nan
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
11
|
Zhang C, Wang G, An Y. Achieving Nasal Septal Cartilage In Situ Regeneration: Focus on Cartilage Progenitor Cells. Biomolecules 2023; 13:1302. [PMID: 37759702 PMCID: PMC10527213 DOI: 10.3390/biom13091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The nasal septal cartilage plays an important role in preventing the collapse of the nasal bones and maintaining the appearance of the nose. In the context of inherent difficulties regarding septal cartilage repair and the shortage of cartilage graft resources for regeneration, tissue engineering, especially the in situ strategy based on scaffolds, has become a new prospect and become one of the most promising approaches. Given that it is difficult for chondrocytes to achieve directional migration and secrete matrix components to participate in tissue repair after cartilage injury, cartilage progenitor cells (CPCs), with great migratory ability and stem cell characteristics, have caught the attention of researchers and brought hope for nasal septal cartilage in situ regeneration. In this review, we first summarized the distribution, characteristics, isolation, and culture methods of nasal septal CPCs. Subsequently, we described the roles of migratory CPCs in cartilage regeneration. Finally, we reviewed the existing studies on CPCs-based cartilage tissue engineering and summarized the strategies for promoting the migration and chondrogenesis of CPCs so as to provide ideas for achieving nasal septal cartilage in situ regeneration.
Collapse
Affiliation(s)
| | | | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.Z.)
| |
Collapse
|
12
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Physiological oxygen conditions enhance the angiogenic properties of extracellular vesicles from human mesenchymal stem cells. Stem Cell Res Ther 2023; 14:218. [PMID: 37612731 PMCID: PMC10463845 DOI: 10.1186/s13287-023-03439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Following an ischemic injury to the brain, the induction of angiogenesis is critical to neurological recovery. The angiogenic benefits of mesenchymal stem cells (MSCs) have been attributed at least in part to the actions of extracellular vesicles (EVs) that they secrete. EVs are membrane-bound vesicles that contain various angiogenic biomolecules capable of eliciting therapeutic responses and are of relevance in cerebral applications due to their ability to cross the blood-brain barrier (BBB). Though MSCs are commonly cultured under oxygen levels present in injected air, when MSCs are cultured under physiologically relevant oxygen conditions (2-9% O2), they have been found to secrete higher amounts of survival and angiogenic factors. There is a need to determine the effects of MSC-EVs in models of cerebral angiogenesis and whether those from MSCs cultured under physiological oxygen provide greater functional effects. METHODS Human adipose-derived MSCs were grown in clinically relevant serum-free medium and exposed to either headspace oxygen concentrations of 18.4% O2 (normoxic) or 3% O2 (physioxic). EVs were isolated from MSC cultures by differential ultracentrifugation and characterized by their size, concentration of EV specific markers, and their angiogenic protein content. Their functional angiogenic effects were evaluated in vitro by their induction of cerebral microvascular endothelial cell (CMEC) proliferation, tube formation, and angiogenic and tight junction gene expressions. RESULTS Compared to normoxic conditions, culturing MSCs under physioxic conditions increased their expression of angiogenic genes SDF1 and VEGF, and subsequently elevated VEGF-A content in the EV fraction. MSC-EVs demonstrated an ability to induce CMEC angiogenesis by promoting tube formation, with the EV fraction from physioxic cultures having the greatest effect. The physioxic EV fraction further upregulated the expression of CMEC angiogenic genes FGF2, HIF1, VEGF and TGFB1, as well as genes (OCLN and TJP1) involved in BBB maintenance. CONCLUSIONS EVs from physioxic MSC cultures hold promise in the generation of a cell-free therapy to induce angiogenesis. Their positive angiogenic effect on cerebral microvascular endothelial cells demonstrates that they may have utility in treating ischemic cerebral conditions, where the induction of angiogenesis is critical to improving recovery and neurological function.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David A Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - Alim P Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3300 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
| | - Neil A Duncan
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
13
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
14
|
Chen Y, Liao G, Ma T, Li L, Yang J, Shen B, Lu Y, Si H. YY1/miR-140-5p/Jagged1/Notch axis mediates cartilage progenitor/stem cells fate reprogramming in knee osteoarthritis. Int Immunopharmacol 2023; 121:110438. [PMID: 37295026 DOI: 10.1016/j.intimp.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/11/2023]
Abstract
Osteoarthritis is a multifactorial disease characterized by cartilage degeneration, while cartilage progenitor/stem cells (CPCs) are responsible for endogenous cartilage repair. However, the relevant regulatory mechanisms of CPCs fate reprogramming in OA are rarely reported. Recently, we observed fate disorders in OA CPCs and found that microRNA-140-5p (miR-140-5p) protects CPCs from fate changes in OA. This study further mechanistically investigated the upstream regulator and downstream effectors of miR-140-5p in OA CPCs fate reprogramming. As a result, luciferase reporter assay and validation assays revealed that miR-140-5p targets Jagged1 and inhibits Notch signaling in human CPCs, and the loss-/gain-of-function experiments and rescue assays discovered that miR-140-5p improves OA CPCs fate, but this effect can be counteracted by Jagged1. Moreover, increased transcription factor Ying Yang 1 (YY1) was associated with OA progression, and YY1 could disturb CPCs fate via transcriptionally repressing miR-140-5p and enhancing the Jagged1/Notch signaling. Finally, the relevant changes and mechanisms of YY1, miR-140-5p, and Jagged1/Notch signaling in OA CPCs fate reprogramming were validated in rats. Conclusively, this study identified a novel YY1/miR-140-5p/Jagged1/Notch signaling axis that mediates OA CPCs fate reprogramming, wherein YY1 and Jagged1/Notch signaling exhibits an OA-stimulative role, and miR-140-5p plays an OA-protective effect, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Ma
- Department of Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haibo Si
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Simão VA, Brand H, da Silveira-Antunes RN, Fukasawa JT, Leme J, Tonso A, Ribeiro-Paes JT. Adipose-derived stem cells (ASCs) culture in spinner flask: improving the parameters of culture in a microcarrier-based system. Biotechnol Lett 2023:10.1007/s10529-023-03367-x. [PMID: 37171697 DOI: 10.1007/s10529-023-03367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Genetics, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Heloisa Brand
- Department of Biotechnology, School of Sciences and Letters, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | - Jaci Leme
- Center for Development and Innovation, Laboratory of Viral Biotechnology, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João Tadeu Ribeiro-Paes
- Department of Biotechnology, School of Sciences and Letters, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| |
Collapse
|
16
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Kronstadt SM, Van Heyningen LH, Aranda A, Jay SM. Assessment of anti-inflammatory bioactivity of extracellular vesicles is susceptible to error via media component contamination. Cytotherapy 2023; 25:387-396. [PMID: 36599771 PMCID: PMC10006399 DOI: 10.1016/j.jcyt.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are widely implicated as novel diagnostic and therapeutic modalities for a wide range of diseases. Thus, optimization of EV biomanufacturing is of high interest. In the course of developing parameters for a human embryonic kidney cells (HEK293T) EV production platform, we examined the combinatorial effects of cell culture conditions (i.e., static versus dynamic) and isolation techniques (i.e., ultracentrifugation versus tangential flow filtration versus size-exclusion chromatography) on functional characteristics of HEK293T EVs, including anti-inflammatory bioactivity using a well-established lipopolysaccharide-stimulated mouse macrophage model. We unexpectedly found that, depending on culture condition and isolation strategy, HEK293T EVs appeared to significantly suppress the secretion of pro-inflammatory cytokines (i.e., interleukin-6, RANTES [regulated upon activation, normal T cell expressed and secreted]) in the stimulated mouse macrophages. Further examination revealed that these results were most likely due to non-EV fetal bovine serum components in HEK293T EV preparations. Thus, future research assessing the anti-inflammatory effects of EVs should be designed to account for this phenomenon.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | - Amaya Aranda
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
18
|
Jankovic MG, Stojkovic M, Bojic S, Jovicic N, Kovacevic MM, Ivosevic Z, Juskovic A, Kovacevic V, Ljujic B. Scaling up human mesenchymal stem cell manufacturing using bioreactors for clinical uses. Curr Res Transl Med 2023; 71:103393. [PMID: 37163885 DOI: 10.1016/j.retram.2023.103393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells and an attractive therapeutic agent in regenerative medicine and intensive clinical research. Despite the great potential, the limitation that needs to be overcome is the necessity of ex vivo expansion because of insufficient number of hMSCs presented within adult organs and the high doses required for a transplantation. As a result, numerous research studies aim to provide novel expansion methods in order to achieve appropriate numbers of cells with preserved therapeutic quality. Bioreactor-based cell expansion provide high-level production of hMSCs in accordance with good manufacturing practice (GMP) and quality standards. This review summarizes current knowledge about the hMSCs manufacturing platforms with a main focus to the application of bioreactors for large-scale production of GMP-grade hMSCs.
Collapse
Affiliation(s)
- Marina Gazdic Jankovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics, Serbia.
| | | | - Sanja Bojic
- Newcastle University, School of Computing, Newcastle upon Tyne, UK
| | - Nemanja Jovicic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Histology and Embryology, Serbia
| | - Marina Miletic Kovacevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Histology and Embryology, Serbia
| | - Zeljko Ivosevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics, Serbia
| | - Aleksandar Juskovic
- Department of Orthopaedic Surgery, Clinical Centre of Montenegro, 81110 Podgorica, Montenegro
| | - Vojin Kovacevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Surgery, Serbia
| | - Biljana Ljujic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics, Serbia
| |
Collapse
|
19
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Hart DA. Osteoarthritis as an Umbrella Term for Different Subsets of Humans Undergoing Joint Degeneration: The Need to Address the Differences to Develop Effective Conservative Treatments and Prevention Strategies. Int J Mol Sci 2022; 23:ijms232315365. [PMID: 36499704 PMCID: PMC9736942 DOI: 10.3390/ijms232315365] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) of joints such as the knee and hip are very prevalent, and the number of individuals affected is expected to continue to rise. Currently, conservative treatments after OA diagnosis consist of a series of increasingly invasive interventions as the degeneration and pain increase, leading very often to joint replacement surgery. Most interventions are focused on alleviating pain, and there are no interventions currently available that stop and reverse OA-associated joint damage. For many decades OA was considered a disease of cartilage, but it is now considered a disease of the whole multi-tissue joint. As pain is the usual presenting symptom, for most patients, it is not known when the disease process was initiated and what the basis was for the initiation. The exception is post-traumatic OA which results from an overt injury to the joint that elevates the risk for OA development. This scenario leads to very long wait lists for joint replacement surgery in many jurisdictions. One aspect of why progress has been so slow in addressing the needs of patients is that OA has been used as an umbrella term that does not recognize that joint degeneration may arise from a variety of mechanistic causes that likely need separate analysis to identify interventions unique to each subtype (post-traumatic, metabolic, post-menopausal, growth and maturation associated). A second aspect of the slow pace of progress is that the bulk of research in the area is focused on post-traumatic OA (PTOA) in preclinical models that likely are not clearly relevant to human OA. That is, only ~12% of human OA is due to PTOA, but the bulk of studies investigate PTOA in rodents. Thus, much of the research community is failing the patient population affected by OA. A third aspect is that conservative treatment platforms are not specific to each OA subset, nor are they integrated into a coherent fashion for most patients. This review will discuss the literature relevant to the issues mentioned above and propose some of the directions that will be required going forward to enhance the impact of the research enterprise to affect patient outcomes.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|