1
|
Castañeda-Rico S, Maldonado JE, Hawkins MTR, Edwards CW. Unveiling hidden diversity: Phylogenomics of neotomine rodents and taxonomic implications for the genus Peromyscus. Mol Phylogenet Evol 2025; 203:108233. [PMID: 39542407 DOI: 10.1016/j.ympev.2024.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Neotomine rodents (Cricetidae, Neotominae) represent one of the most commonly encountered and diverse group of rodents in North America, yet phylogenetic relationships within this group remain uncertain. This subfamily is known for its rapid evolution, adding more complexity to our efforts to unravel their evolutionary history. The main debate revolves around the recognition of the genus Peromyscus as monophyletic or paraphyletic due to its relationship with other genera such as Habromys, Megadontomys, Podomys, Neotomodon, and Osgoodomys. Here, we aim to resolve phylogenetic relationships within Neotominae, to further explore their evolutionary history and taxonomic boundaries. We used target capture and high-throughput sequencing of complete mitogenomes and thousands of genome-wide ultraconserved elements loci (UCEs). Our comprehensive analyses encompassed 53 species of Neotominae spanning 12 previously described genera, along with one yet-undescribed genus. We also investigated 12 out of the 13 species groups within Peromyscus. Our analyses, including Maximum Likelihood and Bayesian Inference with both mitogemomes and UCEs, as well as the coalescent species-tree-based approach with UCEs, consistently recovered concordant and well-resolved phylogenies with high levels of nodal support. We identified seven main clades within Neotominae that could potentially be recognized at the generic level, mostly to categorize the genus Peromyscus as a monophyletic group, including one species group within "Peromyscus". Furthermore, our divergence dating estimates place the crown age of Neotominae to be around the late Miocene at ca. 7.9 - 10.7 mya. While generic level diversification continued through the Pliocene, species level diversification predominantly occurred during the late Pliocene, extending through the Pleistocene and Holocene. These epochs have been recognized as periods with significant changes in flora and fauna, driving ecological transformations on a global scale. We hypothesized that climatic and vegetation shifts during the Neogene and Quaternary, coupled with geological events, topographical features, and the presence of biogeographical corridors played a pivotal role in the speciation and diversification of Neotominae. Recognizing the importance of generating genomic-scale data coupled with a broad taxonomic sampling, our study, for the first time, offers resolution of the relationships among the main lineages of Neotominae. We expect that the phylogeny presented here will serve as a foundational resource for future systematic and evolutionary studies. This includes facilitating a proper comprehensive taxonomic revision of the group and the formal description and naming of new genera.
Collapse
Affiliation(s)
- Susette Castañeda-Rico
- Smithsonian-Mason School of Conservation, Front Royal, VA 22630, USA; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington DC 20008, USA; Department of Biology, George Mason University, Fairfax, VA 22030, USA.
| | - Jesús E Maldonado
- Smithsonian-Mason School of Conservation, Front Royal, VA 22630, USA; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington DC 20008, USA; Department of Biology, George Mason University, Fairfax, VA 22030, USA.
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, Division of Mammals, National Museum of Natural History, Washington DC 20560, USA.
| | - Cody W Edwards
- Smithsonian-Mason School of Conservation, Front Royal, VA 22630, USA; Department of Biology, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
2
|
Pardiñas UFJ, Brito J, Soto EC, Cañón C. Comparative morphology of the rhinarium and upper lip in sigmodontine rodents: Refined nomenclature, intertribal variation in a phylogenetic framework, and functional inferences. J Morphol 2024; 285:e21760. [PMID: 39205331 DOI: 10.1002/jmor.21760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Rodents have received substantial attention in the study of olfaction. However, the rhinarium, the naked part of the nose, which plays an important role in chemical, tactile, and thermal perception, has been relatively overlooked. This study presents a comprehensive analysis of the rhinarium morphology and spatially associated structures (i.e., upper lip, and philtrum) in sigmodontines, a diverse group within the Cricetidae rodents. The research covers 483 specimens representing 145 species, accounting for 74% of genera in the clade, including all 13 recognized tribes, three incertae sedis genera, and the murid representatives Mus musculus and Rattus norvegicus. The inconsistent use of terminology in describing rhinarium traits across the literature poses a challenge for comparative analyzes. To address this issue, a standardized terminology was proposed to characterize the rhinarium. A paired complex protuberance typically with epidermal ridges (i.e., rhinoglyphics), termed here the tubercle of Hill, was identified as a distinctive feature in muroid rhinaria. Comparative assessments among tribes revealed unique sets of features defining each major clade, encompassing variations in hairiness, dorsum nasi complexity, size and positioning of the tubercle of Hill, and other key attributes. Two primary rhinarium configurations were discerned: one shared by Oryzomyalia and Sigmodontini and another specific to Ichthyomyini. The former groups display a ventrally positioned rhinarium prominently featuring the tubercle of Hill and sculptured areola circularis. In contrast, Ichthyomyini exhibit a frontally directed rhinarium characterized by an enlarged dorsum nasi fused to the tubercle of Hill, resulting in a distinctive "cherry" appearance. Convergent rhinarium structures observed in fossorial species, characterized by well-developed plica alaris and hair fringes, are presumed to mitigate potential damage during digging. Conversely, semiaquatic carnivorous sigmodontines showcase an integrated apical structure in their rhinarium, facilitating enhanced somatosensory capabilities crucial for predation activities during diving expeditions.
Collapse
Affiliation(s)
- Ulyses F J Pardiñas
- Instituto de Diversidad y Evolución Austral (IDEAUS-CONICET), Puerto Madryn, Chubut, Argentina
- Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Erika Cuellar Soto
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Carola Cañón
- Departamento de Ecología, Cape Horn International Center for Global Change Studies and Biocultural Conservation (CHIC), Puerto Williams, and Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Lendino A, Castellanos AA, Pigott DM, Han BA. A review of emerging health threats from zoonotic New World mammarenaviruses. BMC Microbiol 2024; 24:115. [PMID: 38575867 PMCID: PMC10993514 DOI: 10.1186/s12866-024-03257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic hosts.We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future outbreaks.
Collapse
Affiliation(s)
- Arianna Lendino
- The George Washington University, Milken Institute for Public Health, Washington, DC, 20052, USA
| | | | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, 98121, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA.
| |
Collapse
|
4
|
Paz-Sedano S, Moles J, Smirnoff D, Gosliner TM, Pola M. A combined phylogenetic strategy illuminates the evolution of Goniodorididae nudibranchs (Mollusca, Gastropoda, Heterobranchia). Mol Phylogenet Evol 2024; 192:107990. [PMID: 38072142 DOI: 10.1016/j.ympev.2023.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024]
Abstract
Goniodorididae is a family of small dorid nudibranchs distributed worldwide that feed on entoprocts, ascidians, and bryozoans. The evolutionary relationships between its taxa have been uncertain due to the limited taxa available for phylogenetic analyses; some genera being paraphyletic. The family includes a remarkable number of synonymized genera in which the species richness is unequally distributed, while some genera have dozens of species others are monospecific. Some clades are very uniform morphologically while others are considered highly variable. To increase backbone phylogenetic resolution a target enrichment approach of ultra-conserved elements was aimed at representative Goniodorididae species for the first time. Additionally, we increase species representation by including mitochondrial markers cytochrome c oxidase subunit I and ribosomal RNA 16S as well as nuclear Histone 3 and ribosomal RNA 18S from 109 Goniodorididae species, out of approximately 160 currently valid species. Maximum likelihood and Bayesian inference analyses were performed to infer the phylogeny of the family. As a result, two subfamilies and eleven genera were elucidated. The synonymized genera Bermudella, Cargoa, and Ceratodoris are here resurrected and a new genus, Naisdoris gen. nov., is described. The clades included taxa with shared prey preference, showing that trophic behavior could have driven species evolution and morphological uniqueness within the family Goniodorididae.
Collapse
Affiliation(s)
- Sofía Paz-Sedano
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Dimitri Smirnoff
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | - Terrence M Gosliner
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | - Marta Pola
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Biodiversity and Global Change Research Center (CIBC-UAM), Campus of International Excellence UAM + CSIC, Madrid, Spain
| |
Collapse
|
5
|
Dalapicolla J, Rodrigues do Prado J, Lacey Knowles L, Reis Percequillo A. Phylogenomics and species delimitation of an abundant and little-studied Amazonian forest spiny rat. Mol Phylogenet Evol 2024; 191:107992. [PMID: 38092321 DOI: 10.1016/j.ympev.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil; Instituto Tecnológico Vale, Belém, Pará, Brazil.
| | | | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Oliveira da Silva W, Malcher SM, Ferguson-Smith MA, O'Brien PCM, Rossi RV, Geise L, Pieczarka JC, Nagamachi CY. Chromosomal rearrangements played an important role in the speciation of rice rats of genus Cerradomys (Rodentia, Sigmodontinae, Oryzomyini). Sci Rep 2024; 14:545. [PMID: 38177653 PMCID: PMC10766967 DOI: 10.1038/s41598-023-50861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Stella Miranda Malcher
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rogério Vieira Rossi
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Mato Grosso, Brazil
| | - Lena Geise
- Departamento de Zoologia, Laboratório de Mastozoologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
7
|
Greenwold MJ, Merritt K, Richardson TL, Dudycha JL. A three-genome ultraconserved element phylogeny of cryptophytes. Protist 2023; 174:125994. [PMID: 37935085 DOI: 10.1016/j.protis.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Cryptophytes are single celled protists found in all aquatic environments. They are composed of a heterotrophic genus, Goniomonas, and a largely autotrophic group comprising many genera. Cryptophytes evolved through secondary endosymbiosis between a host eukaryotic heterotroph and a symbiont red alga. This merger resulted in a four-genome system that includes the nuclear and mitochondrial genomes from the host and a second nuclear genome (nucleomorph) and plastid genome inherited from the symbiont. Here, we make use of different genomes (with potentially distinct evolutionary histories) to perform a phylogenomic study of the early history of cryptophytes. Using ultraconserved elements from the host nuclear genome and symbiont nucleomorph and plastid genomes, we produce a three-genome phylogeny of 91 strains of cryptophytes. Our phylogenetic analyses find that that there are three major cryptophyte clades: Clade 1 comprises Chroomonas and Hemiselmis species, Clade 2, a taxonomically rich clade, comprises at least twelve genera, and Clade 3, comprises the heterotrophic Goniomonas species. Each of these major clades include both freshwater and marine species, but subclades within these clades differ in degrees of niche conservatism. Finally, we discuss priorities for taxonomic revision to Cryptophyceae based on previous studies and in light of these phylogenomic analyses.
Collapse
Affiliation(s)
- Matthew J Greenwold
- Biology Department, University of Texas at Tyler, 3900 University Blvd., Tyler, TX, 75799, USA.
| | - Kristiaän Merritt
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA; School of the Earth, Ocean, and Environment, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| |
Collapse
|
8
|
Quiroga-Carmona M, Storz JF, D’Elía G. Elevational range extension of the Puna Mouse, Punomys (Cricetidae), with the first record of the genus from Chile. J Mammal 2023; 104:1144-1151. [PMID: 37800100 PMCID: PMC10550245 DOI: 10.1093/jmammal/gyad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
We report an elevational record for the Andean sigmodontine Puna Mouse Punomys, which is also the first record of the genus in Chile. The record is based on a mummified specimen that we discovered at an elevation of 5,461 m (17,917 feet) in the caldera of Volcán Acamarachi, Región de Antofagasta, Chile. Results of a morphological assessment suggest that the specimen can be provisionally referred to the species P. lemminus. This new record also extends the known geographic distribution of the genus by 700 km to the south and brings the known Chilean mammal richness to a total of 170 living species and 88 genera. This finding highlights the need for increased survey efforts in more remote, high-elevation regions and demonstrates that there is still much to be learned about the mammal fauna of the Andean Altiplano.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
9
|
Dai M, He SL, Chen B, Li TJ. Phylogeny of Rhynchium and Its Related Genera (Hymenoptera: Eumeninae) Based on Universal Single-Copy Orthologs and Ultraconserved Elements. INSECTS 2023; 14:775. [PMID: 37754743 PMCID: PMC10532281 DOI: 10.3390/insects14090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The subfamily Eumeninae is a large group of fierce predatory insects that prey mainly on the larvae of Lepidoptera pests. Because of the highly similar morphologies of the genus Rhynchium and its related genera in the subfamily, including Rhynchium Spinola, Allorhynchium van der Vecht, Anterhynchium de Saussure, Pararrhynchium de Saussure, it is essential to delineate their relationships. A previous phylogenetic analysis based on mitochondrial genomes suggested the inconsistent relationships of these genera under traditional classification based on morphological characters. In this study, we first used single-copy orthologs [USCO] and ultraconserved elements [UCE] extracted from 10 newly sequenced low-coverage whole genomes to resolve the phylogenetic relationships of the above genera. The newly sequenced genomes are 152.99 Mb to 211.49 Mb in size with high completeness (BUSCO complete: 91.5-95.6%) and G + C content (36.31-38.76%). Based on extracted 5811 USCOs and 2312 UCEs, the phylogenetic relationships of Rhynchium and its related genera were: ((Allorhynchium + Lissodynerus) + (Pararrhynchium + (Anterhynchium + (Dirhynchium + Rhynchium)))), which was consistent with the mitochondrial genome results. The results supported the genus Rhynchium as monophyletic, whereas Anterhynchium was recovered as paraphyletic, with Anterhynchium (Dirhynchium) as a sister to Rhynchium and hence deserving generic status; In addition, in the genus Pararrhynchium, P. septemfasciatus feanus and P. venkataramani were separated, not clustered on a branch, just as P. septemfasciatus feanus was not together with P. striatum based on mitochondrial genomes. Since Lissodynerus septemfasciatus, the type species of the genus Lissodynerus, was transferred to Pararrhynchium, it is considered that the genus Lissodynerus should be restituted as a valid genus, not a synonym of Pararrhynchium.
Collapse
Affiliation(s)
| | | | | | - Ting-Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (M.D.); (S.-L.H.); (B.C.)
| |
Collapse
|
10
|
Ronez C, Carrillo-Briceño JD, Hadler P, Sánchez-Villagra MR, Pardiñas UFJ. Pliocene sigmodontine rodents (Mammalia: Cricetidae) in northernmost South America: test of biogeographic hypotheses and revised evolutionary scenarios. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221417. [PMID: 37538748 PMCID: PMC10394426 DOI: 10.1098/rsos.221417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
We document the first occurrence of Sigmodontinae (Mammalia, Rodentia, Cricetidae) from the Pliocene of northern South America, from the San Gregorio Formation of northwestern Venezuela. The recovered isolated molars are identified as Oligoryzomys sp. and Zygodontomys sp., two currently widespread sigmodontines in South America. These records constitute the oldest representatives of these genera, potentially new species, and the first Pliocene occurrence for Oryzomyini and the whole subfamily outside Argentina. Hypotheses on the historical biogeography of sigmodontines have been constructed almost exclusively using genetic data and the fossils we report provide a new kind of evidence. The occurrence of Oligoryzomys sp. and Zygodontomys sp. in Venezuela provides novel information for the diversification models suggested for Oligoryzomys, by supporting a potential eastern corridor of open environments from northern to southern South America. The presence of sigmodontines from the locality home of the new reports, Norte Casa Chiguaje, is consistent with the palaeoenvironmental conditions originally proposed for it based on mammals and botanical records, being characterized as mixed open grassland/forest areas surrounding permanent freshwater systems. The new sigmodontine evidence is used to discuss the putative scenarios of the ancient evolution of the subfamily in South America, favouring a model in which open areas (savannahs) to the east of the Andes played crucial role aiding or obstructing Late Miocene-Pliocene sigmodontine dispersion southwards.
Collapse
Affiliation(s)
- Christophe Ronez
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Boulevard Brown 2915, 9120 Puerto, Madryn, Argentina
| | | | - Patrícia Hadler
- Universidade Federal de Santa Catarina, João David Ferreira Lima, s/n, Florianópolis, Brazil
| | | | - Ulyses F. J. Pardiñas
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Boulevard Brown 2915, 9120 Puerto, Madryn, Argentina
- Associate Researcher, Instituto Nacional de Biodiversidad (INABIO), Quito 170135, Ecuador
| |
Collapse
|
11
|
Vallejos-Garrido P, Pino K, Espinoza-Aravena N, Pari A, Inostroza-Michael O, Toledo-Muñoz M, Castillo-Ravanal B, Romero-Alarcón V, Hernández CE, Palma RE, Rodríguez-Serrano E. The importance of the Andes in the evolutionary radiation of Sigmodontinae (Rodentia, Cricetidae), the most diverse group of mammals in the Neotropics. Sci Rep 2023; 13:2207. [PMID: 36750620 PMCID: PMC9905555 DOI: 10.1038/s41598-023-28497-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The Andean mountains stand out for their striking species richness and endemicity that characterize many emblematic Neotropical clades distributed in or around these mountains. The radiation of the Sigmodontinae subfamily, the most diversified mammalian group in the Neotropics, has been historically related to Andean orogenesis. We aim to evaluate this interplay between geological processes and biological responses through the diversification dynamics, the biogeographical history, and the range evolution of the subfamily. For these, we built the most comprehensive phylogeny and gathered 14,836 occurrences for the subfamily. We identified one shift in the speciation rate in the genus Akodon, which suffered their Andean radiation after the arrival of non-Andean ancestors. Our biogeographic analyses show multiple dispersal paths throughout the evolution that allowed this subfamily to colonize all Neotropics. The Northern Andes and Central-Southern Andes were the most important sources of diversity. In addition, the Central-Southern Andes were the most relevant sink, receiving the highest number of lineages. The Andean region exhibited higher speciation and turnover rates than non-Andean regions. Thus, our results support the crucial role of the Andean Mountains in the Sigmodontinae radiation, acting as a "macroevolutionary cradle" and "species attractor" for several sigmodontine lineages at different times, and as a "species pump" becoming the biogeographic source of multiple widely distributed neotropical lineages. Then, complex macroevolutionary dynamics would explain these rodents' high extant Andean diversity and their wide distribution in the Neotropics.
Collapse
Affiliation(s)
- Paulo Vallejos-Garrido
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Vida Silvestre Investigadores Limitada, Concepción, Chile
| | - Kateryn Pino
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Nicolás Espinoza-Aravena
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alexander Pari
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Oscar Inostroza-Michael
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Macarena Toledo-Muñoz
- Programa de Magíster en Ciencias Mención Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Boris Castillo-Ravanal
- Programa de Magíster en Ciencias Mención Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Cristián E Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Universidad Católica de Santa María, Arequipa, Perú
| | - R Eduardo Palma
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Rodríguez-Serrano
- Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
12
|
Salazar-Bravo J, Tinoco N, Zeballos H, Brito J, Arenas-Viveros D, Marín-C D, Ramírez-Fernández JD, Percequillo AR, Lee, Jr. TE, Solari S, Colmenares-Pinzon J, Nivelo C, Rodríguez Herrera B, Merino W, Medina CE, Murillo-García O, Pardiñas UF. Systematics and diversification of the Ichthyomyini (Cricetidae, Sigmodontinae) revisited: evidence from molecular, morphological, and combined approaches. PeerJ 2023; 11:e14319. [PMID: 36655048 PMCID: PMC9841913 DOI: 10.7717/peerj.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/09/2022] [Indexed: 01/15/2023] Open
Abstract
Ichthyomyini, a morphologically distinctive group of Neotropical cricetid rodents, lacks an integrative study of its systematics and biogeography. Since this tribe is a crucial element of the Sigmodontinae, the most speciose subfamily of the Cricetidae, we conducted a study that includes most of its recognized diversity (five genera and 19 species distributed from southern Mexico to northern Bolivia). For this report we analyzed a combined matrix composed of four molecular markers (RBP3, GHR, RAG1, Cytb) and 56 morphological traits, the latter including 15 external, 14 cranial, 19 dental, five soft-anatomical and three postcranial features. A variety of results were obtained, some of which are inconsistent with the currently accepted classification and understanding of the tribe. Ichthyomyini is retrieved as monophyletic, and it is divided into two main clades that are here recognized as subtribes: one to contain the genus Anotomys and the other composed by the remaining genera. Neusticomys (as currently recognized) was found to consist of two well supported clades, one of which corresponds to the original concept of Daptomys. Accordingly, we propose the resurrection of the latter as a valid genus to include several species from low to middle elevations and restrict Neusticomys to several highland forms. Numerous other revisions are necessary to reconcile the alpha taxonomy of ichthyomyines with our phylogenetic results, including placement of the Cajas Plateau water rat (formerly Chibchanomys orcesi) in the genus Neusticomys (sensu stricto), and the recognition of at least two new species (one in Neusticomys, one in Daptomys). Additional work is necessary to confirm other unanticipated results, such as the non-monophyletic nature of Rheomys and the presence of a possible new genus and species from Peru. Our results also suggest that ichthyomyines are one of the main Andean radiations of sigmodontine cricetids, with an evolutionary history dating to the Late Miocene and subsequent cladogenesis during the Pleistocene.
Collapse
Affiliation(s)
- Jorge Salazar-Bravo
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States
- Instituto de Ecologia, Universidad Mayor de San Andrés, La Paz, Bolivia
- Instituto Nacional de Biodiversidad, Quito, Ecuador
| | - Nicolás Tinoco
- Museo de Zoología Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Jorge Brito
- Instituto Nacional de Biodiversidad, Quito, Ecuador
| | | | - David Marín-C
- Colección Teriológica, Universidad de Antioquia, Medellin, Colombia
| | | | - Alexandre R. Percequillo
- Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciências Biológicas, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Thomas E. Lee, Jr.
- Department of Biology, Abilene Christian University, Abilene, Texas, United States
| | - Sergio Solari
- Instituto de Biología, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Javier Colmenares-Pinzon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Carlos Nivelo
- Museo de Zoologia, Escuela de Biología, Universidad del Azuay, Cuenca, Ecuador
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina
| | | | - William Merino
- Escuela de Biología, Universidad de El Salvador, San Salvador, San Salvador, El Salvador
| | - Cesar E. Medina
- Museo de Historia Natural, Universidad Nacional de San Agustin, Arequipa, Arequipa, Peru
| | - Oscar Murillo-García
- Departamento de Biología, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Ulyses F.J. Pardiñas
- Instituto Nacional de Biodiversidad, Quito, Ecuador
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
13
|
Abreu EF, Pavan SE, Tsuchiya MTN, McLean BS, Wilson DE, Percequillo AR, Maldonado JE. Old specimens for old branches: Assessing effects of sample age in resolving a rapid Neotropical radiation of squirrels. Mol Phylogenet Evol 2022; 175:107576. [PMID: 35809853 DOI: 10.1016/j.ympev.2022.107576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
Ultraconserved Elements (UCEs) have been useful to resolve challenging phylogenies of non-model clades, unpuzzling long-conflicted relationships in key branches of the Tree of Life at both deep and shallow levels. UCEs are often reliably recovered from historical samples, unlocking a vast number of preserved natural history specimens for analysis. However, the extent to which sample age and preservation method impact UCE recovery as well as downstream inferences remains unclear. Furthermore, there is an ongoing debate on how to curate, filter, and properly analyze UCE data when locus recovery is uneven across sample age and quality. In the present study we address these questions with an empirical dataset composed of over 3800 UCE loci from 219 historical and modern samples of Sciuridae, a globally distributed and ecologically important family of rodents. We provide a genome-scale phylogeny of two squirrel subfamilies (Sciurillinae and Sciurinae: Sciurini) and investigate their placement within Sciuridae. For historical specimens, recovery of UCE loci and mean length per locus were inversely related to sample age; deeper sequencing improved the number of UCE loci recovered but not locus length. Most of our phylogenetic inferences-performed on six datasets with alternative data-filtering strategies, and using three distinct optimality criteria-resulted in distinct topologies. Datasets containing more loci (40% and 50% taxa representativeness matrices) yielded more concordant topologies and higher support values than strictly filtered datasets (60% matrices) particularly with IQ-Tree and SVDquartets, while filtering based on information content provided better topological resolution for inferences with the coalescent gene-tree based approach in ASTRAL-III. We resolved deep relationships in Sciuridae (including among the five currently recognized subfamilies) and relationships among the deepest branches of Sciurini, but conflicting relationships remain at both genus- and species-levels for the rapid Neotropical tree squirrel radiation. Our results suggest that phylogenomic consensus can be difficult and heavily influenced by the age of available samples and the filtering steps used to optimize dataset properties.
Collapse
Affiliation(s)
- Edson F Abreu
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Silvia E Pavan
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA; Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, USA
| | - Bryan S McLean
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Don E Wilson
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexandre R Percequillo
- Laboratório de Mamíferos, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
14
|
Ebbs ET, Loker ES, Bu L, Locke SA, Tkach VV, Devkota R, Flores VR, Pinto HA, Brant SV. Phylogenomics and Diversification of the Schistosomatidae Based on Targeted Sequence Capture of Ultra-Conserved Elements. Pathogens 2022; 11:769. [PMID: 35890014 PMCID: PMC9321907 DOI: 10.3390/pathogens11070769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomatidae Stiles and Hassall 1898 is a medically significant family of digenetic trematodes (Trematoda: Digenea), members of which infect mammals or birds as definitive hosts and aquatic or amphibious gastropods as intermediate hosts. Currently, there are 17 named genera, for many of which evolutionary interrelationships remain unresolved. The lack of a resolved phylogeny has encumbered our understanding of schistosomatid evolution, specifically patterns of host-use and the role of host-switching in diversification. Here, we used targeted sequence capture of ultra-conserved elements (UCEs) from representatives of 13 of the 17 named genera and 11 undescribed lineages that are presumed to represent either novel genera or species to generate a phylogenomic dataset for the estimation of schistosomatid interrelationships. This study represents the largest phylogenetic effort within the Schistosomatidae in both the number of loci and breadth of taxon sampling. We present a near-comprehensive family-level phylogeny providing resolution to several clades of long-standing uncertainty within Schistosomatidae, including resolution for the placement of the North American mammalian schistosomes, implying a second separate capture of mammalian hosts. Additionally, we present evidence for the placement of Macrobilharzia at the base of the Schistosoma + Bivitellobilharzia radiation. Patterns of definitive and intermediate host use and a strong role for intermediate host-switching are discussed relative to schistosomatid diversification.
Collapse
Affiliation(s)
- Erika T. Ebbs
- Department of Biology, Purchase College, The State University of New York, Purchase, NY 10577, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| | - Sean A. Locke
- Department of Biology, University of Puerto Rico at Mayagüez, Box 9000, Mayagüez 00681-9000, Puerto Rico;
| | - Vasyl V. Tkach
- Grand Forks Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Ramesh Devkota
- Vance Granville Community College, Henderson, NC 27536, USA;
| | - Veronica R. Flores
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, San Carlos de Bariloche 8400, Argentina;
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Department of Biology, Museum of Southwestern Biology Parasite Division, University of New Mexico, Albuquerque, NM 87131, USA; (E.S.L.); (L.B.); (S.V.B.)
| |
Collapse
|
15
|
|
16
|
Luza AL, Maestri R, Debastiani VJ, Patterson BD, Hartz SM, Duarte LDS. Is evolution faster at ecotones? A test using rates and tempo of diet transitions in Neotropical Sigmodontinae (Rodentia, Cricetidae). Ecol Evol 2021; 11:18676-18690. [PMID: 35003701 PMCID: PMC8717272 DOI: 10.1002/ece3.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip-based metrics of trait evolution - Transition Rates, Stasis Time, and Last Transition Time - which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip-based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space.
Collapse
Affiliation(s)
- André Luís Luza
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Departamento de Ecologia e EvoluçãoUniversidade Federal de Santa MariaSanta MariaRio Grande do SulCEP 97105‐900Brazil
| | - Renan Maestri
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Vanderlei Júlio Debastiani
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Bruce D. Patterson
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Sandra Maria Hartz
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Leandro D. S. Duarte
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| |
Collapse
|