1
|
Chan KO, Hime PM, Brown RM. Deforestation-induced Hybridization in Philippine Frogs Creates a Distinct Phenotype With an Inviable Genotype. Heredity (Edinb) 2025; 134:200-208. [PMID: 39956873 PMCID: PMC11976991 DOI: 10.1038/s41437-025-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Hybridization plays a major role in the evolutionary history of many taxa and can generate confounding patterns affecting many downstream applications. In this study, we empirically demonstrate how hybridization obfuscates phylogenetic inference (via the artefactual branch effect), species boundaries, and taxonomy in an adaptive radiation of frogs. Philippine narrow-mouthed frogs of the genus Kaloula exhibit a wide range of phenotypic and ecological adaptations but their evolutionary history and taxonomy remain poorly understood. In particular, the Kaloula conjuncta complex contains numerous subspecies with unresolved taxonomic boundaries and unclear evolutionary relationships. Within this complex, Kaloula conjuncta stickeli, until now was considered a rare, enigmatic, and phenotypically distinct subspecies that had not been encountered since its original description nearly 80 years ago. Here, we show that K. c. stickeli shares alleles with K. conjuncta meridionalis and another species outside the conjuncta group, K. picta. Using target-capture sequencing and a robust analytical framework, we show that despite having a unique phenotype, K. c. stickeli is likely an inviable F1 hybrid between K. c. meridionalis and K. picta and thus, does not warrant taxonomic recognition. Our results show how industry-standard approaches in systematic inference and integrative taxonomy-morphological, phylogenomic, clustering, and distance-based methods-can generate misleading results for identifying and understanding affinities of hybrids. In contrast, we demonstrate how network multispecies coalescent and population genetic approaches are more effective at accurately inferring reticulated evolutionary history. We also propose a rare phenomenon of deforestation-induced hybridization, which could have important consequences in light of large-scale Southeast Asian forest destruction.
Collapse
Affiliation(s)
- Kin Onn Chan
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA.
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
- McDonnell Genome Institute and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Rafe M Brown
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
He X, Wei S, Li P, Li X. Complete mitochondrial genome of the Satanas beetle, Dynastes satanas Moser, 1909 (Coleoptera: Scarabaeidae). Mitochondrial DNA B Resour 2024; 9:1627-1631. [PMID: 39635202 PMCID: PMC11613335 DOI: 10.1080/23802359.2024.2432373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
In this study, we sequenced and analyzed the mitochondrial genome of the Satanas beetle, Dynastes satanas Moser, 1909, which was intercepted by Chinese Customs during an attempted smuggling operation in 2022. The complete mitochondrial genome is 16,973 bp in length (GenBank accession number: OQ998898) and contains 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a control region of 2285 bp. The gene order of trnQ-trnI-trnM in the mitochondrial genome of Dynastes satanas is consistent with that of other species in the genus Dynastes. All 13 PCGs are initiated by the ATN start codon. Seven genes terminate with the TAA stop codon, one with TAG, and five with a single T. The nucleotide composition of mitochondrial genome of Dynastes satanas was 38.07% of A, 31.49% of T, 20.52% of C, and 9.92% of G. Phylogenetic analysis indicates that Dynastes satanas and Dynastes neptunus (Quensel, 1805) exhibit a considerable genetic distance, suggesting that they should be classified as two distinct subgenera.
Collapse
Affiliation(s)
- Xunuo He
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Shuang Wei
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Panpan Li
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Xianfeng Li
- Guangzhou Customs District Technology Center, Guangzhou, China
| |
Collapse
|
3
|
Le MH, Morgan B, Lu MY, Moctezuma V, Burgos O, Huang JP. The genomes of Hercules beetles reveal putative adaptive loci and distinct demographic histories in pristine North American forests. Mol Ecol Resour 2024; 24:e13908. [PMID: 38063363 DOI: 10.1111/1755-0998.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/14/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Beetles, despite their remarkable biodiversity and a long history of research, remain lacking in reference genomes annotated with structural variations in loci of adaptive significance. We sequenced and assembled high-quality chromosome-level genomes of four Hercules beetles which exhibit divergence in male horn size and shape and body colouration. The four Hercules beetle genomes were assembled to 11 pseudo-chromosomes, where the three genomes assembled using Nanopore data (Dynastes grantii, D. hyllus and D. tityus) were mapped to the genome assembled using PacBio + Hi-C data (D. maya). We demonstrated a striking similarity in genome structure among the four species. This conservative genome structure may be attributed to our use of the D. maya assembly as the reference; however, it is worth noting that such a conservative genome structure is a recurring phenomenon among scarab beetles. We further identified homologues of nine and three candidate-gene families that may be associated with the evolution of horn structure and body colouration respectively. Structural variations in Scr and Ebony2 were detected and discussed for their putative impacts on generating morphological diversity in beetles. We also reconstructed the demographic histories of the four Hercules beetles using heterozygosity information from the diploid genomes. We found that the demographic histories of the beetles closely recapitulated historical changes in suitable forest habitats driven by climate shifts.
Collapse
Affiliation(s)
- My-Hanh Le
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Victor Moctezuma
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl, Tlaxcala, Mexico
| | - Oscar Burgos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Dalapicolla J, Rodrigues do Prado J, Lacey Knowles L, Reis Percequillo A. Phylogenomics and species delimitation of an abundant and little-studied Amazonian forest spiny rat. Mol Phylogenet Evol 2024; 191:107992. [PMID: 38092321 DOI: 10.1016/j.ympev.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil; Instituto Tecnológico Vale, Belém, Pará, Brazil.
| | | | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Pyron RA, Kakkera A, Beamer DA, O'Connell KA. Discerning structure versus speciation in phylogeographic analysis of Seepage Salamanders (Desmognathus aeneus) using demography, environment, geography, and phenotype. Mol Ecol 2024; 33:e17219. [PMID: 38015012 DOI: 10.1111/mec.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Anvith Kakkera
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, Greenville, North Carolina, USA
| | - Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Deloitte Consulting LLP, Health and Data AI, Arlington, Virginia, USA
| |
Collapse
|
6
|
Wang WY, Yamada A. Scrutinising an inscrutable bark-nesting ant: Exploring cryptic diversity in the Rhopalomastix javana (Hymenoptera: Formicidae) complex using DNA barcodes, genome-wide MIG-seq and geometric morphometrics. PeerJ 2023; 11:e16416. [PMID: 38025712 PMCID: PMC10657568 DOI: 10.7717/peerj.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Overlooking cryptic species diversity has grave implications on assessments of climate change impacts on biodiversity, ecosystems and organismal populations. Discriminating between cryptic species has long been challenging even for seasoned taxonomists, as interspecies morphological differences are often indiscernible by visual observation. Multi-disciplinary methods involving genetic analyses in conjunction with quantitative morphological data, should therefore be used to investigate boundaries between cryptic species. We adopted an integrated approach combining analyses of mitochondrial COI barcodes, a genome-wide dataset obtained via multiplexed inter-simple sequence repeats (ISSRs) genotyping by sequencing (MIG-seq), and geometric morphometrics to investigate species divergences in the inscrutable Rhopalomastix javana species complex. Objective clustering of COI suggested five putative molecular species units divergent from each other by thresholds within 4.2-10.6% uncorrected pairwise distance. Phylogenetic analyses based on concatenated MIG-seq data also recovered and strongly supported the monophyly of five major lineages in agreement with COI clusters. Co-ancestry analyses based on MIG-seq data using fineRADstructure resolved variable patterns of admixture linked to geography, and potential genetic drift within some putative species. Geometric morphometric analyses of specimen images further detected statistically significant differences in at least one of three anatomical aspects (Head, Meso, Profile) between all pairs of putative species. Head shape (full-face view) was determined to be the most informative character for species diagnosis, with relatively high classification accuracy. Thin-plate spline deformation grids highlighted areas of high variation between species in each shape for deeper taxonomic scrutiny. The presence of species from multiple distinct lineages existing in near-sympatry firmly demonstrates that R. javana comprises more than one closely-related species, but exact species boundaries are difficult to ascertain. Differences in elevation and its associated abiotic effects on ant adaptations and reproductive phenology may contribute to restricting gene flow and maintaining species boundaries between sympatric populations of the R. javana complex. We further assess the advantages and limitations of geometric morphometrics as a taxonomic tool. Despite its drawbacks, our combined approach has helped draw important insights on cryptic diversity in R. javana, and also identified gaps of knowledge that await address. Results from this study will inform and prime future in-depth taxonomic investigation on the R. javana complex, including formal descriptions and establishment of the five putative species.
Collapse
Affiliation(s)
- Wendy Y. Wang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | - Aiki Yamada
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
7
|
Ferrer Obiol J, Herranz JM, Paris JR, Whiting JR, Rozas J, Riutort M, González-Solís J. Species delimitation using genomic data to resolve taxonomic uncertainties in a speciation continuum of pelagic seabirds. Mol Phylogenet Evol 2023; 179:107671. [PMID: 36442764 DOI: 10.1016/j.ympev.2022.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Speciation is a continuous and complex process shaped by the interaction of numerous evolutionary forces. Despite the continuous nature of the speciation process, the implementation of conservation policies relies on the delimitation of species and evolutionary significant units (ESUs). Puffinus shearwaters are globally distributed and threatened pelagic seabirds. Due to remarkable morphological status the group has been under intense taxonomic debate for the past three decades. Here, we use double digest Restriction-Site Associated DNA sequencing (ddRAD-Seq) to genotype species and subspecies of North Atlantic and Mediterranean Puffinus shearwaters across their entire geographical range. We assess the phylogenetic relationships and population structure among and within the group, evaluate species boundaries, and characterise the genomic landscape of divergence. We find that current taxonomies are not supported by genomic data and propose a more accurate taxonomy by integrating genomic information with other sources of evidence. Our results show that several taxon pairs are at different stages of a speciation continuum. Our study emphasises the potential of genomic data to resolve taxonomic uncertainties, which can help to focus management actions on relevant taxa, even if they do not necessarily coincide with the taxonomic rank of species.
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Department of Environmental Science and Policy, University of Milan, Milan, Italy.
| | - Jose M Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Josephine R Paris
- Department of Health, Life and Environmental Sciences, University of l'Aquila, Coppito, Italy; Department of Biosciences, University of Exeter, Exeter, UK
| | - James R Whiting
- Department of Biosciences, University of Exeter, Exeter, UK; Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Canada
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Joffard N, Buatois B, Arnal V, Véla E, Montgelard C, Schatz B. Delimiting species in the taxonomically challenging orchid section Pseudophrys: Bayesian analyses of genetic and phenotypic data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1058550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accurate species delimitation is critical for biodiversity conservation. Integrative taxonomy has been advocated for a long time, yet tools allowing true integration of genetic and phenotypic data have been developed quite recently and applied to few models, especially in plants. In this study, we investigated species boundaries within a group of twelve Pseudophrys taxa from France by analyzing genetic, morphometric and chemical (i.e., floral scents) data in a Bayesian framework using the program integrated Bayesian Phylogenetics and Phylogeography (iBPP). We found that these twelve taxa were merged into four species when only genetic data were used, while most formally described species were recognized as such when only phenotypic (either morphometric or chemical) data were used. The result of the iBPP analysis performed on both genetic and phenotypic data supports the proposal to merge Ophrys bilunulata and O. marmorata on the one hand, and O. funerea and O. zonata on the other hand. Our results show that phenotypic data are particularly informative in the section Pseudophrys and that their integration in a model-based method significantly improves the accuracy of species delimitation. We are convinced that the integrative taxonomic approach proposed in this study holds great promise to conduct taxonomic revisions in other orchid groups.
Collapse
|
9
|
Chou MH, Chu IH, Lau D, Huang JP. Integrative species delimitation reveals fine-scale allopatric speciation in a good-flying insect: a case study on. INVERTEBR SYST 2022. [DOI: 10.1071/is22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alpha taxonomy is fundamental for many biological fields. Delineation of the species boundary, however, can be challenging in a species complex, where different species share a similar morphology and diagnostic characters may not be available. In this context, integrative approaches that incorporate molecular and morphological data sets, and account for speciation history can be helpful to alpha taxonomy. Different approaches to species delimitation based on different assumptions are complementary and by integrating the results from multiple approaches we can generate a more reliable and objective taxonomic decision. In this study, we applied three molecular approaches to species delimitation and inferred the demographic history based on an isolation with migration model to test a morphologically based taxonomic hypothesis for the Cylindera pseudocylindriformis complex. We discuss the association between genetic divergence and microhabitat specialisation, and further corroborate that C. subtilis sp. nov. is a valid new species by integrating the results from model-based species delimitation and the genealogical divergence index. We argue that genetic endemism can occur at a small geographic scale, even in a winged insect like tiger beetles. Our results also indicated that there may still be undocumented species diversity of Taiwanese Cylindera remaining to be discovered. ZooBank LSID: urn:lsid:zoobank.org:pub:9DEC1432-365C-4872-8D06-73B95F30624F
Collapse
|
10
|
Weaver S, McGaugh SE, Kono TJY, Macip-Rios R, Gluesenkamp AG. Assessing genomic and ecological differentiation among subspecies of the Rough-footed Mud Turtle, Kinosternon hirtipes. J Hered 2022; 113:538-551. [PMID: 35922036 DOI: 10.1093/jhered/esac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Combining genetic and ecological measures of differentiation can provide compelling evidence for ecological and genetic divergence among lineages. The Rough-footed Mud Turtle, Kinosternon hirtipes, is distributed from the Trans-Pecos region of Texas to the highlands of Central Mexico and contains six described subspecies, five of which are extant. We use ddRAD sequencing and species distribution models to assess levels of ecological and genetic differentiation among these subspecies. We also predict changes in climatically suitable habitat under different climate change scenarios and assess levels of genetic diversity and inbreeding within each lineage. Our results show that there is strong genetic and ecological differentiation among multiple lineages within K. hirtipes, and that this differentiation appears to be the result of vicariance associated with the Trans-Mexican Volcanic Belt. We propose changes to subspecies designations to more accurately reflect the evolutionary relationships among populations and assess threats to each subspecies.
Collapse
Affiliation(s)
- Sam Weaver
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, Saint Paul, MN 55108, USA
| | - Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, Saint Paul, MN 55108, USA
| | - Thomas J Y Kono
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, Saint Paul, MN 55108, USA
| | - Rodrigo Macip-Rios
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex Hacienda de San José de la Huerta, CP 58190 Morelia, Michoacán, México.,Laboratorio Nacional de Síntesis Ecológica, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex Hacienda de San José de la Huerta, CP 58190 Morelia, Michoacán, México
| | - Andrew G Gluesenkamp
- Center for Conservation and Research, San Antonio Zoo, 3903 N. St. Mary's Street, San Antonio, Texas 78212 USA
| |
Collapse
|
11
|
Chang JT, Chao CT, Nakamura K, Liu HL, Luo MX, Liao PC. Divergence With Gene Flow and Contrasting Population Size Blur the Species Boundary in Cycas Sect. Asiorientales, as Inferred From Morphology and RAD-Seq Data. FRONTIERS IN PLANT SCIENCE 2022; 13:824158. [PMID: 35615129 PMCID: PMC9125193 DOI: 10.3389/fpls.2022.824158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The divergence process of incipient species is fascinating but elusive by incomplete lineage sorting or gene flow. Species delimitation is also challenging among those morphologically similar allopatric species, especially when lacking comprehensive data. Cycas sect. Asiorientales, comprised of C. taitungensis and C. revoluta in the Ryukyu Archipelago and Taiwan, diverged recently with continuous gene flow, resulting in a reciprocal paraphyletic relationship. Their previous evolutionary inferences are questioned from few genetic markers, incomplete sampling, and incomprehensive morphological comparison by a long-term taxonomic misconception. By whole range sampling, this study tests the geographic mode of speciation in the two species of Asiorientales by approximate Bayesian computation (ABC) using genome-wide single nucleotide polymorphisms (SNPs). The individual tree was reconstructed to delimit the species and track the gene-flow trajectory. With the comparison of diagnostic morphological traits and genetic data, the allopatric speciation was rejected. Alternatively, continuous but spatially heterogeneous gene flow driven by transoceanic vegetative dispersal and pollen flow with contrasting population sizes blurred their species boundary. On the basis of morphological, genetic, and evolutionary evidence, we synonymized these two Cycas species. This study highlights not only the importance of the Kuroshio Current to species evolution but also the disadvantage of using species with geographically structured genealogies as conservation units.
Collapse
Affiliation(s)
- Jui-Tse Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Ti Chao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hsiao-Lei Liu
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
| | - Min-Xin Luo
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
12
|
Malleret MM, Freire MD, Lemes P, Brum FT, Camargo A, Verrastro L. Phylogeography and species delimitation of the Neotropical frog complex (Hylidae:
Scinax granulatus
). ZOOL SCR 2022. [DOI: 10.1111/zsc.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matías M. Malleret
- Laboratorio de Biogeografía y Evolución Programa de Desarrollo Universitario, Centro Universitario Regional Noreste, Universidad de la República Rivera Uruguay
| | - Marcelo D. Freire
- Laboratório de Herpetologia Programa de Pós‐graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Priscila Lemes
- Laboratório de Ecologia e Conservação Departamento de Botânica e Ecologia, Insituto de Biociências, Universidade Federal do Mato Grosso Cuiabá Mato Grosso Brazil
| | - Fernanda T. Brum
- Programa de Pós‐graduação em Ecologia e Conservação Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Arley Camargo
- Laboratorio de Biogeografía y Evolución Programa de Desarrollo Universitario, Centro Universitario Regional Noreste, Universidad de la República Rivera Uruguay
| | - Laura Verrastro
- Laboratório de Herpetologia Programa de Pós‐graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
13
|
do Amaral KB, Barragán-Barrera DC, Mesa-Gutiérrez RA, Farías-Curtidor N, Caballero Gaitán SJ, Méndez-Fernandez P, Santos MCO, Rinaldi C, Rinaldi R, Siciliano S, Martín V, Carrillo M, de Meirelles ACO, Franco-Trecu V, Fagundes NJR, Moreno IB, Lacey Knowles L, Amaral AR. Seascape Genetics of the Atlantic Spotted Dolphin (Stenella frontalis) Based on Mitochondrial DNA. J Hered 2021; 112:646-662. [PMID: 34453543 DOI: 10.1093/jhered/esab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
The Atlantic spotted dolphin (Stenella frontalis) is endemic to tropical, subtropical, and warm temperate waters of the Atlantic Ocean. Throughout its distribution, both geographic distance and environmental variation may contribute to population structure of the species. In this study, we follow a seascape genetics approach to investigate population differentiation of Atlantic spotted dolphins based on a large worldwide dataset and the relationship with marine environmental variables. The results revealed that the Atlantic spotted dolphin exhibits population genetic structure across its distribution based on mitochondrial DNA control region (mtDNA-CR) data. Analyses based on the contemporary landscape suggested, at both the individual and population level, that the population genetic structure is consistent with the isolation-by-distance model. However, because geography and environmental matrices were correlated, and because in some, but not all analyses, we found a significant effect for the environment, we cannot rule out the addition contribution of environmental factors in structuring genetic variation. Future analyses based on nuclear data are needed to evaluate whether local processes, such as social structure and some level of philopatry within populations, may be contributing to the associations among genetic structure, geographic, and environmental distance.
Collapse
Affiliation(s)
- Karina Bohrer do Amaral
- Laboratório de Sistemática e Ecologia de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil
| | - Dalia C Barragán-Barrera
- Centro de Investigaciones Oceanográficas de Hidrográficas del Caribe CIOH-DIMAR, Barrio Bosque, Sector Manzanillo Escuela Naval de Cadetes "Almirante Padilla," Cartagena, Colombia.,Fundación Macuáticos Colombia, Colombia, Medellín, Colombia.,Laboratorio de Ecología Molecular de Vertebrados Acuáticos (LEMVA), Departmento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A-12, Bogotá, Colombia
| | | | | | - Susana Josefina Caballero Gaitán
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos (LEMVA), Departmento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A-12, Bogotá, Colombia
| | - Paula Méndez-Fernandez
- Observatoire PELAGIS, UMS 3462 La Rochelle Université / CNRS, Pôle Analytique, 5 allées de l'Océan, 17000 La Rochelle, France
| | - Marcos C Oliveira Santos
- Laboratório de Biologia da Conservação de Mamíferos Aquáticos (LABCMA), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Sala 145-A, 05508-120 São Paulo, SP, Brazil
| | - Caroline Rinaldi
- Association Evasion Tropicale (AET), 1 Rue des Palétuviers, Pigeon Bouillante, 97125 Guadeloupe, France
| | - Renato Rinaldi
- Association Evasion Tropicale (AET), 1 Rue des Palétuviers, Pigeon Bouillante, 97125 Guadeloupe, France
| | - Salvatore Siciliano
- Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Vidal Martín
- Sociedad para el Estudio de Cetáceos del Archipélago Canario (SECAC), Casa de los Arroyo, Avda. Coll n.6, 35500 Arrecife, Lanzarote, Spain
| | - Manuel Carrillo
- Tenerife Conservación, C/Maya No. 8, La Laguna, Tenerife, Canary Islands, Spain
| | - Ana Carolina O de Meirelles
- AQUASIS-Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Praia de Iparana, s/no, SESC Iparana, 61600-000 Caucaia, CE, Brazil
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, 11400, Montevideo, Uruguay
| | - Nelson J R Fagundes
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil.,Laboratório de Genética Médica e Evolução, Departamento de Genética, Universidade Federal do Rio Grande do Sul. Avenida Bento Gonçalves 9500, Prédio 43312, sala 113, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco III, Prédio 43312, 91501-970 Porto Alegre, RS, Brazil
| | - Ignacio Benites Moreno
- Laboratório de Sistemática e Ecologia de Aves e Mamíferos Marinhos (LABSMAR), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Bloco IV, Prédio 43435, 91501-70 Porto Alegre, RS, Brazil.,Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Avenida Tramandaí, 976, Imbé, Rio Grande do Sul, 95625-000, Brazil
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI
| | - Ana Rita Amaral
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.,Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024
| |
Collapse
|
14
|
Jorna J, Linde JB, Searle PC, Jackson AC, Nielsen M, Nate MS, Saxton NA, Grewe F, Herrera‐Campos MDLA, Spjut RW, Wu H, Ho B, Lumbsch HT, Leavitt SD. Species boundaries in the messy middle-A genome-scale validation of species delimitation in a recently diverged lineage of coastal fog desert lichen fungi. Ecol Evol 2021; 11:18615-18632. [PMID: 35003697 PMCID: PMC8717302 DOI: 10.1002/ece3.8467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022] Open
Abstract
Species delimitation among closely related species is challenging because traditional phenotype-based approaches, for example, using morphology, ecological, or chemical characteristics, may not coincide with natural groupings. With the advent of high-throughput sequencing, it has become increasingly cost-effective to acquire genome-scale data which can resolve previously ambiguous species boundaries. As the availability of genome-scale data has increased, numerous species delimitation analyses, such as BPP and SNAPP+Bayes factor delimitation (BFD*), have been developed to delimit species boundaries. However, even empirical molecular species delimitation approaches can be biased by confounding evolutionary factors, for example, hybridization/introgression and incomplete lineage sorting, and computational limitations. Here, we investigate species boundaries and the potential for micro-endemism in a lineage of lichen-forming fungi, Niebla Rundel & Bowler, in the family Ramalinaceae by analyzing single-locus and genome-scale data consisting of (a) single-locus species delimitation analysis using ASAP, (b) maximum likelihood-based phylogenetic tree inference, (c) genome-scale species delimitation models, e.g., BPP and SNAPP+BFD, and (d) species validation using the genealogical divergence index (gdi). We specifically use these methods to cross-validate results between genome-scale and single-locus datasets, differently sampled subsets of genomic data and to control for population-level genetic divergence. Our species delimitation models tend to support more speciose groupings that were inconsistent with traditional taxonomy, supporting a hypothesis of micro-endemism, which may include morphologically cryptic species. However, the models did not converge on robust, consistent species delimitations. While the results of our analysis are somewhat ambiguous in terms of species boundaries, they provide a valuable perspective on how to use these empirical species delimitation methods in a nonmodel system. This study thus highlights the challenges inherent in delimiting species, particularly in groups such as Niebla, with complex, relatively recent phylogeographic histories.
Collapse
Affiliation(s)
- Jesse Jorna
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | | | | | | | | | | | | | - Felix Grewe
- Science & EducationThe Grainger Bioinformatics CenterThe Field MuseumChicagoIllinoisUSA
| | | | | | - Huini Wu
- Science & EducationThe Grainger Bioinformatics CenterThe Field MuseumChicagoIllinoisUSA
| | - Brian Ho
- Science & EducationThe Grainger Bioinformatics CenterThe Field MuseumChicagoIllinoisUSA
| | - H. Thorsten Lumbsch
- Science & EducationThe Grainger Bioinformatics CenterThe Field MuseumChicagoIllinoisUSA
| | - Steven D. Leavitt
- Department of BiologyBrigham Young UniversityProvoUtahUSA
- Monte L. Bean Life Science MuseumBrigham Young UniversityProvoUtahUSA
| |
Collapse
|
15
|
Chou MH, Tseng WZ, Sang YD, Morgan B, De Vivo M, Kuan YH, Wang LJ, Chen WY, Huang JP. Incipient speciation and its impact on taxonomic decision: a case study using a sky island sister-species pair of stag beetles (Lucanidae: Lucanus). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Species delimitation can be difficult when the divergence between focal taxa is in the incipient stage of speciation, because conflicting results are expected among different data sets, and the species limits can differ depending on the species concept applied. We studied speciation history and investigated the impact on taxonomic decision-making when using different types of data in a Taiwanese endemic sister-species pair of stag beetles, Lucanus miwai and Lucanus yulaoensis, from sky island habitats. We showed that the two geographical taxa can be diagnosed by male mandibular shape. We found two mitochondrial co1 lineages with pairwise sequence divergence > 3%; however, L. miwai might not be monophyletic. The result of our multispecies coalescent-based species delimitation using five nuclear loci supported the evolutionary independence of the two sister species, but the calculated values of the genealogical divergence index (gdi) corresponded to the ambiguous zone of species delimitation. We also showed that post-divergence gene flow is unlikely. Our study demonstrates challenges in the delineation of incipient species, but shows the importance of understanding the speciation history and adopting integrative approaches to reconcile seemingly conflicting results before making evolutionarily relevant taxonomic decisions.
Collapse
Affiliation(s)
- Ming-Hsun Chou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Zhe Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yao-De Sang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Jong Wang
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Wei-Yun Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Mol Phylogenet Evol 2021; 163:107233. [PMID: 34139346 DOI: 10.1016/j.ympev.2021.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.
Collapse
|
17
|
Zhang H, Ning X, Yu X, Bu WJ. Integrative species delimitation based on COI, ITS, and morphological evidence illustrates a unique evolutionary history of the genus Paracercion (Odonata: Coenagrionidae). PeerJ 2021; 9:e11459. [PMID: 34123590 PMCID: PMC8164416 DOI: 10.7717/peerj.11459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Paracercion are common ‘blue and black’ colored damselflies. We explore the species boundaries of Paracercion (Odonata: Coenagrionidae) using ABGD, bPTP, GMYC and Distance-based clustering. We finally got the molecular data of all nine species of Paracercion. P. hieroglyphicum and P. melanotum were combined into one putative species based on cytochrome c oxidase I (COI). However, they were separated into two putative species based on the nuclear segment including ITS1-5.8S-ITS2 (ITS). This suggests the introgression of mtDNA in Paracercion. Paracercion barbatum and Paracercion melanotum can be separated into two species based on COI, whereas they were combined into one putative species based on ITS, which suggests a hybridization event between them. The lower interspecific divergence (COI: 0.49%) between P. barbatum and Paracercion v-nigrum indicates a recent speciation event in Paracercion. Paracercion sieboldii and P. v-nigrum can be separated into two putative species based on COI, while they were frequently merged into the same putative species based on ITS. This can be explained by incomplete lineage sorting in nDNA. Besides, P. pendulum and P. malayanum were synonymized as junior synonyms of P. melanotum. P. luzonicum was confirmed not to belong to Paracercion. The possibility of introgression, hybridization, recent speciation and incomplete lineage sorting makes species delimitation, based on molecular data, difficult and complicates understanding of the evolutionary history of Paracercion. The discordance in COI and ITS also indicates the value of using markers from different sources in species delimitation studies.
Collapse
Affiliation(s)
- Haiguang Zhang
- College of Life Sciences, Linyi University, Linyi, China
| | - Xin Ning
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.,Wenlai High School, Shanghai, China
| | - Xin Yu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wen-Jun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Morgan B, Huang JP. Isolation by geographical distance after release from Pleistocene refugia explains genetic and phenotypic variation in Xylotrupes siamensis (Coleoptera: Scarabaeidae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Consistent and objective species delimitation is crucial to biodiversity studies, but challenges remain when conflicting taxonomic decisions have been made because different data sets and analytical methods were used to delineate species. In the rhinoceros beetle, Xylotrupes siamensis, the use of different morphological characters has resulted in taxonomic disagreement between studies. We used three molecular loci (mitochondrial CO1 and nuclear ITS2 and H3) to investigate the genetic divergence between populations exhibiting different male horn phenotypes. We also applied an approximate Bayesian computation approach to test alternative historical hypotheses that might explain the present genetic diversity among geographical populations. Furthermore, we used species distribution models to estimate the temporal variation in the geographical distribution of suitable habitats. The results show that the two phenotypic taxa within X. siamensis are not genetically structured and that their genetic structure can be explained using isolation by geographical distance. The emergence of the two phenotypic taxa might have been associated with historical isolation in separate refugia. However, spatial expansion and genetic interchange between populations might have gradually eroded the spatial genetic structure. We demonstrate that understanding the historical processes responsible for phenotypic divergence and genetic diversity among current populations could help with making evolutionarily coherent taxonomic decisions.
Collapse
Affiliation(s)
- Brett Morgan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
19
|
Keeley ER, Loxterman JL, Matsaw SL, Njoroge ZM, Seiler MB, Seiler SM. Morphological and genetic concordance of cutthroat trout ( Oncorhynchus clarkii) diversification from western North America. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cutthroat trout (Oncorhynchus clarkii (Richardson, 1836)) is one of the most widely distributed species of freshwater fish in western North America. Occupying a diverse range of habitats, they exhibit significant phenotypic variability that is often recognized by intraspecific taxonomy. Recent molecular phylogenies have described phylogenetic diversification across cutthroat trout populations, but no study has provided a range-wide morphological comparison of taxonomic divisions. In this study, we used linear- and geometric-based morphometrics to determine if phylogenetic and subspecies divisions correspond to morphological variation in cutthroat trout, using replicate populations from throughout the geographic range of the species. Our data indicate significant morphological divergence of intraspecific categories in some, but not all, cutthroat trout subspecies. We also compare morphological distance measures with distance measures of mtDNA sequence divergence. DNA sequence divergence was positively correlated with morphological distance measures, indicating that morphologically more similar subspecies have lower sequence divergence in comparison to morphologically distant subspecies. Given these results, integrating both approaches to describing intraspecific variation may be necessary for developing a comprehensive conservation plan in wide-ranging species.
Collapse
Affiliation(s)
- Ernest R. Keeley
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Janet L. Loxterman
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Sammy L. Matsaw
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Zacharia M. Njoroge
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | | | - Steven M. Seiler
- Department of Biology, Lock Haven University, Lock Haven, PA 17745, USA
| |
Collapse
|
20
|
Norambuena HV, Els P, Victoriano PF, Knowles L. Genome‐wide DNA and phenotypic information supports recent colonization of South American grasslands by Correndera Pipit (Aves, Motacillidae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paul Els
- Department of Biological Sciences and Museum of Natural Science Louisiana State University Baton Rouge LA USA
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Pedro F. Victoriano
- Departamento de Zoología Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción Concepción Chile
| | - Lacey Knowles
- Department of Ecology and Evolutionary Biology Museum of Zoology University of Michigan Ann Arbor MI USA
| |
Collapse
|
21
|
Ewart KM, Johnson RN, Joseph L, Ogden R, Frankham GJ, Lo N. Phylogeography of the iconic Australian pink cockatoo, Lophochroa leadbeateri. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The pink cockatoo (Lophochroa leadbeateri; or Major Mitchell’s cockatoo) is one of Australia’s most iconic bird species. Two subspecies based on morphology are separated by a biogeographical divide, the Eyrean Barrier. Testing the genetic basis for this subspecies delineation, clarifying barriers to gene flow and identifying any cryptic genetic diversity will likely have important implications for conservation and management. Here, we used genome-wide single nucleotide polymorphisms (SNPs) and mitochondrial DNA data to conduct the first range-wide genetic assessment of the species. The aims were to investigate the phylogeography of the pink cockatoo, to characterize conservation units and to reassess subspecies boundaries. We found consistent but weak genetic structure between the two subspecies based on nuclear SNPs. However, phylogenetic analysis of nuclear SNPs and mitochondrial DNA sequence data did not recover reciprocally monophyletic groups, indicating incomplete evolutionary separation between the subspecies. Consequently, we have proposed that the two currently recognized subspecies be treated as separate management units rather than evolutionarily significant units. Given that poaching is suspected to be a threat to this species, we assessed the utility of our data for wildlife forensic applications. We demonstrated that a subspecies identification test could be designed using as few as 20 SNPs.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
| | - Rebecca N Johnson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, ACT, Australia
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Greta J Frankham
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Sánchez KI, Avila LJ, Sites JW, Morando M. An integrative approach to address species limits in the southernmost members of the Liolaemus kingii group (Squamata: Liolaemini). Mol Phylogenet Evol 2021; 157:107046. [PMID: 33421613 DOI: 10.1016/j.ympev.2020.107046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/07/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
Recent conceptual and methodological advances have enabled an increasing number of studies to address the problem of species delimitation in a comprehensive manner. This is of particular interest in cases of species whose divergence times are recent and/or effective population sizes are large, where the conclusions obtained from a single source of evidence may lead to erroneous estimations of true species numbers or incorrect assignment of individuals to species. Iguanian lizards of the Liolaemus kingii group (13 species) comprise an important component of the endemic fauna of Patagonia. The southernmost species of this group (namely L. baguali, L. escarchadosi, L. sarmientoi, and L. tari) show widely overlapping distributions across southern Patagonia, also, their phylogenetic relationships are ambiguous and species boundaries have not been explicitly tested. Here we use a comprehensive approach to assess species limits through the use of molecular and morphological information (mitochondrial cytb, nuclear sequences collected by ddRADseq, and linear, meristic and landmark-based morphometrics). We found support for the current taxonomy given that the different analyses recognized the nominal species (4 entities), also a candidate species was supported by mitochondrial and morphological data. In addition, we detected signs of admixture between some of the species. Our results indicate that the L. kingii group can serve as a model system in studies of diversification accompanied by hybridization in nature, which in turn might have been promoted by past climatic oscillations and generalist morphologies. We emphasize the importance of using multiple lines of evidence in order to solve evolutionary stories, and minimizing potential erroneous results that may arise when relying on a single source of information.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina.
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University (BYU), Provo, UT 84602, USA
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, Puerto Madryn, CT U9120ACD, Argentina
| |
Collapse
|
23
|
Prado JRD, Knowles LL, Percequillo AR. New species boundaries and the diversification history of marsh rat taxa clarify historical connections among ecologically and geographically distinct wetlands of South America. Mol Phylogenet Evol 2020; 155:106992. [PMID: 33096231 DOI: 10.1016/j.ympev.2020.106992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Taxa with broad geographic ranges that occur in different biomes and exhibit plastic morphological traits and/or adaptations to particular habitats make inferences about species boundaries especially challenging. However, technological and conceptual advances in the generation and analysis of genomic data have advanced the description of biodiversity. Here we address the outstanding questions about the delimitation of species in the genus Holochilus, a rodent with morphological specializations to wetland habitats distributed throughoutthe South America, using genome-wide SNP and morphometric data. Specifically, we apply a Bayesian model-based species delimitation that revealed significant re-arrangements of species boundaries based on consideration of both morphometric and genomic data alone, or in combination. With these shifts in species boundaries, our results provide an insightful framework for inferring the group's biogeographic history and considering possible connections between disjoint biomes in South America. Because of the ecological constraints of the marsh rats, and with the proposed taxonomic re-arrangements, the significance of our findings extends beyond systematics and suggests how diversification might be associated with past ecological/environmental changes during the Pleistocene. Overall, this study highlights how genomic data can provide phylogenetic information for resolving relationships among species of Holochilus, but also the importance of integrative approaches to identify evolutionary independent species. For the relatively understudied vast wetlands of South America, a robust species delimitation framework therefore becomes a critical source of data relevant to hypotheses about the history of the biomes themselves.
Collapse
Affiliation(s)
- Joyce Rodrigues do Prado
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil.
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
24
|
Wang YL, Cao HL, Chen HW. Molecular phylogeny and species delimitation of Amiota alboguttata and Amiota basdeni species groups (Diptera: Drosophilidae) from East Asia. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic relationships of the two largest species groups in the genus Amiota [the Amiota alboguttata group (29 known and six new species) and the Amiota basdeni group (17 known and three new species)] were reconstructed using two mitochondrial gene sequences (COI and ND2). The paraphyly of the A. alboguttata group was identified based on molecular evidence. The monophyletic A. basdeni group is found to be nested in the A. alboguttata group, rendering the latter paraphyletic. Automatic barcode gap discovery and Bayesian phylogenetics and phylogeography methods were used to assess species limits of the A. alboguttata and A. basdeni groups. The results indicate that most analysed species could be delimited clearly, including nine new species (Amiota beama sp. nov., Amiota cyclophylla sp. nov., Amiota flormontana sp. nov., Amiota obtusa sp. nov., Amiota planiceps sp. nov., Amiota scrobicula sp. nov., Amiota jianjuni sp. nov., Amiota tentacula sp. nov. and Amiota xinglaii sp. nov.), except for some closely related morphospecies. Furthermore, based on the highly biased distributions of these two groups, southwestern China is hypothesized to be a possible centre of origin and diversification for Amiota in East Asia.
Collapse
Affiliation(s)
- Ya-Lian Wang
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| | - Hui-Luo Cao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Hong-Wei Chen
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| |
Collapse
|
25
|
Huang J. Is population subdivision different from speciation? From phylogeography to species delimitation. Ecol Evol 2020; 10:6890-6896. [PMID: 32760499 PMCID: PMC7391551 DOI: 10.1002/ece3.6524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Species-level diversity and the underlying mechanisms that lead to the formation of new species, that is, speciation, have often been confounded with intraspecific diversity and population subdivision. The delineation between intraspecific and interspecific divergence processes has received much less attention than species delimitation. The ramifications of confounding speciation and population subdivision are that the term speciation has been used to describe many different biological divergence processes, rendering the results, or inferences, between studies incomparable. Phylogeographic studies have advanced our understanding of how spatial variation in the pattern of biodiversity can begin, become structured, and persist through time. Studies of species delimitation have further provided statistical and model-based approaches to determine the phylogeographic entities that merit species status. However, without a proper understanding and delineation between the processes that generate and maintain intraspecific and interspecific diversity in a study system, the delimitation of species may still not be biologically and evolutionarily relevant. I argue that variation in the continuity of the divergence process among biological systems could be a key factor leading to the enduring contention in delineating divergence patterns, or species delimitation, meriting future comparative studies to help us better understand the nature of biological species.
Collapse
Affiliation(s)
- Jen‐Pan Huang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
26
|
Roberto IJ, Bittencourt PS, Muniz FL, Hernández-Rangel SM, Nóbrega YC, Ávila RW, Souza BC, Alvarez G, Miranda-Chumacero G, Campos Z, Farias IP, Hrbek T. Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus Caiman (Crocodylia, Alligatoridae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1769222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor J. Roberto
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Post-Graduate Program in Zoology, Institute of Biological Sciences, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pedro S. Bittencourt
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Fabio L. Muniz
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Sandra M. Hernández-Rangel
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Robson W. Ávila
- Department of Biology, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno C. Souza
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), Boa Vista, RR, Brazil
| | - Gustavo Alvarez
- Wildlife Conservation Society (WCS), Bolivia Program, La Paz, Bolivia
| | | | - Zilca Campos
- Wildlife Laboratory, Brazilian Agricultural Research Corporation (EMBRAPA) Pantanal, Corumbá, MS, Brazil
| | - Izeni P. Farias
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Tomas Hrbek
- Laboratory of Animal Genetics and Evolution (LEGAL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
27
|
Thomaz AT, Knowles LL. Common barriers, but temporal dissonance: Genomic tests suggest ecological and paleo‐landscape sieves structure a coastal riverine fish community. Mol Ecol 2020; 29:783-796. [DOI: 10.1111/mec.15357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Andréa T. Thomaz
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver BC Canada
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
28
|
Chambers EA, Hillis DM. The Multispecies Coalescent Over-Splits Species in the Case of Geographically Widespread Taxa. Syst Biol 2020; 69:184-193. [PMID: 31180508 DOI: 10.1093/sysbio/syz042] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/14/2022] Open
Abstract
Many recent species delimitation studies rely exclusively on limited analyses of genetic data analyzed under the multispecies coalescent (MSC) model, and results from these studies often are regarded as conclusive support for taxonomic changes. However, most MSC-based species delimitation methods have well-known and often unmet assumptions. Uncritical application of these genetic-based approaches (without due consideration of sampling design, the effects of a priori group designations, isolation by distance, cytoplasmic-nuclear mismatch, and population structure) can lead to over-splitting of species. Here, we argue that in many common biological scenarios, researchers must be particularly cautious regarding these limitations, especially in cases of well-studied, geographically variable, and parapatrically distributed species complexes. We consider these points with respect to a historically controversial species group, the American milksnakes (Lampropeltis triangulum complex), using genetic data from a recent analysis (Ruane et al. 2014). We show that over-reliance on the program Bayesian Phylogenetics and Phylogeography, without adequate consideration of its assumptions and of sampling limitations, resulted in over-splitting of species in this study. Several of the hypothesized species of milksnakes instead appear to represent arbitrary slices of continuous geographic clines. We conclude that the best available evidence supports three, rather than seven, species within this complex. More generally, we recommend that coalescent-based species delimitation studies incorporate thorough analyses of geographic variation and carefully examine putative contact zones among delimited species before making taxonomic changes.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Lajmi A, Karanth PK. Eocene–Oligocene cooling and the diversification of Hemidactylus geckos in Peninsular India. Mol Phylogenet Evol 2020; 142:106637. [DOI: 10.1016/j.ympev.2019.106637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
|
30
|
Leal BSS, Graciano VA, Chaves CJN, Huacre LAP, Heuertz M, Palma-Silva C. Dispersal and local persistence shape the genetic structure of a widespread Neotropical plant species with a patchy distribution. ANNALS OF BOTANY 2019; 124:499-512. [PMID: 31219156 PMCID: PMC6798837 DOI: 10.1093/aob/mcz105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS Isolated populations constitute an ideal laboratory to study the consequences of intraspecific divergence, because intrinsic incompatibilities are more likely to accumulate under reduced gene flow. Here, we use a widespread bromeliad with a patchy distribution, Pitcairnia lanuginosa, as a model to infer processes driving Neotropical diversification and, thus, to improve our understanding of the origin and evolutionary dynamics of biodiversity in this highly speciose region. METHODS We assessed the timing of lineage divergence, genetic structural patterns and historical demography of P. lanuginosa, based on microsatellites, and plastid and nuclear sequence data sets using coalescent analyses and an Approximate Bayesian Computation framework. Additionally, we used species distribution models (SDMs) to independently estimate potential changes in habitat suitability. KEY RESULTS Despite morphological uniformity, plastid and nuclear DNA data revealed two distinct P. lanuginosa lineages that probably diverged through dispersal from the Cerrado to the Central Andean Yungas, following the final uplift of the Andes, and passed through long-term isolation with no evidence of migration. Microsatellite data indicate low genetic diversity and high levels of inbreeding within populations, and restricted gene flow among populations, which are likely to be a consequence of bottlenecks (or founder events), and high selfing rates promoting population persistence in isolation. SDMs showed a slight expansion of the suitable range for P. lanuginosa lineages during the Last Glacial Maximum, although molecular data revealed a signature of older divergence. Pleistocene climatic oscillations thus seem to have played only a minor role in the diversification of P. lanuginosa, which probably persisted through adverse conditions in riparian forests. CONCLUSIONS Our results imply drift as a major force shaping the evolution of P. lanuginosa, and suggest that dispersal events have a prominent role in connecting Neotropical open and forest biomes.
Collapse
Affiliation(s)
- Bárbara Simões Santos Leal
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Vanessa Araujo Graciano
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Cleber Juliano Neves Chaves
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Luis Alberto Pillaca Huacre
- Departamento de Ecología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Clarisse Palma-Silva
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
31
|
Tonzo V, Papadopoulou A, Ortego J. Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex. Mol Ecol 2019; 28:3869-3886. [DOI: 10.1111/mec.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
32
|
Huang JP. Holocene Population Decline and Conservation Implication for the Western Hercules Beetle, Dynastes grantii (Coleoptera, Scarabaeidae). J Hered 2019; 110:629-637. [DOI: 10.1093/jhered/esz036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
The Western Hercules beetle (Dynastes grantii) is endemic to the highland forest habitats of southwestern United States and northern Mexico. The habitats harbor many endemic species, but are being threatened by rapid climate change and urban development. In this study, the genetic structure of D. grantii populations from southwestern United States was investigated. Specifically, genomic data from double-digest restriction-site-associated DNA sequencing libraries were utilized to test whether geographically distant populations from the Mogollon Rim (Arizona [N = 12 individuals] and New Mexico [N = 10 individuals]) are genetically structured. The study also estimated the effective population size of the Mogollon Rim populations based on genetic diversity. The results indicated that the 2 geographic populations from the Mogollon Rim were not genetically structured. A population size reduction was detected since the end of the last glacial period, which coincided with a reduction of forest habitat in the study area. The results implied that the connectivity and the size of highland forest habitats in the Mogollon Rim could have been the major factors shaping the population genetic structure and demographic history of D. grantii. The Western Hercules beetle could be a useful flagship species for local natural history education and to promote the conservation of highland forest habitats.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Integrative Research Center, The Field Museum of Natural History, Chicago, IL
| |
Collapse
|
33
|
Different species or genetically divergent populations? Integrative species delimitation of the Primulina hochiensis complex from isolated karst habitats. Mol Phylogenet Evol 2019; 132:219-231. [DOI: 10.1016/j.ympev.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
34
|
González Marín A, Olave M, Avila LJ, Sites JW, Morando M. Evidence of body size and shape stasis driven by selection in Patagonian lizards of the Phymaturus patagonicus clade (Squamata: Liolaemini). Mol Phylogenet Evol 2018; 129:226-241. [DOI: 10.1016/j.ympev.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
35
|
Norambuena HV, Van Els P, Muñoz-Ramírez CP, Victoriano PF. First steps towards assessing the evolutionary history and phylogeography of a widely distributed Neotropical grassland bird (Motacillidae: Anthus correndera). PeerJ 2018; 6:e5886. [PMID: 30498628 PMCID: PMC6252069 DOI: 10.7717/peerj.5886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/07/2018] [Indexed: 12/31/2022] Open
Abstract
Grasslands in southern South America are extensive ecosystems which harbor a unique biodiversity; however, studies on the evolution of their taxa are scarce. Here we studied the phylogeography and population history of the Correndera Pipit (Anthus correndera), a grassland specialist bird with a large breeding distribution in southern South America, with the goals of investigating its phylogeographic history and relate it to the historical development of South American grasslands. The mitochondrial NADH dehydrogenase subunit II gene (ND2) was sequenced in 66 individuals from 19 localities and the intron 9 of the sex-linked gene for aconitase (ACOI9) was sequenced from a subset of those individuals, including all five subspecies of A. correndera, as well as the closely related A. antarcticus. Phylogenetic analysis revealed two distinct lineages within the complex: the first (A) corresponding to Andean subspecies A. c. calcaratus and A. c. catamarcae and the second (B) including birds traditionally assigned to A. c. correndera, A. c. chilensis, A. c. grayi and some individuals of A. c. catamarcae. A. antarcticus is nested within this second lineage. These results were also supported by evidence of niche divergence for variables associated with precipitation. The oldest split between clade A and B was estimated at c. 0.37 Mya, during the middle Pleistocene. Species distribution models for the present and the Last Glacial Maximum (LGM) suggest that grassland areas in southern South America remained relatively stable, in contrast to the general view of a reduction in grassland cover in South America since the LGM. Recent divergences and low phylogeographic structure (for lowland vs. highland geographic groups, intra-population genetic variance was greater than inter-groups; e.g., for ACOI9: 95.47% and ND2: 51.51% respectively), suggest widespread gene flow between lowland populations.
Collapse
Affiliation(s)
- Heraldo V Norambuena
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Centro de Estudios Agrarios y Ambientales, Valdivia, Chile
| | - Paul Van Els
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, United States of America
| | - Carlos P Muñoz-Ramírez
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Pedro F Victoriano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
36
|
Johnson NA, Smith CH, Pfeiffer JM, Randklev CR, Williams JD, Austin JD. Integrative taxonomy resolves taxonomic uncertainty for freshwater mussels being considered for protection under the U.S. Endangered Species Act. Sci Rep 2018; 8:15892. [PMID: 30367102 PMCID: PMC6203750 DOI: 10.1038/s41598-018-33806-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022] Open
Abstract
Objectively delimiting species boundaries remains an important challenge in systematics and becomes urgent when unresolved taxonomy complicates conservation and recovery efforts. We examined species boundaries in the imperiled freshwater mussel genus Cyclonaias (Bivalvia: Unionidae) using morphometrics, molecular phylogenetics, and multispecies coalescent models to help guide pending conservation assessments and legislative decisions. Congruence across multiple lines of evidence indicated that current taxonomy overestimates diversity in the C. pustulosa species complex. The only genetically and morphologically diagnosable species in the C. pustulosa species complex were C. pustulosa and C. succissa and we consider C. aurea, C. houstonensis, C. mortoni, and C. refulgens to be synonyms of C. pustulosa. In contrast, all three species in the C. nodulata complex (C. necki, C. nodulata, and C. petrina) were genetically, geographically, and morphologically diagnosable. Our findings have important conservation and management implications, as three nominal species (C. aurea, C. houstonensis, and C. petrina) are being considered for protection under the Endangered Species Act.
Collapse
Affiliation(s)
- Nathan A Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.
| | - Chase H Smith
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA.,Baylor University, Biology Department, Waco, TX, 76798, USA
| | - John M Pfeiffer
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - Charles R Randklev
- Texas A&M Natural Resources Institute and AgriLife Research Center, Dallas, TX, 75252, USA
| | - James D Williams
- University of Florida, Florida Museum, Gainesville, FL, 32611, USA
| | - James D Austin
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|
37
|
Eberle J, Bazzato E, Fabrizi S, Rossini M, Colomba M, Cillo D, Uliana M, Sparacio I, Sabatinelli G, Warnock RCM, Carpaneto G, Ahrens D. Sex-Biased Dispersal Obscures Species Boundaries in Integrative Species Delimitation Approaches. Syst Biol 2018; 68:441-459. [DOI: 10.1093/sysbio/syy072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jonas Eberle
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| | - Erika Bazzato
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, viale Sant’Ignazio da Laconi 13, 09123, Cagliari (CA), Italy
| | - Silvia Fabrizi
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| | - Michele Rossini
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
- Strada dei Guazzi, 1/3, 61122 Pesaro (PU), Italy
| | - Mariastella Colomba
- Università di Urbino, Dipartimento di Scienze Biomolecolari (DiSB), Via maggetti 22, 61029 Urbino (PU), Italy
| | | | - Marco Uliana
- Museo di Storia Naturale, Santa Croce 1730, 30135 Venezia, Italy
| | | | - Guido Sabatinelli
- Muséum d’Histoire Naturelle, Route de Malagnou 1, 1208 Geneva, Switzerland
| | | | - Giuseppe Carpaneto
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy
| | - Dirk Ahrens
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
38
|
Galen SC, Nunes R, Sweet PR, Perkins SL. Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evol Biol 2018; 18:128. [PMID: 30165810 PMCID: PMC6117968 DOI: 10.1186/s12862-018-1242-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Coalescent methods that use multi-locus sequence data are powerful tools for identifying putatively reproductively isolated lineages, though this approach has rarely been used for the study of microbial groups that are likely to harbor many unrecognized species. Among microbial symbionts, integrating genetic species delimitation methods with trait data that could indicate reproductive isolation, such as host specificity data, has rarely been used despite its potential to inform species limits. Here we test the ability of an integrative approach combining genetic and host specificity data to delimit species within the avian malaria parasite genus Leucocytozoon in central Alaska. RESULTS We sequenced seven nuclear loci for 69 Leucocytozoon samples and used multiple species delimitation methods (GMYC and BPP models), tested for differences in host infection patterns among putative species based on 406 individual infections, and characterized parasite morphology. We found that cryptic morphology has masked a highly diverse Leucocytozoon assemblage, with most species delimitation methods recovering support for at least 21 separate species that occur sympatrically and have divergent host infection patterns. Reproductive isolation among putative species appears to have evolved despite low mtDNA divergence, and in one instance two Leucocytozoon cytb haplotypes that differed by a single base pair (~ 0.2% divergence) were supported as separate species. However, there was no consistent association between mtDNA divergence and species limits. Among cytb haplotypes that differed by one to three base pairs we observed idiosyncratic patterns of nuclear and ecological divergence, with cytb haplotype pairs found to be either conspecific, reproductively isolated with no divergence in host specificity, or reproductively isolated with divergent patterns of host specialization. CONCLUSION Integrating multi-locus genetic species delimitation methods and non-traditional ecological data types such as host specificity provide a novel view of the diversity of avian malaria parasites that has been missed previously using morphology and mtDNA barcodes. Species delimitation methods show that Leucocytozoon is highly species-rich in Alaska, and the genus is likely to harbor extraordinary species-level diversity worldwide. Integrating genetic and ecological data will be an important approach for understanding the diversity and evolutionary history of microbial symbionts moving forward.
Collapse
Affiliation(s)
- Spencer C. Galen
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| | - Renato Nunes
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| | - Paul R. Sweet
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| |
Collapse
|
39
|
Huang JP, Knowles LL. Testing the impact of oceanic barriers on population subdivision, speciation and zoogeographical community assembly in Xylotrupes beetles across the Indo-Australian Archipelago. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jen-Pan Huang
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Wagner ND, Gramlich S, Hörandl E. RAD sequencing resolved phylogenetic relationships in European shrub willows ( Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs. Ecol Evol 2018; 8:8243-8255. [PMID: 30250699 PMCID: PMC6145212 DOI: 10.1002/ece3.4360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023] Open
Abstract
The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.
Collapse
Affiliation(s)
- Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of GoettingenGöttingenGermany
| |
Collapse
|
41
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
42
|
Everson KM, Hildebrandt KBP, Goodman SM, Olson LE. Caught in the act: Incipient speciation across a latitudinal gradient in a semifossorial mammal from Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae). Mol Phylogenet Evol 2018; 126:74-84. [PMID: 29501374 DOI: 10.1016/j.ympev.2018.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
Abstract
Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa.
Collapse
Affiliation(s)
- Kathryn M Everson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA.
| | | | - Steven M Goodman
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Link E Olson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA; Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
43
|
Musher LJ, Cracraft J. Phylogenomics and species delimitation of a complex radiation of Neotropical suboscine birds (Pachyramphus). Mol Phylogenet Evol 2018; 118:204-221. [DOI: 10.1016/j.ympev.2017.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022]
|
44
|
Pabijan M, Zieliński P, Dudek K, Stuglik M, Babik W. Isolation and gene flow in a speciation continuum in newts. Mol Phylogenet Evol 2017; 116:1-12. [PMID: 28797693 DOI: 10.1016/j.ympev.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023]
Abstract
Because reproductive isolation often evolves gradually, differentiating lineages may retain the potential for genetic exchange for prolonged periods, providing an opportunity to quantify and to understand the fundamental role of gene flow during speciation. Here we delimit evolutionary lineages, reconstruct the phylogeny and infer gene flow in newts of the Lissotriton vulgaris species complex based on 74 nuclear markers sampled from 127 localities. We demonstrate that distinct lineages along the speciation continuum in newts exchange nontrivial amounts of genes, affecting their evolutionary trajectories. By integrating a wide array of methods, we delimit nine evolutionary lineages and show that two principal factors have driven their genetic differentiation: time since the last common ancestor determining levels of shared ancestral polymorphism, and shifts in geographic distributions determining the extent of secondary contact. Post-divergence gene flow, indicative of evolutionary non-independence, has been most extensive in Central Europe, while four southern European lineages have acquired the population-genetic hallmarks of independent species (L. graecus, L. kosswigi, L. lantzi, L. schmidtleri). We obtained strong statistical support for widespread mtDNA introgression following secondary contact, previously suggested by discordance between mtDNA phylogeny and morphology. Our study reveals long-term evolutionary persistence of evolutionary lineages that may periodically exchange genes with one another: although some of these lineages may become extinct or fuse, others will acquire complete reproductive isolation and will carry signatures of this complex history in their genomes.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Piotr Zieliński
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | - Michał Stuglik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; Scotland's Rural College, Integrative Animal Sciences, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK.
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
45
|
Genomic signatures of paleodrainages in a freshwater fish along the southeastern coast of Brazil: genetic structure reflects past riverine properties. Heredity (Edinb) 2017; 119:287-294. [PMID: 28767104 DOI: 10.1038/hdy.2017.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Past shifts in connectivity in riverine environments (for example, sea-level changes) and the properties of current drainages can act as drivers of genetic structure and demographic processes in riverine population of fishes. However, it is unclear whether the same river properties that structure variation on recent timescales will also leave similar genomic signatures that reflect paleodrainage properties. By characterizing genetic structure in a freshwater fish species (Hollandichthys multifasciatus) from a system of basins along the Atlantic coast of Brazil we test for the effects of paleodrainages caused by sea-level changes during the Pleistocene. Given that the paleodrainage properties differ along the Brazilian coast, we also evaluate whether estimated genetic diversity within paleodrainages can be explained by past riverine properties (i.e., area and number of rivers in a paleodrainage). Our results demonstrate that genetic structure between populations is not just highly concordant with paleodrainages, but that differences in the genetic diversity among paleodrainages correspond to the joint effect of differences in the area encompassed by, and the number of rivers, within a paleodrainage. Our findings extend the influence of current riverine properties on genetic diversity to those associated with past paleodrainage properties. We discuss how these findings may explain the inconsistent support for paleodrainages in structuring divergence from different global regions and the importance of taking into account past conditions for understanding the high species diversity of freshwater fish that we currently observe in the world, and especially in the Neotropics.
Collapse
|
46
|
Willis SC. One species or four? Yes!...and, no. Or, arbitrary assignment of lineages to species obscures the diversification processes of Neotropical fishes. PLoS One 2017; 12:e0172349. [PMID: 28235096 PMCID: PMC5325279 DOI: 10.1371/journal.pone.0172349] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
Species are fundamental units in many biological disciplines, but there is continuing disagreement as to what species are, how to define them, and even whether the concept is useful. While some of this debate can be attributed to inadequate data and insufficient statistical frameworks in alpha taxonomy, an equal part results from the ambiguity over what species are expected to represent by the many who use them. Here, mtDNA data, microsatellite data, and sequence data from 17 nuclear loci are used in an integrated and quantitative manner to resolve the presence of evolutionary lineages, their contemporary and historical structure, and their correspondence to species, in a species complex of Amazonian peacock "bass" cichlids (Cichla pinima sensu lato). Results suggest that the historical narrative for these populations is more complex than can be portrayed by recognizing them as one, two, or four species: their history and contemporary dynamics cannot be unambiguously rendered as discrete units (taxa) at any level without both choosing the supremacy of one delimitation criterion and obscuring the very information that provides insight into the diversification process. This calls into question the utility of species as a rank, term, or concept, and suggests that while biologists may have a reasonable grasp of the structure of evolution, our methods of conveying these insights need updating. The lack of correspondence between evolutionary phenomena and discrete species should serve as a null hypothesis, and researchers should focus on quantifying the diversity in nature at whatever hierarchical level it occurs.
Collapse
Affiliation(s)
- Stuart C. Willis
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| |
Collapse
|
47
|
Abstract
The multispecies coalescent model underlies many approaches used for species delimitation. In previous work assessing the performance of species delimitation under this model, speciation was treated as an instantaneous event rather than as an extended process involving distinct phases of speciation initiation (structuring) and completion. Here, we use data under simulations that explicitly model speciation as an extended process rather than an instantaneous event and carry out species delimitation inference on these data under the multispecies coalescent. We show that the multispecies coalescent diagnoses genetic structure, not species, and that it does not statistically distinguish structure associated with population isolation vs. species boundaries. Because of the misidentification of population structure as putative species, our work raises questions about the practice of genome-based species discovery, with cascading consequences in other fields. Specifically, all fields that rely on species as units of analysis, from conservation biology to studies of macroevolutionary dynamics, will be impacted by inflated estimates of the number of species, especially as genomic resources provide unprecedented power for detecting increasingly finer-scaled genetic structure under the multispecies coalescent. As such, our work also represents a general call for systematic study to reconsider a reliance on genomic data alone. Until new methods are developed that can discriminate between structure due to population-level processes and that due to species boundaries, genomic-based results should only be considered a hypothesis that requires validation of delimited species with multiple data types, such as phenotypic and ecological information.
Collapse
Affiliation(s)
- Jeet Sukumaran
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI 48109-1079
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI 48109-1079
| |
Collapse
|
48
|
Olave M, Avila LJ, Sites JW, Morando M. Hidden diversity within the lizard genus Liolaemus: Genetic vs morphological divergence in the L. rothi complex (Squamata:Liolaeminae). Mol Phylogenet Evol 2017; 107:56-63. [DOI: 10.1016/j.ympev.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/25/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
|
49
|
Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Huang J. Parapatric genetic introgression and phenotypic assimilation: testing conditions for introgression between Hercules beetles (
Dynastes
, Dynastinae). Mol Ecol 2016; 25:5513-5526. [DOI: 10.1111/mec.13849] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Jen‐Pan Huang
- Museum of Zoology Department of Ecology and Evolutionary Biology University of Michigan 1109 Geddes Ave. Ann Arbor MI 48109‐1079 USA
| |
Collapse
|