1
|
Scheyer TM. The pseudosuchian record in paleohistology: A small review. Anat Rec (Hoboken) 2025; 308:245-256. [PMID: 38655735 PMCID: PMC11725709 DOI: 10.1002/ar.25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
Archosauria originated around the Earth's largest biotic crisis that severely affected all ecosystems globally, the Permotriassic Mass extinction event, and comprises two crown-group lineages: the bird-lineage and the crocodylian lineage. The bird lineage includes the iconic pterosaurs, as well as dinosaurs and birds, whereas the crocodylian lineage includes clades such as aetosaurs, poposaurs, "rauisuchians," as well as Crocodylomorpha; the latter being represented today only by less than 30 extant species of Crocodylia. Despite playing important roles during Mesozoic and Cenozoic ecosystems, both on land and in water, Pseudosuchia received far less attention compared to the bird-lineage, which is also reflected in number and scope of histological studies so far. Lately, the field has seen a shift of focus toward pseudosuchians, however, and the symposium on "Paleohistological Inferences of Paleobiological Traits in Pseudosuchia" held during the International Congress of Vertebrate Morphology 2023 in Cairns, Queensland, Australia, is the latest proof of that. To put these novel aspects of paleohistological and paleobiological research into context, an overview of the non-extant pseudosuchian taxa whose postcranial bones were studied so far is provided here (c. 80 species out of a total of more than 700 extinct species described) and recent trends in pseudosuchian osteohistology are highlighted. In addition, histological studies on cranial and dental material and other potential hard tissues, such as eggshells and otoliths, are briefly reviewed as well.
Collapse
|
2
|
Cubo J, Sena MVA, Pellarin R, Faure‐Brac MG, Aubier P, Cheyron C, Jouve S, Allain R, Jalil N. Integrative paleophysiology of the metriorhynchoid Pelagosaurus typus (Pseudosuchia, Thalattosuchia). Anat Rec (Hoboken) 2025; 308:394-411. [PMID: 39180142 PMCID: PMC11725722 DOI: 10.1002/ar.25548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Paleophysiology is an emergent discipline. Organismic (integrative) approaches seem more appropriate than studies focusing on the variation of specific features because traits are tightly related in actual organisms. Here, we used such an organismic approach (including lifestyle, thermometabolism, and hunting behavior) to understand the paleobiology of the lower Jurassic (Toarcian) thalattosuchian metriorhynchoid Pelagosaurus typus. First, we show that the lifestyle (aquatic, amphibious, terrestrial) has an effect on the femoral compactness profiles in amniotes. The profile of Pelagosaurus indicates that it was amphibious, with a foraging activity in shallow marine environments (as suggested by the presence of salt glands) and thermoregulatory basking behavior in land (as suggested by the presence of osteoderms with highly developed ornamentation). As for the thermometabolism, we show that the mass-independent resting metabolic rate of Pelagosaurus is relatively high compared to the sample of extant ectothermic amniotes, but analysis of vascular canal diameter and inferences of red blood cell size refute the hypothesis suggesting incipient endothermy. Finally, the foraging behavior was inferred using two proxies. Pelagosaurus had a mass-independent maximum metabolic rate and an aerobic scope higher than those measured in the almost motionless Iguana iguana, similar to those measured in the sit-and-wait predator Crocodylus porosus but lower than those quantified in the active hunter Varanus gouldii. These results suggest that Pelagosaurus may have had a hunting behavior involving a slow sustained swimming or a patient waiting in shallow waters, and may have caught preys like gharials, using fast sideways sweeping motions of the head.
Collapse
Affiliation(s)
- Jorge Cubo
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Mariana V. A. Sena
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Romain Pellarin
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Mathieu G. Faure‐Brac
- Naturhistorisk Museum, Universitetet i Oslo, Norsk Senter for PaleontologiOsloNorway
| | - Paul Aubier
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Cassandra Cheyron
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Stéphane Jouve
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Ronan Allain
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| | - Nour‐Eddine Jalil
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207)ParisFrance
| |
Collapse
|
3
|
Buyse K, Stein K, De Spiegelaere W, Cornillie P, Clauss M, Janssens GPJ. On the function and origin of the avian renal portal shunt and its potential significance throughout evolution. Biol Rev Camb Philos Soc 2025; 100:351-361. [PMID: 39267223 DOI: 10.1111/brv.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
All birds possess a unique venous architecture surrounding the kidneys known as the renal portal system. In veterinary medicine, this system is well known for causing a first-pass effect when medication is administered parenterally via the leg veins, that is venous blood from the leg is filtered before entering general circulation, thus possibly compromising adequate dosage. Additionally, bilateral valves are present in these veins, and it has been hypothesized that they play a crucial role in regulating flow through the kidneys to protect them against increases in blood pressure. While this hypothesis has been acknowledged, it has not been thoroughly explored. We propose that the function of the renal portal valve extends beyond its significance for kidney function, potentially impacting general hemodynamics. Examining anatomical similarities with extant non-avian reptiles, which lack the renal portal shunt with valve, could reveal additional functionalities of this system in birds. Given the endothermic metabolism and the energetically expensive locomotor activity of birds, the resistance of the hepatic and renal portal system might constrain the blood flow from splanchnic to non-splanchnic blood vessels necessary for (sustained) peak performance. Therefore, diverting blood from the renal portal system using the renal portal valve as a regulatory structure might represent a key adaptation to facilitate sustained peak performance. In addition, we hypothesize that this shunt and valve represents a very early adaptation in amniotes, possibly lost in extant non-avian reptiles but enhanced in birds, with a pivotal role in maintaining hemodynamic homeostasis to support the high metabolic rates characteristic of birds.
Collapse
Affiliation(s)
- Kobe Buyse
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Koen Stein
- Archaeology Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, 1000, Belgium
| | - Ward De Spiegelaere
- Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Pieter Cornillie
- Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, Zurich, 8057, Switzerland
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, 9820, Belgium
| |
Collapse
|
4
|
Faure‐Brac MG. Pseudosuchian thermometabolism: A review of the past two decades. Anat Rec (Hoboken) 2025; 308:315-341. [PMID: 39682064 PMCID: PMC11725720 DOI: 10.1002/ar.25609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Pseudosuchia, one of the two main clades of Archosauria, is today only represented by some 20 extant species, the crocodilians, representing only a fraction of its extinct diversity. Extant crocodilians are ectotherms but present morphological and anatomical features usually associated with endothermy. In 2004, it was proposed that pseudosuchians were ancestrally endothermic and the features observed in extant crocodilians are the remains of this lost legacy. This contribution has two parts: the first part covers 20 years of studies on this subject, first exploring the evidence for a loss of endothermy in extant crocodilians, before covering the variety of proxies used to infer the thermophymetabolic regime of extinct pseudosuchians. In the second part, the quantitative results of these previous studies are integrated into a comprehensive ancestral state reconstruction to discuss a potential scenario for the evolution of thermometabolism. Pseudosuchian endothermy would then have been lost close to the node Crocodylomorpha. The end-Triassic mass extinction is proposed to have played the role of a filter, leading to the extinction of endothermic pseudosuchians and the survival of ectothermic ones. This difference in survival in Pseudosuchia is compared to those of dinosaurs, and difference in their metabolism is also considered. Pseudosuchian endothermy might have been of a different level than the dinosaurian one and more studies are expected to clarify this question.
Collapse
|
5
|
Caspar KR, Gutiérrez-Ibáñez C, Bertrand OC, Carr T, Colbourne JAD, Erb A, George H, Holtz TR, Naish D, Wylie DR, Hurlburt GR. How smart was T. rex? Testing claims of exceptional cognition in dinosaurs and the application of neuron count estimates in palaeontological research. Anat Rec (Hoboken) 2024; 307:3685-3716. [PMID: 38668805 DOI: 10.1002/ar.25459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 11/07/2024]
Abstract
Recent years have seen increasing scientific interest in whether neuron counts can act as correlates of diverse biological phenomena. Lately, Herculano-Houzel (2023) argued that fossil endocasts and comparative neurological data from extant sauropsids allow to reconstruct telencephalic neuron counts in Mesozoic dinosaurs and pterosaurs, which might act as proxies for behaviors and life history traits in these animals. According to this analysis, large theropods such as Tyrannosaurus rex were long-lived, exceptionally intelligent animals equipped with "macaque- or baboon-like cognition", whereas sauropods and most ornithischian dinosaurs would have displayed significantly smaller brains and an ectothermic physiology. Besides challenging established views on Mesozoic dinosaur biology, these claims raise questions on whether neuron count estimates could benefit research on fossil animals in general. Here, we address these findings by revisiting Herculano-Houzel's (2023) work, identifying several crucial shortcomings regarding analysis and interpretation. We present revised estimates of encephalization and telencephalic neuron counts in dinosaurs, which we derive from phylogenetically informed modeling and an amended dataset of endocranial measurements. For large-bodied theropods in particular, we recover significantly lower neuron counts than previously proposed. Furthermore, we review the suitability of neurological variables such as neuron numbers and relative brain size to predict cognitive complexity, metabolic rate and life history traits in dinosaurs, coming to the conclusion that they are flawed proxies for these biological phenomena. Instead of relying on such neurological estimates when reconstructing Mesozoic dinosaur biology, we argue that integrative studies are needed to approach this complex subject.
Collapse
Affiliation(s)
- Kai R Caspar
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Thomas Carr
- Department of Biology, Carthage College, Kenosha, Wisconsin, USA
| | - Jennifer A D Colbourne
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Arthur Erb
- School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, UK
- Center for Science, Teaching, and Learning, Rockville Centre, New York, USA
| | - Hady George
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Thomas R Holtz
- Department of Geology, University of Maryland, College Park, Maryland, USA
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia, USA
| | - Darren Naish
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, Southampton, UK
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Grant R Hurlburt
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Osvath M, Němec P, Brusatte SL, Witmer LM. Thought for food: the endothermic brain hypothesis. Trends Cogn Sci 2024; 28:998-1010. [PMID: 39242238 DOI: 10.1016/j.tics.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The evolution of whole-body endothermy occurred independently in dinosaurs and mammals and was associated with some of the most significant neurocognitive shifts in life's history. These included a 20-fold increase in neurons and the evolution of new brain structures, supporting similar functions in both lineages. We propose the endothermic brain hypothesis, which holds that elaborations in endotherm brains were geared towards increasing caloric intake through efficient foraging. The hypothesis is grounded in the intrinsic coupling of cognition and organismic self-maintenance. We argue that coevolution of increased metabolism and new forms of cognition should be jointly investigated in comparative studies of behaviors and brain anatomy, along with studies of fossil species. We suggest avenues for such research and highlight critical open questions.
Collapse
Affiliation(s)
- Mathias Osvath
- Department of Philosophy, Division of Cognitive Science, The Cognitive Zoology Group, Lund University, Box 192, 221 00, Lund, Sweden.
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
7
|
Bert H, Lamrous H, Sena MVDA. Living with a tumor: A case of osteosarcoma involving the medullary region in Phrynops cf. P. geoffroanus (Testudines: Chelidae). Anat Rec (Hoboken) 2024; 307:3355-3363. [PMID: 38549040 DOI: 10.1002/ar.25437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 10/12/2024]
Abstract
The individual Geoffroy's side-necked turtle, Phrynops cf. P. geoffroanus, was diagnosed postmortem with osteosarcoma associated with the forelimb through morphological and histological analysis. Osteosarcoma stands as the most prevalent primary malignant bone tumor in tetrapods. The tumor presents itself as a large mass in the distal epiphysis, characterized by spicular outgrowths and a rugose external texture. Histologically, the afflicted humerus displayed a high degree of vascularity and exhibited an extensive bone resorption process involving the medullary and endosteal regions. Notably, a clear transition between the bone marrow and cortical bone was absent, indicative of a remodeling process featuring Haversian bone system apposition. Additionally, the diaphyseal region displayed the progression of neoplastic bone tissue along the bone. For comparative purposes, we describe a humeral thin section from a healthy specimen revealing compact primary bone interrupted by cyclical growth marks which differs from the continuous growth observed in the neoplastic humerus. To assess the neoplastic bone growth rate at the mid-diaphysis level, phylogenetic eigenvector maps (PEM) were employed, utilizing osteocyte density and vascular density as explanatory variables. The findings indicated that the osteosarcoma exhibited a slow-growing nature, suggesting that the turtle had to live with this condition for years. As the neoplasia continued to expand, it likely led to disadvantages for the pathological Phrynops individual due to humeral deformity. Furthermore, malignancy was associated with angiogenesis and the invasion of the medullary region by neoplastic bone tissue, raising the likelihood of metastasis as an additional factor contributing to the individual's sickness. The presence of numerous vascular canals in the diaphyseal thin section suggested a low-grade central osteosarcoma. It is worth noting that osseous neoplasms are rarely documented in Testudines, making this case of osteosarcoma in a South American freshwater chelid specimen a unique and rare occurrence.
Collapse
Affiliation(s)
- Hugo Bert
- LGL-TPE, CNRS UMR5276, ENSL, Univ Lyon, Villeurbanne, France
| | - Hayat Lamrous
- Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, Centre de recherche en paléontologie - Paris (CR2P, UMR 7207), Paris, France
| | - Mariana Valéria de Araújo Sena
- Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, Centre de recherche en paléontologie - Paris (CR2P, UMR 7207), Paris, France
| |
Collapse
|
8
|
Klein N. Diverse growth rates in Triassic archosaurs-insights from a small terrestrial Middle Triassic pseudosuchian. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:38. [PMID: 38990382 PMCID: PMC11239758 DOI: 10.1007/s00114-024-01918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
The small pseudosuchian Benggwigwishingasuchus eremacarminis was found in Anisian (Middle Triassic) marine sediments. Neither the skeleton nor osteohistology or microanatomy shows any secondary aquatic adaptations, and a dominantly terrestrial lifestyle of this new taxon is evident. Bone tissue consists of a scaffold of parallel-fibered matrix, which is moderately vascularized by small, mainly longitudinal primary osteons. The innermost cortex is less densely vascularized and more highly organized. No parts of the cortex contain any woven bone. The cortex is regularly stratified by annual growth marks. Bone tissue and growth pattern indicate an adult individual that has had slow growth rates throughout its ontogeny. Tissue type, slow growth rate, and inferred low resting metabolic rate of Benggwigwishingasuchus are similar to that of crocodylomorphs but differ from that of Sillosuchus and Effigia, poposaurids to which Benggwigwishingasuchus is related based on phylogenetic analyses. However, according to current knowledge, growth rates in early archosaurs are more likely influenced by body size and environment than by phylogeny. Benggwigwishingasuchus is thus another example of unpredictable variability in growth rates within Triassic archosaurs.
Collapse
Affiliation(s)
- Nicole Klein
- Institute of Geosciences, Paleontology, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Curry Rogers K, Martínez RN, Colombi C, Rogers RR, Alcober O. Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries. PLoS One 2024; 19:e0298242. [PMID: 38568908 PMCID: PMC10990230 DOI: 10.1371/journal.pone.0298242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/21/2024] [Indexed: 04/05/2024] Open
Abstract
Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs' ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.
Collapse
Affiliation(s)
- Kristina Curry Rogers
- Biology and Geology Departments, Macalester College, St. Paul, Minnesota, United States of America
| | - Ricardo N. Martínez
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Carina Colombi
- CIGEOBIO - Centro de Investigaciones de la Geósfera y Biósfera, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de San Juan, San Juan, Argentina
| | - Raymond R. Rogers
- Geology Department, Macalester College, St. Paul, Minnesota, United States of America
| | - Oscar Alcober
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| |
Collapse
|
10
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity in Tetrapods: Safety Is More Important than Metabolism Level. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:322-340. [PMID: 38622099 DOI: 10.1134/s0006297924020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
11
|
Payne ARD, Mannion PD, Lloyd GT, Davis KE. Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs. Nat Ecol Evol 2024; 8:121-132. [PMID: 38049481 PMCID: PMC10781641 DOI: 10.1038/s41559-023-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Whereas living representatives of Pseudosuchia, crocodylians, number fewer than 30 species, more than 700 pseudosuchian species are known from their 250-million-year fossil record, displaying far greater ecomorphological diversity than their extant counterparts. With a new time-calibrated tree of >500 species, we use a phylogenetic framework to reveal that pseudosuchian evolutionary history and diversification dynamics were directly shaped by the interplay of abiotic and biotic processes over hundreds of millions of years, supported by information theory analyses. Speciation, but not extinction, is correlated with higher temperatures in terrestrial and marine lineages, with high sea level associated with heightened extinction in non-marine taxa. Low lineage diversity and increased speciation in non-marine species is consistent with opportunities for niche-filling, whereas increased competition may have led to elevated extinction rates. In marine lineages, competition via increased lineage diversity appears to have driven both speciation and extinction. Decoupling speciation and extinction, in combination with ecological partitioning, reveals a more complex picture of pseudosuchian evolution than previously understood. As the number of species threatened with extinction by anthropogenic climate change continues to rise, the fossil record provides a unique window into the drivers that led to clade success and those that may ultimately lead to extinction.
Collapse
Affiliation(s)
- Alexander R D Payne
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | | | - Katie E Davis
- Department of Biology, University of York, York, UK.
| |
Collapse
|
12
|
Ponce DA, Scheyer TM, Cerda IA, Desojo JB. Palaeobiological inferences of "rauisuchians" Fasolasuchus tenax (Los Colorados Fm., Argentina) and Prestosuchus chiniquensis (Santa Maria Super sequence, Brazil) from the Middle-Upper Triassic of South America based on microstructural analyses. J Anat 2023; 243:893-909. [PMID: 37519277 PMCID: PMC10641045 DOI: 10.1111/joa.13937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
"Rauisuchia" is a non-monophyletic group of quadrupedal and carnivorous pseudosuchians that inhabited the entire world during the Middle-Upper Triassic period (Anisian/Ladinian-Rhaetian). In South America, "rauisuchians" reached the largest sizes among continental carnivores. Despite their important ecological role, some aspects of their palaeobiology have been poorly examined. Here, we study appendicular bones, dorsal ribs and osteoderms of two genera, the Argentinean Fasolasuchus tenax (PVL 3850, holotype) and the Brazilian Prestosuchus chiniquensis (SNSB-BSPG AS XXV) respectively. The femur of F. tenax is formed by laminar fibrolamellar bone, which is composed of non-fully monorefringent woven-fibred matrix and primary osteons; the dorsal rib has a Haversian bone composition with an external fundamental system recorded and the osteoderm is formed by well-organised parallel-fibred bone. The femur, humerus and fibula of P. chiniquensis are mostly composed of strongly arranged parallel-fibred bone and a laminar vascularisation. The minimal ages obtained correspond to 9 years for F. tenax (based on the maximum number of growth marks in the osteoderm) and 4 years for P. chiniquensis (obtained from the highest count of growth marks in the femur and in the humerus). F. tenax attained somatic and skeletal maturity, while P. chiniquensis was near to reaching skeletal and sexual maturity, but it was somatically immature. The overall rapid growth rate and the high and uniform vascularisation seems to imply that these features are common in most of "rauisuchians", except in P. chiniquensis.
Collapse
Affiliation(s)
- Denis A Ponce
- Instituto de Investigación en Paleobiología y Geología (IIPG), CONICET-Universidad Nacional de Río Negro, General Roca, Argentina
- Museo Provincial 'Carlos Ameghino', Cipolletti, Argentina
| | | | - Ignacio A Cerda
- Instituto de Investigación en Paleobiología y Geología (IIPG), CONICET-Universidad Nacional de Río Negro, General Roca, Argentina
| | - Julia B Desojo
- CONICET-División Paleontología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Botha J, Weiss BM, Dollman K, Barrett PM, Benson RBJ, Choiniere JN. Origins of slow growth on the crocodilian stem lineage. Curr Biol 2023; 33:4261-4268.e3. [PMID: 37714148 DOI: 10.1016/j.cub.2023.08.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Crocodilians grow slowly and have low metabolic rates similar to other living reptiles, but palaeohistology indicates that they evolved from an ancestor with higher growth rates.1,2,3,4,5 It remains unclear when slow growth appeared in the clade due to the sparse data on key divergences among early Mesozoic members of their stem lineage. We present new osteohistological data from a broad sample of early crocodylomorphs, evaluated in a phylogenetic context alongside other pseudosuchians. We find that the transition to slow-growing bone types during mid-late ontogeny occurred around the origin of Crocodylomorpha during the Late Triassic. Earlier-diverging pseudosuchians had high maximum growth rates, as indicated by the presence of woven bone during middle and (sometimes) late ontogeny.6,7,8,9 Large-bodied pseudosuchians in particular exhibit some of the fastest-growing bone types, giving evidence for prolonged, rapid growth. By contrast, early-branching crocodylomorphs, including a new large-bodied taxon, had slow maximum rates of bone deposition, as evidenced by the presence of predominantly parallel-fibered or lamellar bone tissue during middle-late ontogeny. Late Triassic crocodylomorphs show skeletal anatomy consistent with "active" terrestrial habits,10,11,12 and their slow growth rates reject hypotheses linking this transition with sedentary, semiaquatic lifestyles or sprawling posture. Faster-growing pseudosuchian lineages go extinct in the Triassic, whereas slow-growing crocodylomorphs do not. This contrasts with the Jurassic radiation of fast-growing dinosaurs on the bird-stem lineage,13 suggesting that the End-Triassic mass extinction initiated a divergent distribution of growth strategies that persist in present-day archosaurs.
Collapse
Affiliation(s)
- Jennifer Botha
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; GENUS: DSI-NRF Centre of Excellence in Palaeosciences, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Bailey M Weiss
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kathleen Dollman
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; European Synchrotron and Radiation Facility, Experiments Division, Structure of Materials Group, BM18, Grenoble 38000, France
| | - Paul M Barrett
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Roger B J Benson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
14
|
Laaß M, Kaestner A. Nasal turbinates of the dicynodont Kawingasaurus fossilis and the possible impact of the fossorial habitat on the evolution of endothermy. J Morphol 2023; 284:e21621. [PMID: 37585231 DOI: 10.1002/jmor.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The nasal region of the fossorial anomodont Kawingasaurus fossilis was virtually reconstructed from neutron-computed tomographic data and compared with the terrestrial species Pristerodon mackayi and other nonmammalian synapsids. The tomography of the Kawingasaurus skull reveals a pattern of maxillo-, naso-, fronto- and ethmoturbinal ridges that strongly resemble the mammalian condition. On both sides of the nasal cavity, remains of scrolled maxilloturbinals were preserved that were still partially articulated with maxilloturbinal ridges. Furthermore, possible remains of the lamina semicircularis as well as fronto- or ethmoturbinals were found. In Kawingasaurus, the maxilloturbinal ridges were longer and stronger than in Pristerodon. Except for the nasoturbinal ridges, no other ridges in the olfactory region and no remains of turbinates were recognized. This supports the hypothesis that naso-, fronto-, ethmo- and maxilloturbinals were a plesiomorphic feature of synapsids, but due to their cartilaginous nature in most taxa were, in almost all cases, not preserved. The well-developed maxilloturbinals in Kawingasaurus were probably an adaptation to hypoxia-induced hyperventilation in the fossorial habitat, maintaining the high oxygen demands of Kawingasaurus' large brain. The surface area of the respiratory turbinates in Kawingasaurus falls into the mammalian range, which suggests that they functioned as a countercurrent exchange system for thermoregulation and conditioning of the respiratory airflow. Our results suggest that the environmental conditions of the fossorial habitat led to specific sensory adaptations, accompanied by a pulse in brain evolution and of endothermy in cistecephalids, ~50 million years before the origin of endothermy in the mammalian stem line. This supports the Nocturnal Bottleneck Theory, in that we found evidence for a similar evolutionary scenario in cistecephalids as proposed for early mammals.
Collapse
Affiliation(s)
- Michael Laaß
- Fakultät für Geowissenschaften, Geotechnik und Bergbau, TU Bergakademie Freiberg, Freiberg, Germany
- FRM II and Physics E21, Technische Universität München, Garching, Germany
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
15
|
Motani R, Gold DA, Carlson SJ, Vermeij GJ. Amniote metabolism and the evolution of endothermy. Nature 2023; 621:E1-E3. [PMID: 37674001 DOI: 10.1038/s41586-023-06411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - Sandra J Carlson
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA.
| |
Collapse
|
16
|
Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Reply to: Amniote metabolism and the evolution of endothermy. Nature 2023; 621:E4-E6. [PMID: 37673991 DOI: 10.1038/s41586-023-06412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Jasmina Wiemann
- Earth Science Section, Field Museum of Natural History, Chicago, IL, USA.
- Geophysical Sciences, University of Chicago, Chicago, IL, USA.
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
| | - Iris Menéndez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
| | | | - Matteo Fabbri
- Earth Science Section, Field Museum of Natural History, Chicago, IL, USA
| | - Jacques A Gauthier
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum, Yale University, New Haven, CT, USA
| | - Pincelli M Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum, Yale University, New Haven, CT, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Gônet J, Laurin M, Hutchinson JR. Evolution of posture in amniotes-Diving into the trabecular architecture of the femoral head. J Evol Biol 2023; 36:1150-1165. [PMID: 37363887 DOI: 10.1111/jeb.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/28/2023]
Abstract
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a "semi-erect" (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the "sprawling-to-erect" transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.
Collapse
Affiliation(s)
- Jordan Gônet
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - Michel Laurin
- Centre de recherche en paléontologie - Paris, UMR 7207, Sorbonne Université, Muséum national d'histoire naturelle, Centre national de la recherche scientifique, Paris, France
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
18
|
Zeiträg C, Reber SA, Osvath M. Gaze following in Archosauria-Alligators and palaeognath birds suggest dinosaur origin of visual perspective taking. SCIENCE ADVANCES 2023; 9:eadf0405. [PMID: 37205749 DOI: 10.1126/sciadv.adf0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Taking someone else's visual perspective marks an evolutionary shift in the formation of advanced social cognition. It enables using others' attention to discover otherwise hidden aspects of the surroundings and is foundational for human communication and understanding of others. Visual perspective taking has also been found in some other primates, a few songbirds, and some canids. However, despite its essential role for social cognition, visual perspective taking has only been fragmentedly studied in animals, leaving its evolution and origins uncharted. To begin to narrow this knowledge gap, we investigated extant archosaurs by comparing the neurocognitively least derived extant birds-palaeognaths-with the closest living relatives of birds, the crocodylians. In a gaze following paradigm, we showed that palaeognaths engage in visual perspective taking and grasp the referentiality of gazes, while crocodylians do not. This suggests that visual perspective taking originated in early birds or nonavian dinosaurs-likely earlier than in mammals.
Collapse
Affiliation(s)
- Claudia Zeiträg
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden
| | - Stephan A Reber
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden
| | - Mathias Osvath
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Tagliavento M, Davies AJ, Bernecker M, Staudigel PT, Dawson RR, Dietzel M, Götschl K, Guo W, Schulp AS, Therrien F, Zelenitsky DK, Gerdes A, Müller W, Fiebig J. Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod. Proc Natl Acad Sci U S A 2023; 120:e2213987120. [PMID: 37011196 PMCID: PMC10104568 DOI: 10.1073/pnas.2213987120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/15/2023] [Indexed: 04/05/2023] Open
Abstract
The dinosaur-bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.
Collapse
Affiliation(s)
- Mattia Tagliavento
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Amelia J. Davies
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Miguel Bernecker
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Philip T. Staudigel
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Robin R. Dawson
- Department of Earth, Geographic and Climate Sciences, University of Massachusetts, Amherst, MA01003
| | - Martin Dietzel
- Institute of Applied Geosciences, Graz University of Technology,8010Graz, Austria
| | - Katja Götschl
- Institute of Applied Geosciences, Graz University of Technology,8010Graz, Austria
| | - Weifu Guo
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Anne S. Schulp
- Vertebrate Evolution and Development, Naturalis Biodiversity Center,2333CRLeiden, the Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Universiteit Utrecht,3584 CBUtrecht, the Netherlands
| | | | | | - Axel Gerdes
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
- Frankfurt Isotope and Element Research Center, Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Wolfgang Müller
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
- Frankfurt Isotope and Element Research Center, Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Jens Fiebig
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
20
|
Prondvai E, Butler RJ. Radial porosity profiles are a powerful tool for tracing locomotor maturation in developing limb bones. J Morphol 2023; 284:e21567. [PMID: 36748832 DOI: 10.1002/jmor.21567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Radial porosity profiles (RPP) are a new quantitative osteohistological parameter designed to capture the dynamic changes in the primary porosity of limb bones through ontogeny, providing insights into skeletal growth and functional development of extant and extinct vertebrates. Previous work hypothesized that RPP channelization-the intraskeletal alignment of RPPs across different bones resulting from similar cortical compaction patterns-indicates increasing locomotor performance of the developing limbs. By investigating RPPs in ontogenetic series of pheasants, pigeons and ducks representing distinct locomotor developmental strategies, we test this hypothesis here and show that RPPs are indeed powerful osteohistological correlates of locomotor ontogeny. Qualitative and quantitative analyses reveal strong association between RPP channelization and fledging, the most drastic locomotor transition in the life history of volant birds. The channelization signal is less clear in precocial leg function; however, when additional intraskeletal and intercohort RPP characteristics are considered, patterns related to leg precocity can also be identified. Thus, we demonstrate that RPPs can be used in future by palaeobiologists to generate breakthroughs in the study of the ontogeny and evolution of flight in fossil birds and pterosaurs. With further baseline data collection from modern terrestrial vertebrates, RPPs could also test hypotheses regarding ontogenetic postural shifts in dinosaurs and other terrestrial archosaurs.
Collapse
Affiliation(s)
- Edina Prondvai
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Richard J Butler
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
At the root of the mammalian mind: The sensory organs, brain and behavior of pre-mammalian synapsids. PROGRESS IN BRAIN RESEARCH 2023; 275:25-72. [PMID: 36841570 DOI: 10.1016/bs.pbr.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e., they had a small brain, displayed simple behavior, and their sensory organs were unrefined compared to those of modern mammals. Recent works have, however, revealed that neurological, sensory, and behavioral traits previously considered typically mammalian, such as whiskers, enhanced olfaction, nocturnality, parental care, and complex social interactions evolved before the origin of Mammaliaformes, among the early-diverging "mammal-like reptiles." In contrast, an enlarged brain did not evolve immediately after the origin of mammaliaforms. As such, in terms of paleoneurology, the last "mammal-like reptiles" were not significantly different from the earliest mammaliaforms. The abundant data and literature published in the last 10 years no longer supports the "three pulses" scenario of synapsid brain evolution proposed by Rowe and colleagues in 2011, but supports the new "outside-in" model of Rodrigues and colleagues proposed in 2018, instead. As Mesozoic reptiles were becoming the dominant taxa within terrestrial ecosystems, synapsids gradually adapted to smaller body sizes and nocturnality. This resulted in a sensory revolution in synapsids as olfaction, audition, and somatosensation compensated for the loss of visual cues. This altered sensory input is aligned with changes in the brain, the most significant of which was an increase in relative brain size.
Collapse
|
22
|
Holliday CM, Schachner ER. Dispatches from the age of crocodiles: New discoveries from ancient lineages. Anat Rec (Hoboken) 2022; 305:2343-2352. [PMID: 35912969 DOI: 10.1002/ar.25043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/19/2023]
Abstract
Crocodilians inspire researchers and the public alike with their explosive hunting methodologies, distinct craniofacial and dental morphology, and resplendent fossil record. This special issue highlights recent advances in the biology and paleontology of this fascinating lineage of vertebrates. The authors in this volume bring crocodylians and their extinct ancestors to life using a variety of approaches including fieldwork, imaging, 3D modeling, developmental biology, physiological monitoring, dissection, and a host of other comparative methods. Our journey begins with early crocodylomorphs from the Triassic, carries us through the radiation of crocodyliforms during the rest of the Mesozoic Era, and finally celebrates the diversification development and biology of extant crocodylians. Crocodyliform science has grown appreciably the past few decades. New fossil species and genetic evidence continue to keep phylogenies and our understanding of relationships wavering in key places of the tree such as the relationships of the extinct marine thalattosuchians as well as still living species like gharials. The application of imaging approaches and 3D modeling to both preserved tissues as well as living specimens is now revealing patterns in brain and lung evolution and function, growth strategies, and feeding and locomotor behaviors across the lineage. Comparative anatomical studies are offering new data on genitals, cephalic venous drainage and thoracoabdominal pressures. The new discoveries found here only reveal there is far more work to be done to understand the biology and behavior responsible for the great radiation extinct suchians and their crocodylian descendants experienced during their conquest of Mesozoic and Tertiary ecosystems.
Collapse
Affiliation(s)
- Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
23
|
Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature 2022; 606:522-526. [PMID: 35614213 DOI: 10.1038/s41586-022-04770-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA.
| | - Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain
| | | | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | - Jacques A Gauthier
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Pincelli M Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Cuff AR, Demuth OE, Michel K, Otero A, Pintore R, Polet DT, Wiseman ALA, Hutchinson JR. Walking-and Running and Jumping-with Dinosaurs and Their Cousins, Viewed Through the Lens of Evolutionary Biomechanics. Integr Comp Biol 2022; 62:icac049. [PMID: 35595475 DOI: 10.1093/icb/icac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archosauria diversified throughout the Triassic Period before experiencing two mass extinctions near its end ∼201 Mya, leaving only the crocodile-lineage (Crocodylomorpha) and bird-lineage (Dinosauria) as survivors; along with the pterosaurian flying reptiles. About 50 years ago, the "locomotor superiority hypothesis" (LSH) proposed that dinosaurs ultimately dominated by the Early Jurassic Period because their locomotion was superior to other archosaurs'. This idea has been debated continuously since, with taxonomic and morphological analyses suggesting dinosaurs were "lucky" rather than surviving due to being biologically superior. However, the LSH has never been tested biomechanically. Here we present integration of experimental data from locomotion in extant archosaurs with inverse and predictive simulations of the same behaviours using musculoskeletal models, showing that we can reliably predict how extant archosaurs walk, run and jump. These simulations have been guiding predictive simulations of extinct archosaurs to estimate how they moved, and we show our progress in that endeavour. The musculoskeletal models used in these simulations can also be used for simpler analyses of form and function such as muscle moment arms, which inform us about more basic biomechanical similarities and differences between archosaurs. Placing all these data into an evolutionary and biomechanical context, we take a fresh look at the LSH as part of a critical review of competing hypotheses for why dinosaurs (and a few other archosaur clades) survived the Late Triassic extinctions. Early dinosaurs had some quantifiable differences in locomotor function and performance vs. some other archosaurs, but other derived dinosaurian features (e.g., metabolic or growth rates, ventilatory abilities) are not necessarily mutually exclusive from the LSH; or maybe even an opportunistic replacement hypothesis; in explaining dinosaurs' success.
Collapse
Affiliation(s)
- A R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Human Anatomy Resource Centre, University of Liverpool, Liverpool, United Kingdom
| | - O E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Department of Earth Sciences, University of Cambridge, United Kingdom
| | - K Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A Otero
- CONICET - División Paleontología de Vertebrados, Facultad de Ciencias Naturales y Museo, Anexo Laboratorios, La Plata, Argentina
| | - R Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Mécanismes adaptatifs et évolution (MECADEV) / UMR 7179, CNRS / Muséum National d'Histoire Naturelle, France
| | - D T Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- McDonald Institute for Archaeological Research, University of Cambridge, United Kingdom
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| |
Collapse
|
25
|
Mondéjar Fernández J, Meunier FJ, Cloutier R, Clément G, Laurin M. Life history and ossification patterns in Miguashaia bureaui reveal the early evolution of osteogenesis in coelacanths. PeerJ 2022; 10:e13175. [PMID: 35411253 PMCID: PMC8994491 DOI: 10.7717/peerj.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
The study of development is critical for revealing the evolution of major vertebrate lineages. Coelacanths have one of the longest evolutionary histories among osteichthyans, but despite access to extant representatives, the onset of their weakly ossified endoskeleton is still poorly understood. Here we present the first palaeohistological and skeletochronological study of Miguashaia bureaui from the Upper Devonian of Canada, pivotal for exploring the palaeobiology and early evolution of osteogenesis in coelacanths. Cross sections of the caudal fin bones show that the cortex is made of layers of primary bone separated by lines of arrested growth, indicative of a cyclical growth. The medullary cavity displays remnants of calcified cartilage associated with bony trabeculae, characteristic of endochondral ossification. A skeletochronological analysis indicates that rapid growth during a short juvenile period was followed by slower growth in adulthood. Our new analysis highlights the life history and palaeoecology of Miguashaia bureaui and reveals that, despite differences in size and habitat, the poor endoskeletal ossification known in the extant Latimeria chalumnae can be traced back at least 375 million years ago.
Collapse
Affiliation(s)
- Jorge Mondéjar Fernández
- Division Paleontology and Historical Geology, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany,Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| | - François J. Meunier
- Laboratoire de Biologie des Organismes et des Écosystèmes Aquatiques (BOREA), UMR 8067, MNHN, CNRS, SU, Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Paris, France
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Gaël Clément
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| | - Michel Laurin
- Centre de Recherche en Paléontologie—Paris (CR2P), UMR 7207, MNHN, CNRS, SU, Département Origines et Évolution, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
26
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
27
|
Knaus PL, van Heteren AH, Lungmus JK, Sander PM. High Blood Flow Into the Femur Indicates Elevated Aerobic Capacity in Synapsids Since the Synapsida-Sauropsida Split. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Varanids are the only non-avian sauropsids that are known to approach the warm-blooded mammals in stamina. Furthermore, a much higher maximum metabolic rate (MMR) gives endotherms (including birds) higher stamina than crocodiles, turtles, and non-varanid lepidosaurs. This has led researchers to hypothesize that mammalian endothermy evolved as a second step after the acquisition of elevated MMR in non-mammalian therapsids from a plesiomorphic state of low metabolic rates. In recent amniotes, MMR correlates with the index of blood flow into the femur (Qi), which is calculated from femoral length and the cross-sectional area of the nutrient foramen. Thus, Qi may serve as an indicator of MMR range in extinct animals. Using the Qi proxy and phylogenetic eigenvector maps, here we show that elevated MMRs evolved near the base of Synapsida. Non-mammalian synapsids, including caseids, edaphosaurids, sphenacodontids, dicynodonts, gorgonopsids, and non-mammalian cynodonts, show Qi values in the range of recent endotherms and varanids, suggesting that raised MMRs either evolved in synapsids shortly after the Synapsida-Sauropsida split in the Mississippian or that the low MMR of lepidosaurs and turtles is apomorphic, as has been postulated for crocodiles.
Collapse
|
28
|
Monfroy QT, Kundrát M, O’Connor JK, Hai‐Lu Y, Marone F, Stampanoni M, Šmajda B. Synchrotron microtomography‐based osteohistology of
Gansus yumenensis
: new data on the evolution of uninterrupted bone deposition in basal birds. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quentin T. Monfroy
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group Centre for Interdisciplinary Biosciences, Technology and Innovation Park Pavol Jozef Šafárik University in Košice Košice Slovakia
| | | | - You Hai‐Lu
- Key Laboratory of Vertebrate Evolution and Human Origins Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Life and Paleoenvironment Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Federica Marone
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
| | - Marco Stampanoni
- Swiss Light Source Paul Scherrer Institut Villigen Switzerland
- Institute for Biomedical Engineering ETH Zürich Zurich Switzerland
| | - Beňadik Šmajda
- Department of Animal Physiology Institute of Biology and Ecology Faculty of Sciences Pavol Jozef Šafárik University in Košice Košice Slovakia
| |
Collapse
|
29
|
Buchwitz M, Jansen M, Renaudie J, Marchetti L, Voigt S. Evolutionary Change in Locomotion Close to the Origin of Amniotes Inferred From Trackway Data in an Ancestral State Reconstruction Approach. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.674779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among amniote and non-amniote tetrapod trackways from late Carboniferous to early Permian deposits, certain trackway measures vary notably. Some of this variability can be attributed to evolutionary changes in trackmaker anatomy and locomotion style close to the origin of amniotes. Here we demonstrate that steps in early amniote locomotion evolution can be addressed by applying methods of ancestral state reconstruction on trackway data – a novel approach in tetrapod ichnology. Based on (a) measurements of 186 trackways referred to the Carboniferous and early Permian ichnogenera Batrachichnus, Limnopus, Hylopus, Amphisauropus, Matthewichnus, Ichniotherium, Dimetropus, Tambachichnium, Erpetopus, Varanopus, Hyloidichnus, Notalacerta and Dromopus, (b) correlation of these ichnotaxa with specific groups of amphibian, reptiliomorph, synapsid, and reptilian trackmakers based on imprint morphology and (c) known skeletal-morphology-based phylogenies of the supposed trackmakers, we infer ancestral states for functionally controlled trackway measures in a maximum likelihood approach. The most notable finding of our analysis is a concordant change in trackway parameters within a series of ancestral amniote trackmakers, which reflects an evolutionary change in locomotion: In the ancestors of amniotes and diadectomorphs, an increase in body size was accompanied by a decrease in (normalized) gauge width and glenoacetabular length and by a change in imprint orientation toward a more trackway-parallel and forward-pointing condition. In the subsequent evolution of diadectomorph, synapsid and reptilian trackmakers after the diversification of the clades Cotylosauria (Amniota + Diadectomorpha) and Amniota, stride length increased whereas gauges decreased further or remained relatively narrow within most lineages. In accordance with this conspicuous pattern of evolutionary change in trackway measures, we interpret the body size increase as an underlying factor that triggered the reorganization of the locomotion apparatus. The secondary increase in stride length, which occurred convergently within distinct groups, is interpreted as an increase in locomotion capability when the benefits of reorganization came into effect. The track-trackmaker pair of Ichniotherium sphaerodactylum and Orobates pabsti from the early Permian Bromacker locality of the Thuringian Forest, proposed in earlier studies as a suitable ancestral amniote track-trackmaker model, fits relatively well with our modeled last common ancestor of amniotes – with the caveat that the Bromacker material is younger and some of the similarities appear to be due to convergence.
Collapse
|
30
|
Griffin CT, Stocker MR, Colleary C, Stefanic CM, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. Assessing ontogenetic maturity in extinct saurian reptiles. Biol Rev Camb Philos Soc 2020; 96:470-525. [PMID: 33289322 DOI: 10.1111/brv.12666] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Caitlin Colleary
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH, 44106, U.S.A
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
| | - Emily J Lessner
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Pathology and Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, U.S.A
| | - Mitchell Riegler
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL, 32611, U.S.A
| | - Kiersten Formoso
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, U.S.A
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA, 90007, U.S.A
| | - Krista Koeller
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, U.S.A
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| |
Collapse
|
31
|
Botha J. The paleobiology and paleoecology of South African Lystrosaurus. PeerJ 2020; 8:e10408. [PMID: 33282563 PMCID: PMC7694564 DOI: 10.7717/peerj.10408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Lystrosaurus was one of the few tetrapods to survive the end-Permian mass extinction (EPME), the most catastrophic biotic crisis in Phanerozoic history. The significant increased abundance of this genus during the post-extinction Early Triassic recovery period has made Lystrosaurus an iconic survivor taxon globally and ideal for studying changes in growth dynamics during a mass extinction. There is potential evidence of a Lilliput effect in Lystrosaurus in South Africa as the two Triassic species that became highly abundant after the EPME are relatively smaller than the two Permian species. In order to test this hypothesis a detailed examination of the body size and life history of Permo-Triassic Lystrosaurus is required. In this study, the basal skull length and growth patterns of the four South African Lystrosaurus species from the Karoo Basin, L. maccaigi, L. curvatus, L. murrayi and L. declivis, were examined using cranial measurements and bone histology. The basal skull length measurements show that the Triassic species are smaller than the Permian species and supports previous studies. The osteohistology examination of all four species reveal rapidly forming fibrolamellar bone tissues during early to mid-ontogeny. Growth marks are common in L. maccaigi and L. curvatus, but rare and inconsistent in the purely Triassic L. murrayi and L. declivis. The inconsistency of the growth marks in these latter two taxa suggests the presence of developmental plasticity. This feature may have been advantageous in allowing these species to alter their growth patterns in response to environmental cues in the post-extinction Early Triassic climate. An overall transition to slower forming parallel-fibered bone is observed in the largest individuals of L. maccaigi, but absent from the limb bones of the other species. The absence of such bone tissue or outer circumferential lamellae in L. curvatus, L. murrayi and L. declivis indicates that even the largest collected specimens do not represent fully grown individuals. Although L. murrayi and L. declivis are smaller in size, the lack of a growth asymptote in the largest specimens indicates that adult individuals would have been notably larger and may have been similar in size to large L. maccaigi and L. curvatus when fully grown. Thus, the previously described Lilliput effect, recognized by some authors in the Karoo fossil record (such as the therocephalian Moschorhinus kitchingi), may be a product of high juvenile excess mortality in the Triassic rather than a strict "dwarfing" of Lystrosaurus species. The lifestyle of Lystrosaurus was also re-examined. Although previous studies have proposed an aquatic lifestyle for the genus, the similar morphology and bone microanatomy to several other large terrestrial Permo-Triassic dicynodonts supports a fully terrestrial mode of life.
Collapse
Affiliation(s)
- Jennifer Botha
- Department of Karoo Palaeontology, National Museum, Bloemfontein, Free State, South Africa.,Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
32
|
Cubo J, Sena MVA, Aubier P, Houee G, Claisse P, Faure-Brac MG, Allain R, Andrade RCLP, Sayão JM, Oliveira GR. Were Notosuchia (Pseudosuchia: Crocodylomorpha) warm-blooded? A palaeohistological analysis suggests ectothermy. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Most Notosuchia were active terrestrial predators. A few were semi-aquatic, or were insectivorous, omnivorous or herbivorous. A question relative to their thermometabolism remains to be answered: were Notosuchia warm-blooded? Here we use quantitative bone palaeohistology to answer this question. Two variables were used as proxies to infer thermometabolism: resting metabolic rate and red blood cell dimensions. Resting metabolic rate was inferred using relative primary osteon area and osteocyte size, shape and density. Blood cell dimensions were inferred using harmonic mean canal diameter and minimum canal diameter. All inferences were performed using phylogenetic eigenvector maps. Both sets of analyses suggest that the seven species of Notosuchia sampled in this study were ectotherms. Given that extant Neosuchia (their sister group) are also ectotherms, and that archosaurs were primitively endotherms, parsimony suggests that endothermy may have been lost at the node Metasuchia (Notosuchia–Neosuchia) by the Early Jurassic. Semi-aquatic taxa such as Pepesuchus may have had thermoregulatory strategies similar to those of recent crocodylians, whereas the terrestrial taxa (Araripesuchus, Armadillosuchus, Iberosuchus, Mariliasuchus, Stratiotosuchus) may have been thermoregulators similar to active predatory varanids. Thermal inertia may have contributed to maintaining a stable temperature in large notosuchians such as Baurusuchus.
Collapse
Affiliation(s)
- Jorge Cubo
- Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Mariana V A Sena
- Universidade Federal de Pernambuco, Departamento de Geologia, Programa de Pós-Graduação em Geociências (PPGEOC), Recife, PE, Brazil
- Centro Universitário da Vitória de Santo Antão, Vitória de Santo Antão, PE, Brazil
| | - Paul Aubier
- Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Guillaume Houee
- Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Penelope Claisse
- Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Mathieu G Faure-Brac
- Sorbonne Université, Muséum national d’Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Ronan Allain
- Muséum national d’Histoire naturelle, Sorbonne Université, CNRS, Centre de Recherche en Paléontologie—Paris, Paris, France
| | - Rafael C L P Andrade
- Universidade Federal de Pernambuco, Laboratório de Paleobiologia e Microestruturas, Vitória de Santo Antão, PE, Brazil
| | - Juliana M Sayão
- Universidade Federal de Pernambuco, Laboratório de Paleobiologia e Microestruturas, Vitória de Santo Antão, PE, Brazil
| | - Gustavo R Oliveira
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Laboratório de Paleontologia & Sistemática, Recife, PE, Brazil
| |
Collapse
|
33
|
Sookias RB, Dilkes D, Sobral G, Smith RMH, Wolvaardt FP, Arcucci AB, Bhullar BAS, Werneburg I. The craniomandibular anatomy of the early archosauriform Euparkeria capensis and the dawn of the archosaur skull. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200116. [PMID: 32874620 PMCID: PMC7428278 DOI: 10.1098/rsos.200116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 05/15/2023]
Abstract
Archosauria (birds, crocodilians and their extinct relatives) form a major part of terrestrial ecosystems today, with over 10 000 living species, and came to dominate the land for most of the Mesozoic (over 150 Myr) after radiating following the Permian-Triassic extinction. The archosaur skull has been essential to this diversification, itself diversified into myriad forms. The archosauriform Euparkeria capensis from the Middle Triassic (Anisian) of South Africa has been of great interest since its initial description in 1913, because its anatomy shed light on the origins and early evolution of crown Archosauria and potentially approached that of the archosaur common ancestor. Euparkeria has been widely used as an outgroup in phylogenetic analyses and when investigating patterns of trait evolution among archosaurs. Although described monographically in 1965, subsequent years have seen great advances in the understanding of early archosaurs and in imaging techniques. Here, the cranium and mandible of Euparkeria are fully redescribed and documented using all fossil material and computed tomographic data. Details previously unclear are fully described, including vomerine dentition, the epiptergoid, number of premaxillary teeth and palatal arrangement. A new diagnosis and cranial and braincase reconstruction is provided, and an anatomical network analysis is performed on the skull of Euparkeria and compared with other amniotes. The modular composition of the cranium suggests a flexible skull well adapted to feeding on agile food, but with a clear tendency towards more carnivorous behaviour, placing the taxon at the interface between ancestral diapsid and crown archosaur ecomorphology, corresponding to increases in brain size, visual sensitivity, upright locomotion and metabolism around this point in archosauriform evolution. The skull of Euparkeria epitomizes a major evolutionary transition, and places crown archosaur morphology in an evolutionary context.
Collapse
Affiliation(s)
- Roland B. Sookias
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David Dilkes
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Gabriela Sobral
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - Roger M. H. Smith
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
- Iziko South African Museum, PO Box 61, Cape Town, South Africa
| | - Frederik P. Wolvaardt
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | - Andrea B. Arcucci
- IMIBIO CONICET Universidad Nacional de San Luis, Av Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Bhart-Anjan S. Bhullar
- Department of Earth and Planetary Sciences, 210 Whitney Ave., Yale University, New Haven, CT 06511, USA
- Yale Peabody Museum of Natural History, 170 Whitney Ave., New Haven, CT 06511, USA
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard-Karls-Universität, Sigwartstraße 10, 72076 Tübingen, Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany
| |
Collapse
|
34
|
Lovelace DM, Hartman SA, Mathewson PD, Linzmeier BJ, Porter WP. Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs. PLoS One 2020; 15:e0223872. [PMID: 32469936 PMCID: PMC7259893 DOI: 10.1371/journal.pone.0223872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/12/2020] [Indexed: 11/29/2022] Open
Abstract
We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated “metabolic chamber” analyses support elevated “ratite-like” metabolic rates and intermediate “monotreme-like” core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record.
Collapse
Affiliation(s)
- David M. Lovelace
- University of Wisconsin Geology Museum, Department of Geosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DL); (WP)
| | - Scott A. Hartman
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul D. Mathewson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin J. Linzmeier
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Warren P. Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DL); (WP)
| |
Collapse
|
35
|
Clarac F, Scheyer TM, Desojo JB, Cerda IA, Sanchez S. The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190132. [PMID: 31928197 PMCID: PMC7017437 DOI: 10.1098/rstb.2019.0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- François Clarac
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Torsten M. Scheyer
- Paleontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Julia B. Desojo
- CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n°, B1900FWA La Plata, Argentina
| | - Ignacio A. Cerda
- CONICET, Argentina y Instituto de Investigacion en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), 8300 Cipolletti, Río Negro, Argentina
| | - Sophie Sanchez
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, 38043 Grenoble Cedex, France
| |
Collapse
|
36
|
Gardner JD, Laurin M, Organ CL. The relationship between genome size and metabolic rate in extant vertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190146. [PMID: 31928192 PMCID: PMC7017434 DOI: 10.1098/rstb.2019.0146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Genome size has long been hypothesized to affect the metabolic rate in various groups of animals. The mechanism behind this proposed association is the nucleotypic effect, in which large nucleus and cell sizes influence cellular metabolism through surface area-to-volume ratios. Here, we provide a review of the recent literature on the relationship between genome size and metabolic rate. We also conduct an analysis using phylogenetic comparative methods and a large sample of extant vertebrates. We find no evidence that the effect of genome size improves upon models in explaining metabolic rate variation. Not surprisingly, our results show a strong positive relationship between metabolic rate and body mass, as well as a substantial difference in metabolic rate between endothermic and ectothermic vertebrates, controlling for body mass. The presence of endothermy can also explain elevated rate shifts in metabolic rate whereas genome size cannot. We further find no evidence for a punctuated model of evolution for metabolic rate. Our results do not rule out the possibility that genome size affects cellular physiology in some tissues, but they are consistent with previous research suggesting little support for a direct functional connection between genome size and basal metabolic rate in extant vertebrates. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Jacob D. Gardner
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Michel Laurin
- Centre de Recherches sur la Paléobiologie et les Paléoenvironnements (CR2P), Centre National de la Recherche Scientifique (CNRS)/Muséum National d'Histoire Naturelle (MNHN)/Sorbonne Université, Paris, France
| | - Chris L. Organ
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
37
|
Wu Y, Wang H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc Biol Sci 2020; 286:20182185. [PMID: 30963837 DOI: 10.1098/rspb.2018.2185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diapsid lineage (birds) and synapsid lineage (mammals), share a suite of functionally similar characteristics (e.g. endothermy) that are considered to be a result of their convergent evolution, but the candidate selections leading to this convergent evolution are still under debate. Here, we used a newly developed molecular phyloecological approach to reconstruct the diel activity pattern of the common ancestors of living birds. Our results strongly suggest that they had adaptations to nocturnality during their early evolution, which is remarkably similar to that of ancestral mammals. Given their similar adaptation to nocturnality, we propose that the shared traits in birds and mammals may have partly evolved as a result of the convergent evolution of their early ancestors adapting to ecological factors (e.g. low ambient temperature) associated with nocturnality. Finally, a conceptually unifying ecological model on the evolution of endothermy in diverse organisms with an emphasis on low ambient temperature is proposed. We reason that endothermy may evolve as an adaptive strategy to enable organisms to effectively implement various life-cycle activities under relatively low-temperature environments. In particular, a habitat shift from high-temperature to relatively low-temperature environments is identified as a common factor underlying the evolution of endothermy.
Collapse
Affiliation(s)
- Yonghua Wu
- 1 School of Life Sciences, Northeast Normal University , 5268 Renmin Street, Changchun 130024 , People's Republic of China.,2 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , 2555 Jingyue Street, Changchun 130117 , People's Republic of China
| | - Haifeng Wang
- 3 Department of Bioengineering, Stanford University , Stanford, CA 94305 , USA
| |
Collapse
|
38
|
Séon N, Amiot R, Martin JE, Young MT, Middleton H, Fourel F, Picot L, Valentin X, Lécuyer C. Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190139. [PMID: 31928186 DOI: 10.1098/rstb.2019.0139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Teleosauridae and Metriorhynchidae were thalattosuchian crocodylomorph clades that secondarily adapted to marine life and coexisted during the Middle to Late Jurassic. While teleosaurid diversity collapsed at the end of the Jurassic, most likely as a result of a global cooling of the oceans and associated marine regressions, metriorhynchid diversity was largely unaffected, although the fossil record of Thalattosuchia is poor in the Cretaceous. In order to investigate the possible differences in thermophysiologies between these two thalattosuchian lineages, we analysed stable oxygen isotope compositions (expressed as δ18O values) of tooth apatite from metriorhynchid and teleosaurid specimens. We then compared them with the δ18O values of coexisting endo-homeothermic ichthyosaurs and plesiosaurs, as well as ecto-poikilothermic chondrichthyans and osteichthyans. The distribution of δ18O values suggests that both teleosaurids and metriorhynchids had body temperatures intermediate between those of typical ecto-poikilothermic vertebrates and warm-blooded ichthyosaurs and plesiosaurs, metriorhynchids being slightly warmer than teleosaurids. We propose that metriorhynchids were able to raise their body temperature above that of the ambient environment by metabolic heat production, as endotherms do, but could not maintain a constant body temperature compared with fully homeothermic ichthyosaurs and plesiosaurs. Teleosaurids, on the other hand, may have raised their body temperature by mouth-gape basking, as modern crocodylians do, and benefited from the thermal inertia of their large body mass to maintain their body temperature above the ambient one. Endothermy in metriorhynchids might have been a by-product of their ecological adaptations to active pelagic hunting, and it probably allowed them to survive the global cooling of the Late Jurassic, thus explaining the selective extinction affecting Thalattosuchia at the Jurassic-Cretaceous boundary. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Nicolas Séon
- UMR 5276, Laboratoire de Géologie de Lyon, Terre, Planètes et Environnement, Université Claude Bernard Lyon 1/CNRS/École Normale Supérieure de Lyon, 69622 Villeurbanne Cedex, France
| | - Romain Amiot
- UMR 5276, Laboratoire de Géologie de Lyon, Terre, Planètes et Environnement, Université Claude Bernard Lyon 1/CNRS/École Normale Supérieure de Lyon, 69622 Villeurbanne Cedex, France
| | - Jeremy E Martin
- UMR 5276, Laboratoire de Géologie de Lyon, Terre, Planètes et Environnement, Université Claude Bernard Lyon 1/CNRS/École Normale Supérieure de Lyon, 69622 Villeurbanne Cedex, France
| | - Mark T Young
- School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | | | - François Fourel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurent Picot
- Paleospace, Avenue Jean Moulin, 14640 Villers-sur-mer, France
| | - Xavier Valentin
- Laboratoire PALEVOPRIM, UMR 7262 CNRS INEE & University of Poitiers, Poitiers, France.,Palaios, Research Association, 86300 Valdivienne, France
| | - Christophe Lécuyer
- UMR 5276, Laboratoire de Géologie de Lyon, Terre, Planètes et Environnement, Université Claude Bernard Lyon 1/CNRS/École Normale Supérieure de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
39
|
Faure-Brac MG, Cubo J. Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190138. [PMID: 31928185 DOI: 10.1098/rstb.2019.0138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acquisition of mammalian endothermy is poorly constrained both phylogenetically and temporally. Here, we inferred the resting metabolic rates (RMRs) and the thermometabolic regimes (endothermy or ectothermy) of a sample of eight extinct synapsids using palaeohistology, phylogenetic eigenvector maps (PEMs), and a sample of 17 extant tetrapods of known RMR (quantified using respirometry). We inferred high RMR values and an endothermic metabolism for the anomodonts (Lystrosaurus sp., Oudenodon bainii) and low RMR values and an ectothermic metabolism for Clepsydrops collettii, Dimetrodon sp., Edaphosaurus boanerges, Mycterosaurus sp., Ophiacodon uniformis and Sphenacodon sp. A maximum-likelihood ancestral states reconstruction of RMRs performed using the values inferred for extinct synapsids, and the values measured using respirometry in extant tetrapods, shows that the nodes Anomodontia and Mammalia were primitively endotherms. Finally, we performed a parsimony optimization of the presence of endothermy using the results obtained in the present study and those obtained in previous studies that used PEMs. For this, we assigned to each extinct taxon a thermometabolic regime (ectothermy or endothermy) depending on whether the inferred values were significantly higher, lower or not significantly different from the RMR value separating ectotherms from endotherms (1.5 ml O2 h-1 g-0.67). According to this optimization, endothermy arose independently in Archosauromorpha, Sauropterygia and Therapsida. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Mathieu G Faure-Brac
- Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 place Jussieu, 75005 Paris, France
| | - Jorge Cubo
- Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
40
|
Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI. Respiratory evolution in archosaurs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190140. [PMID: 31928195 PMCID: PMC7017431 DOI: 10.1098/rstb.2019.0140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue ‘Vertebrate palaeophysiology’.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonathan R Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Janis CM, Napoli JG, Warren DE. Palaeophysiology of pH regulation in tetrapods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190131. [PMID: 31928199 DOI: 10.1098/rstb.2019.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The involvement of mineralized tissues in acid-base homeostasis was likely important in the evolution of terrestrial vertebrates. Extant reptiles encounter hypercapnia when submerged in water, but early tetrapods may have experienced hypercapnia on land due to their inefficient mode of lung ventilation (likely buccal pumping, as in extant amphibians). Extant amphibians rely on cutaneous carbon dioxide elimination on land, but early tetrapods were considerably larger forms, with an unfavourable surface area to volume ratio for such activity, and evidence of a thick integument. Consequently, they would have been at risk of acidosis on land, while many of them retained internal gills and would not have had a problem eliminating carbon dioxide in water. In extant tetrapods, dermal bone can function to buffer the blood during acidosis by releasing calcium and magnesium carbonates. This review explores the possible mechanisms of acid-base regulation in tetrapod evolution, focusing on heavily armoured, basal tetrapods of the Permo-Carboniferous, especially the physiological challenges associated with the transition to air-breathing, body size and the adoption of active lifestyles. We also consider the possible functions of dermal armour in later tetrapods, such as Triassic archosaurs, inferring palaeophysiology from both fossil record evidence and phylogenetic patterns, and propose a new hypothesis relating the archosaurian origins of the four-chambered heart and high systemic blood pressures to the perfusion of the osteoderms. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - James G Napoli
- Richard Gilder Graduate School and Division of Paleontology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
42
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Padian K, de Ricqlès A. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190147. [PMID: 31928190 DOI: 10.1098/rstb.2019.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
What can we know of the physiological regimes of ancient vertebrates? Essential to the exploration of this question are several epistemological tools: (i) a phylogenetic framework for interpreting whole animals and individual tissues, (ii) reliable knowledge of variation in populations and among climates and geographies, (iii) an understanding of phenotypic variation during ontogeny and between sexes, and (iv) a sense of the patterns of body size change, both phyletically and ontogenetically. Palaeobiologists are historically bound to a dichotomous set of terms developed long ago to describe the relatively depauperate living vertebrate fauna. This system sees only binary categories of five major groupings: the 'cold-blooded' fishes, amphibians, and reptiles, and the 'warm-blooded' birds and mammals. The integration of histoanatomical data with patterns of size, growth and phylogeny provides an opportunity to re-imagine not only vertebrate palaeophysiology, but vertebrate physiology in general. Here, we discuss how four 'signals' or 'influences' on bone tissues-phylogeny, ontogeny, mechanics and environment-can help to address these questions. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Kevin Padian
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Armand de Ricqlès
- CR2P (UMR 7207) Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Université), Paris, France
| |
Collapse
|
44
|
Fleischle CV, Sander PM, Wintrich T, Caspar KR. Hematological convergence between Mesozoic marine reptiles (Sauropterygia) and extant aquatic amniotes elucidates diving adaptations in plesiosaurs. PeerJ 2019; 7:e8022. [PMID: 31763069 PMCID: PMC6873879 DOI: 10.7717/peerj.8022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Plesiosaurs are a prominent group of Mesozoic marine reptiles, belonging to the more inclusive clades Pistosauroidea and Sauropterygia. In the Middle Triassic, the early pistosauroid ancestors of plesiosaurs left their ancestral coastal habitats and increasingly adapted to a life in the open ocean. This ecological shift was accompanied by profound changes in locomotion, sensory ecology and metabolism. However, investigations of physiological adaptations on the cellular level related to the pelagic lifestyle are lacking so far. Using vascular canal diameter, derived from osteohistological thin-sections, we show that inferred red blood cell size significantly increases in pistosauroids compared to more basal sauropterygians. This change appears to have occurred in conjunction with the dispersal to open marine environments, with cell size remaining consistently large in plesiosaurs. Enlarged red blood cells likely represent an adaptation of plesiosaurs repeated deep dives in the pelagic habitat and mirror conditions found in extant marine mammals and birds. Our results emphasize physiological aspects of adaptive convergence among fossil and extant marine amniotes and add to our current understanding of plesiosaur evolution.
Collapse
Affiliation(s)
- Corinna V. Fleischle
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
| | - P. Martin Sander
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Tanja Wintrich
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
- Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Kai R. Caspar
- Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
46
|
Davesne D, Meunier FJ, Friedman M, Benson RBJ, Otero O. Histology of the endothermic opah ( Lampris sp.) suggests a new structure-function relationship in teleost fish bone. Biol Lett 2019; 14:rsbl.2018.0270. [PMID: 29950318 DOI: 10.1098/rsbl.2018.0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Endothermy, production and retention of heat by the body, appeared convergently in mammals, birds and four spiny-rayed teleost fish lineages. Of these, red-muscle endothermy over most or all of the body has only appeared in two groups: tunas and the opah (Lampris). Hitherto, tunas have been the only spiny-rayed fishes known to have bones containing embedded osteocyte cells; others have acellular bone. We examined bone histology in Lampris for the first time, demonstrating the presence of cellular bone very similar to that of tunas. This contrasts with the acellular condition of its ectothermic close relatives. The distribution of this character suggests that it co-evolved with red-muscle endothermy, hinting at a common physiological mechanism that would link bone histology to endothermy in these distantly related teleost lineages.
Collapse
Affiliation(s)
- Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - François J Meunier
- BOREA (UMR 7208 CNRS, MNHN, IRD, Sorbonne Université), Muséum national d'Histoire naturelle, Paris, France
| | - Matt Friedman
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Olga Otero
- PalEvoPrim (UMR 7262 CNRS), Université de Poitiers, Poitiers, France
| |
Collapse
|
47
|
Faure-Brac MG, Pelissier F, Cubo J. The influence of plane of section on the identification of bone tissue types in amniotes with implications for paleophysiological inferences. J Morphol 2019; 280:1282-1291. [DOI: 10.1002/jmor.21030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Mathieu G. Faure-Brac
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| | - François Pelissier
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| | - Jorge Cubo
- Sorbonne Université, MNHN, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P); Paris France
| |
Collapse
|
48
|
Benton MJ, Dhouailly D, Jiang B, McNamara M. The Early Origin of Feathers. Trends Ecol Evol 2019; 34:856-869. [PMID: 31164250 DOI: 10.1016/j.tree.2019.04.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Feathers have long been regarded as the innovation that drove the success of birds. However, feathers have been reported from close dinosaurian relatives of birds, and now from ornithischian dinosaurs and pterosaurs, the cousins of dinosaurs. Incomplete preservation makes these reports controversial. If true, these findings shift the origin of feathers back 80 million years before the origin of birds. Gene regulatory networks show the deep homology of scales, feathers, and hairs. Hair and feathers likely evolved in the Early Triassic ancestors of mammals and birds, at a time when synapsids and archosaurs show independent evidence of higher metabolic rates (erect gait and endothermy), as part of a major resetting of terrestrial ecosystems following the devastating end-Permian mass extinction.
Collapse
Affiliation(s)
| | | | - Baoyu Jiang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University of Cork, Cork, Ireland
| |
Collapse
|
49
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
50
|
Griffin CT, Bano LS, Turner AH, Smith ND, Irmis RB, Nesbitt SJ. Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha). PeerJ 2019; 7:e6331. [PMID: 30775169 PMCID: PMC6375289 DOI: 10.7717/peerj.6331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles—crocodylians, birds and their extinct relatives—many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6–144.4 mm long), the first series of a non-dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in closely related dinosauromorph taxa, so integrating gross morphology and histological signal is needed to determine reliable maturity indicators for early bird-line archosaurs. We found that, although there are small, linear scars indicating muscle attachment sites across the femur, the only rugose muscle scar that appears during ontogeny is the attachment of the M. caudofemoralis longus, and only in the largest-sampled individual. This individual is also the only femur with histological indicators that asymptotic size had been reached, although smaller individuals possess some signal of decreasing growth rates (e.g., decreasing vascular density). The overall femoral bone histology of D. romeri is similar to that of other early bird-line archosaurs (e.g., woven-bone tissue, moderately to well-vascularized, longitudinal vascular canals). All these data indicate that the lack of well-developed femoral scars is autapomorphic for this species, not simply an indication of skeletal immaturity. We found no evidence of the high intraspecific variation present in early dinosaurs and other dinosauriforms, but a limited sample size of other early bird-line archosaur growth series make this tentative. The evolutionary history and phylogenetic signal of gross morphological features must be considered when assessing maturity in extinct archosaurs and their close relatives, and in some groups corroboration with bone histology or with better-known morphological characters is necessary.
Collapse
Affiliation(s)
| | - Lauren S Bano
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Nathan D Smith
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|