1
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Decena MÁ, Sancho R, Inda LA, Pérez-Collazos E, Catalán P. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419255. [PMID: 39049853 PMCID: PMC11266827 DOI: 10.3389/fpls.2024.1419255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Brachypodium grass species have been selected as model plants for functional genomics of grass crops, and to elucidate the origins of allopolyploidy and perenniality in monocots, due to their small genome sizes and feasibility of cultivation. However, genome sizes differ greatly between diploid or polyploid Brachypodium lineages. We have used genome skimming sequencing data to uncover the composition, abundance, and phylogenetic value of repetitive elements in 44 representatives of the major Brachypodium lineages and cytotypes. We also aimed to test the possible mechanisms and consequences of the "polyploid genome shock hypothesis" (PGSH) under three different evolutionary scenarios of variation in repeats and genome sizes of Brachypodium allopolyploids. Our data indicated that the proportion of the genome covered by the repeatome in the Brachypodium species showed a 3.3-fold difference between the highest content of B. mexicanum-4x (67.97%) and the lowest of B. stacei-2x (20.77%), and that changes in the sizes of their genomes were a consequence of gains or losses in their repeat elements. LTR-Retand and Tekay retrotransposons were the most frequent repeat elements in the Brachypodium genomes, while Ogre retrotransposons were found exclusively in B. mexicanum. The repeatome phylogenetic network showed a high topological congruence with plastome and nuclear rDNA and transcriptome trees, differentiating the ancestral outcore lineages from the recently evolved core-perennial lineages. The 5S rDNA graph topologies had a strong match with the ploidy levels and nature of the subgenomes of the Brachypodium polyploids. The core-perennial B. sylvaticum presents a large repeatome and characteristics of a potential post-polyploid diploidized origin. Our study evidenced that expansions and contractions in the repeatome were responsible for the three contrasting responses to the PGSH. The exacerbated genome expansion of the ancestral allotetraploid B. mexicanum was a consequence of chromosome-wide proliferation of TEs and not of WGD, the additive repeatome pattern of young allotetraploid B. hybridum of stabilized post-WGD genome evolution, and the genomecontraction of recent core-perennials polyploids (B. pinnatum, B. phoenicoides) of repeat losses through recombination of these highly hybridizing lineages. Our analyses have contributed to unraveling the evolution of the repeatome and the genome size variation in model Brachypodium grasses.
Collapse
Affiliation(s)
- María Ángeles Decena
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Rubén Sancho
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Centro de Investigaciones Tecnológicas y Agroalimentarias de Aragón (CITA), Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
3
|
Choi B, Hwang Y, McAdam SAM, Jang TS. Comparative microscopic investigations of leaf epidermis in four Ajuga species from Korea. Microsc Res Tech 2024; 87:434-445. [PMID: 37909218 DOI: 10.1002/jemt.24450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 μm to 32.50 ± 2.38 μm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.
Collapse
Affiliation(s)
- Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeojin Hwang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Mu W, Li K, Yang Y, Breiman A, Yang J, Wu Y, Zhu M, Wang S, Catalan P, Nevo E, Liu J. Subgenomic Stability of Progenitor Genomes During Repeated Allotetraploid Origins of the Same Grass Brachypodium hybridum. Mol Biol Evol 2023; 40:msad259. [PMID: 38000891 PMCID: PMC10708906 DOI: 10.1093/molbev/msad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kexin Li
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Adina Breiman
- Department of Evolutionary and Environmental Biology, University of Tel-Aviv, Tel-Aviv 6997801, Israel
| | - Jiao Yang
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Wu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pilar Catalan
- Escuela Politecnica Superior de Huesca, Universidad de Zaragoza, Huesca 22071, Spain
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Kim H, Choi B, Lee C, Paik JH, Jang CG, Weiss-Schneeweiss H, Jang TS. Does the evolution of micromorphology accompany chromosomal changes on dysploid and polyploid levels in the Barnardia japonica complex (Hyacinthaceae)? BMC PLANT BIOLOGY 2023; 23:485. [PMID: 37817118 PMCID: PMC10565974 DOI: 10.1186/s12870-023-04456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chang-Gee Jang
- Department of Biology Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria.
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Comparative Analyses of Complete Chloroplast Genomes and Karyotypes of Allotetraploid Iris koreana and Its Putative Diploid Parental Species ( Iris Series Chinenses, Iridaceae). Int J Mol Sci 2022; 23:ijms231810929. [PMID: 36142840 PMCID: PMC9504294 DOI: 10.3390/ijms231810929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/16/2022] Open
Abstract
The Iris series Chinenses in Korea comprises four species (I. minutoaurea, I. odaesanensis, I. koreana, and I. rossii), and the group includes some endangered species, owing to their high ornamental, economic, and conservation values. Among them, the putative allotetraploid, Iris koreana (2n = 4x = 50), is hypothesized to have originated from the hybridization of the diploids I. minutoaurea (2n = 2x = 22) and I. odaesanensis (2n = 2x = 28) based on morphological characters, chromosome numbers, and genome size additivity. Despite extensive morphological and molecular phylogenetical studies on the genus Iris, little is known about Korean irises in terms of their complete chloroplast (cp) genomes and molecular cytogenetics that involve rDNA loci evolution based on fluorescence in situ hybridization (FISH). This study reports comparative analyses of the karyotypes of the three Iris species (I. koreana, I. odaesanensis, and I. minutoaurea), with an emphasis on the 5S and 35S rDNA loci number and localization using FISH together with the genome size and chromosome number. Moreover, the cp genomes of the same individuals were sequenced and assembled for comparative analysis. The rDNA loci numbers, which were localized consistently at the same position in all species, and the chromosome numbers and genome size values of tetraploid Iris koreana (four 5S and 35S loci; 2n = 50; 1C = 7.35 pg) were additively compared to its putative diploid progenitors, I. minutoaurea (two 5S and 35S loci; 2n = 22; 1C = 3.71 pg) and I. odaesanensis (two 5S and 35S loci; 2n = 28; 1C = 3.68 pg). The chloroplast genomes were 152,259–155,145 bp in length, and exhibited a conserved quadripartite structure. The Iris cp genomes were highly conserved and similar to other Iridaceae cp genomes. Nucleotide diversity analysis indicated that all three species had similar levels of genetic variation, but the cp genomes of I. koreana and I. minutoaurea were more similar to each other than to I. odaesanensis. Positive selection was inferred for psbK and ycf2 genes of the three Iris species. Phylogenetic analyses consistently recovered I. odaesanensis as a sister to a clade containing I. koreana and I. minutoaurea. Although the phylogenetic relationship, rDNA loci number, and localization, together with the genome size and chromosome number of the three species, allowed for the inference of I. minutoaurea as a putative maternal taxon and I. odaesanensis as a paternal taxon, further analyses involving species-specific molecular cytogenetic markers and genomic in situ hybridization are required to interpret the mechanisms involved in the origin of the chromosomal variation in Iris series Chinenses. This study contributes towards the genomic and chromosomal evolution of the genus Iris.
Collapse
|
7
|
Eriksson MC, Mandáková T, McCann J, Temsch EM, Chase MW, Hedrén M, Weiss-Schneeweiss H, Paun O. Repeat Dynamics across Timescales: A Perspective from Sibling Allotetraploid Marsh Orchids (Dactylorhiza majalis s.l.). Mol Biol Evol 2022; 39:msac167. [PMID: 35904928 PMCID: PMC9366187 DOI: 10.1093/molbev/msac167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.
Collapse
Affiliation(s)
- Mimmi C Eriksson
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC−Central−European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- Royal Botanic Gardens Kew, London TW9 3AE, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
8
|
Moreno-Aguilar MF, Inda LA, Sánchez-Rodríguez A, Arnelas I, Catalán P. Evolutionary Dynamics of the Repeatome Explains Contrasting Differences in Genome Sizes and Hybrid and Polyploid Origins of Grass Loliinae Lineages. FRONTIERS IN PLANT SCIENCE 2022; 13:901733. [PMID: 35845705 PMCID: PMC9284676 DOI: 10.3389/fpls.2022.901733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the Lolium clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.
Collapse
Affiliation(s)
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Centro de Investigación y Tecnología Agroalimentaria, Zaragoza, Spain
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Itziar Arnelas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
9
|
Tomasello S, Oberprieler C. Reticulate Evolution in the Western Mediterranean Mountain Ranges: The Case of the Leucanthemopsis Polyploid Complex. FRONTIERS IN PLANT SCIENCE 2022; 13:842842. [PMID: 35783934 PMCID: PMC9247603 DOI: 10.3389/fpls.2022.842842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Polyploidization is one of the most common speciation mechanisms in plants. This is particularly relevant in high mountain environments and/or in areas heavily affected by climatic oscillations. Although the role of polyploidy and the temporal and geographical frameworks of polyploidization have been intensively investigated in the alpine regions of the temperate and arctic biomes, fewer studies are available with a specific focus on the Mediterranean region. Leucanthemopsis (Asteraceae) consists of six to ten species with several infraspecific entities, mainly distributed in the western Mediterranean Basin. It is a polyploid complex including montane, subalpine, and strictly alpine lineages, which are locally distributed in different mountain ranges of Western Europe and North Africa. We used a mixed approach including Sanger sequencing and (Roche-454) high throughput sequencing of amplicons to gather information from single-copy nuclear markers and plastid regions. Nuclear regions were carefully tested for recombinants/PCR artifacts and for paralogy. Coalescent-based methods were used to infer the number of polyploidization events and the age of formation of polyploid lineages, and to reconstruct the reticulate evolution of the genus. Whereas the polyploids within the widespread Leucanthemopsis alpina are autopolyploids, the situation is more complex among the taxa endemic to the western Mediterranean. While the hexaploid, L. longipectinata, confined to the northern Moroccan mountain ranges (north-west Africa), is an autopolyploid, the Iberian polyploids are clearly of allopolyploid origins. At least two different polyploidization events gave rise to L. spathulifolia and to all other tetraploid Iberian taxa, respectively. The formation of the Iberian allopolyploids took place in the early Pleistocene and was probably caused by latitudinal and elevational range shifts that brought into contact previously isolated Leucanthemopsis lineages. Our study thus highlights the importance of the Pleistocene climatic oscillations and connected polyploidization events for the high plant diversity in the Mediterranean Basin.
Collapse
Affiliation(s)
- Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Göttingen, Göttingen, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Simoni S, Clemente C, Usai G, Vangelisti A, Natali L, Tavarini S, Angelini LG, Cavallini A, Mascagni F, Giordani T. Characterisation of LTR-Retrotransposons of Stevia rebaudiana and Their Use for the Analysis of Genetic Variability. Int J Mol Sci 2022; 23:ijms23116220. [PMID: 35682899 PMCID: PMC9181549 DOI: 10.3390/ijms23116220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1–2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding.
Collapse
|
11
|
Fernández P, Hidalgo O, Juan A, Leitch IJ, Leitch AR, Palazzesi L, Pegoraro L, Viruel J, Pellicer J. Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. PLANTS 2022; 11:plants11091235. [PMID: 35567236 PMCID: PMC9099586 DOI: 10.3390/plants11091235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Polyploidy is a widespread phenomenon across angiosperms, and one of the main drivers of diversification. Whilst it frequently involves hybridisation, autopolyploidy is also an important feature of plant evolution. Minority cytotypes are frequently overlooked due to their lower frequency in populations, but the development of techniques such as flow cytometry, which enable the rapid screening of cytotype diversity across large numbers of individuals, is now providing a more comprehensive understanding of cytotype diversity within species. Senecio doronicum is a relatively common daisy found throughout European mountain grasslands from subalpine to almost nival elevations. We have carried out a population-level cytotype screening of 500 individuals from Tête Grosse (Alpes-de-Haute-Provence, France), confirming the coexistence of tetraploid (28.2%) and octoploid cytotypes (71.2%), but also uncovering a small number of hexaploid individuals (0.6%). The analysis of repetitive elements from short-read genome-skimming data combined with nuclear (ITS) and whole plastid DNA sequences support an autopolyploid origin of the polyploid S. doronicum individuals and provide molecular evidence regarding the sole contribution of tetraploids in the formation of hexaploid individuals. The evolutionary impact and resilience of the new cytotype have yet to be determined, although the coexistence of different cytotypes may indicate nascent speciation.
Collapse
Affiliation(s)
- Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, 03080 Alicante, Spain;
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Luis Palazzesi
- Museo Argentino de Ciencias Naturales, CONICET, División Paleobotánica, Buenos Aires C1405DJR, Argentina;
| | - Luca Pegoraro
- Biodiversity and Conservation Biology Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Bimensdorf, Switzerland;
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
| | - Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain;
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK; (I.J.L.); (J.V.)
- Correspondence: (P.F.); (J.P.); Tel.: +34-932890611 (P.F. & J.P.)
| |
Collapse
|
12
|
Pellicer J, Balant M, Fernández P, Rodríguez González R, Hidalgo O. Morphological and Genome-Wide Evidence of Homoploid Hybridisation in Urospermum (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020182. [PMID: 35050070 PMCID: PMC8779322 DOI: 10.3390/plants11020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 05/11/2023]
Abstract
The genus Urospermum is distributed in the Mediterranean region and Macaronesia, and has been introduced to other extra-Mediterranean regions. Although the two species constituting the genus, U. dalechampii and U. picroides, are frequently found together, hybrids have so far only been reported once, from Morocco. However, we found certain individuals in Catalonia, whose intermediate morphology suggested a potential hybrid origin. In this study, we applied morphological and molecular methods to investigate the origin of those individuals. Intermediate features at phenotype, karyological, cytogenetic, and genomic levels were identified in morphologically intermediate individuals, supporting their homoploid hybrid origin. Chloroplast sequence data suggest that U. dalechampii is the maternal progenitor of the hybrid. Together with the intermediate traits displayed, the lack of fertile seeds suggests that hybrids are probably F1. Future monitoring studies will be, nonetheless, needed to evaluate the extent of hybridisation and its potential impact on the biology of the genus.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
- Correspondence: (J.P.); (O.H.); Tel.: +34-932890611 (J.P. & O.H.)
| | - Manica Balant
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Roi Rodríguez González
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, 08038 Barcelona, Spain; (M.B.); (P.F.); (R.R.G.)
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
- Correspondence: (J.P.); (O.H.); Tel.: +34-932890611 (J.P. & O.H.)
| |
Collapse
|
13
|
Kang S, Choi B, Jang TS. Chromosome Evolution in Korean Carduus- Cirsium Taxa (Asteraceae). CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Seongyeon Kang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University
| |
Collapse
|
14
|
Zeng S, Li J, Yang Q, Wu Y, Yu J, Pei X, Yu J. Comparative plastid genomics of Mazaceae: focusing on a new recognized genus, Puchiumazus. PLANTA 2021; 254:99. [PMID: 34665332 DOI: 10.1007/s00425-021-03753-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Six Mazaceae plastomes were assembled in this study, including the newly recognized genus, Puchiumazus. Comparative plastid genomic analysis provided new insights into Mazaceae. The phylogenetic categorization of Mazus lanceifolius (Mazaceae) has long been uncertain. In 2021, the scholars Bo Li, D. G. Zhang, and C. L. Xiang republished M. lanceifolius as a new species Puchiumazus lanceifolius, within a new genus Puchiumazus. However, there is little plastome information on Mazaceae. Following the publishing of the new genus Puchiumazus, it is now necessary to study the Mazaceae plastome features to comprehensively understand this young family. The Mazaceae plastomes all have a typical quartile structure. The plastomes have a size ranging from 152,388 to 154,252 bp, and each plastome contains 112 unique genes, including 78 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. A comparative analysis showed that these plastome sequences are highly conserved. Furthermore, we identified four relatively hypervariable regions (trnQ-UUC-psbK, trnS-GCU- trnS-CGA, trnT-UGU-trnL-UAA and ycf1) that can be used as potential DNA barcodes for the identification of this clade. Phylogenetic relationships based on the whole plastome sequences of 25 samples of 14 genera of Lamiales placed M. lanceifolius in the basal clade of the family Mazaceae, with 100% bootstrap support. In summary, the M. lanceifolius results indicate that a new monotype genus (Puchiumazus) should be established at the whole-plastome level. This study provides plastid genomic resources for exploring the phylogeny of Mazaceae.
Collapse
Affiliation(s)
- Siyuan Zeng
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Qiyi Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You Wu
- College of Information and Electrical Engineering, Chongqing Three Gorges University, Chongqing, 404199, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Xiaoying Pei
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400716, China.
| |
Collapse
|
15
|
Oliveira MAS, Nunes T, Dos Santos MA, Ferreira Gomes D, Costa I, Van-Lume B, Marques Da Silva SS, Oliveira RS, Simon MF, Lima GSA, Gissi DS, Almeida CCDS, Souza G, Marques A. High-Throughput Genomic Data Reveal Complex Phylogenetic Relationships in Stylosanthes Sw (Leguminosae). Front Genet 2021; 12:727314. [PMID: 34630521 PMCID: PMC8495327 DOI: 10.3389/fgene.2021.727314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. “Campo Grande,” S. capitata “RS024” and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.
Collapse
Affiliation(s)
| | - Tomáz Nunes
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - Iara Costa
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil
| | - Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Recife, Brazil
| | | | - Ronaldo Simão Oliveira
- Campus Xique Xique, Federal Institute of Education, Science and Technology of Bahia, Xique-Xique, Brazil
| | | | - Gaus S A Lima
- Center of Agronomic Sciences, Federal University of Alagoas, Rio Largo, Brazil
| | - Danilo Soares Gissi
- Department of Biostatistics, Institute of Biosciences-IBB, Plant Biology, Parasitology and Zoology, São Paulo State University-UNESP, Botucatu, Brazil
| | | | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, Brazil.,Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
16
|
Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ. Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae). Front Genet 2021; 12:726211. [PMID: 34552621 PMCID: PMC8450539 DOI: 10.3389/fgene.2021.726211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Plant genomes are highly diverse in size and repetitive DNA composition. In the absence of polyploidy, the dynamics of repetitive elements, which make up the bulk of the genome in many species, are the main drivers underpinning changes in genome size and the overall evolution of the genomic landscape. The advent of high-throughput sequencing technologies has enabled investigation of genome evolutionary dynamics beyond model plants to provide exciting new insights in species across the biodiversity of life. Here we analyze the evolution of repetitive DNA in two closely related species of Heloniopsis (Melanthiaceae), which despite having the same chromosome number differ nearly twofold in genome size [i.e., H. umbellata (1C = 4,680 Mb), and H. koreana (1C = 2,480 Mb)]. Low-coverage genome skimming and the RepeatExplorer2 pipeline were used to identify the main repeat families responsible for the significant differences in genome sizes. Patterns of repeat evolution were found to correlate with genome size with the main classes of transposable elements identified being twice as abundant in the larger genome of H. umbellata compared with H. koreana. In addition, among the satellite DNA families recovered, a single shared satellite (HeloSAT) was shown to have contributed significantly to the genome expansion of H. umbellata. Evolutionary changes in repetitive DNA composition and genome size indicate that the differences in genome size between these species have been underpinned by the activity of several distinct repeat lineages.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain.,Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, United Kingdom.,School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
17
|
Pellicer J, López-Pujol J, Aixarch M, Garnatje T, Vallès J, Hidalgo O. Detecting Introgressed Populations in the Iberian Endemic Centaurea podospermifolia through Genome Size. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081492. [PMID: 34451537 PMCID: PMC8401423 DOI: 10.3390/plants10081492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 05/25/2023]
Abstract
Based on results from previous studies, populations of the Iberian endemic Centaurea podospermifolia north of the Ebro River are considered genetically pure, while those southward are introgressed, with genetic input from C. cephalariifolia. This phenomenon is particularly relevant, especially given both the endangered and protected status for the species, which can have consequences in how to best apply conservation strategies to maintain genetic resources in the species. The main goal of this study was to evaluate whether genome size assessments using flow cytometry can help distinguishing between pure, hybrid and introgressed populations, and hence become a powerful and cost-effective tool to complement comprehensive population genetic surveys. The results indicate that there are significant genome size differences between populations of C. podospermifolia, which are coincident with previous considerations of pure and introgressed populations. Given the simplicity and reproducibility of this technique, flow cytometry could become an effective tool for monitoring pure populations of this species and, indeed, become an integral part of the management plans that are mandatory for listed taxa.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, Catalonia, 08038 Barcelona, Spain; (J.L.-P.); (T.G.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | - Jordi López-Pujol
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, Catalonia, 08038 Barcelona, Spain; (J.L.-P.); (T.G.)
| | - Marc Aixarch
- c/Mossèn Manyà 15, Catalonia, 43500 Tortosa, Spain;
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, Catalonia, 08038 Barcelona, Spain; (J.L.-P.); (T.G.)
| | - Joan Vallès
- Laboratori de Botànica, Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Institut de la Biodiversitat IRBio, Universitat de Barcelona, Av. Joan XXIII 27-31, Catalonia, 08028 Barcelona, Spain;
| | - Oriane Hidalgo
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., Parc de Montjuïc, Catalonia, 08038 Barcelona, Spain; (J.L.-P.); (T.G.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| |
Collapse
|
18
|
Wu W, Li J, Liu Y, Jiang M, Lan M, Liu C. Peculiarities of the inverted repeats in the complete chloroplast genome of Strobilanthes bantonensis Lindau. Mitochondrial DNA B Resour 2021; 6:1440-1447. [PMID: 33969193 PMCID: PMC8079011 DOI: 10.1080/23802359.2021.1911699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Strobilanthes bantonensis Lindau belongs to the family Acanthaceae. It is an antiviral herb that can be used to prevent Influenza virus infections in the border areas between China and Vietnam. Local people call it ‘Purple Ban-lan-gen’ because its root is very similar to that of Strobilanthes cusia (Nees) Kuntze, which is called ‘Southern Ban-lan-gen’ and is listed in Chinese Pharmacopeia. The two species have been used interchangeably locally. However, their pharmacological equivalence has caused concern for years. We have sequenced the chloroplast genome of S. cusia previously. In this study, we sequenced the complete chloroplast genome sequence of S. bantonensis to preform in-depth comparative genetic analysis of the two Strobilanthes species. The chloroplast genome of S. bantonensis is a circular DNA molecule with a total length of 144,591 bp and encodes 84 protein-coding, 8 ribosomes, and 37 transfer RNA genes. The chloroplast genome has a conservative quadripartite structure, including a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions, with lengths of 92,068 bp, 17,767 bp, and 17,378 bp, respectively. Phylogenetic analysis confirmed that S. bantonensis is closely related to the S. cusia. Compared with other species from Acanthaceae, S. bantonensis has a significantly shortened IR region, suggesting the occurrence of IR contraction events. This study will help future taxonomic, evolutionary, phylogenetic, and bioprospecting studies of the sizeable Strobilanthes genus, which contains over 400 species.
Collapse
Affiliation(s)
- Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from the Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mingsheng Lan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from the Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Li J, Tang J, Zeng S, Han F, Yuan J, Yu J. Comparative plastid genomics of four Pilea (Urticaceae) species: insight into interspecific plastid genome diversity in Pilea. BMC PLANT BIOLOGY 2021; 21:25. [PMID: 33413130 PMCID: PMC7792329 DOI: 10.1186/s12870-020-02793-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca 'Greizy', Pilea peperomioides and Pilea serpyllacea 'Globosa') and performed comprehensive comparative analysis. RESULTS The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from 150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, trnT-UGU-trnL-UAA, accD-psbI, ndhF-rpl32, rpl32-trnL-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions. Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within Urticaceae. CONCLUSION Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used for developing molecular markers applicable in various research areas.
Collapse
Affiliation(s)
- Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jianmin Tang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Siyuan Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Fang Han
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jing Yuan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, 400716, China.
| |
Collapse
|
20
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
21
|
Choi B, Weiss-Schneeweiss H, Temsch EM, So S, Myeong HH, Jang TS. Genome Size and Chromosome Number Evolution in Korean Iris L. Species (Iridaceae Juss.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1284. [PMID: 32998465 PMCID: PMC7650623 DOI: 10.3390/plants9101284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023]
Abstract
Chromosome numbers, karyotypes, and genome sizes of 14 Iris L. (Iridaceae Juss.) species in Korea and their closely related taxon, Sisyrinchium rosulatum, are presented and analyzed in a phylogenetic framework. To date, understanding the chromosomal evolution of Korean irises has been hampered by their high chromosome numbers. Here, we report analyses of chromosome numbers and karyotypes obtained via classic Feulgen staining and genome sizes measured using flow cytometry in Korean irises. More than a two-fold variation in chromosome numbers (2n = 22 to 2n = 50) and over a three-fold genome size variation (2.39 pg to 7.86 pg/1 C) suggest the putative polyploid and/or dysploid origin of some taxa. Our study demonstrates that the patterns of genome size variation and chromosome number changes in Korean irises do not correlate with the phylogenetic relationships and could have been affected by different evolutionary processes involving polyploidy or dysploidy. This study presents the first comprehensive chromosomal and genome size data for Korean Iris species. Further studies involving molecular cytogenetic and phylogenomic analyses are needed to interpret the mechanisms involved in the origin of chromosomal variation in the Iris.
Collapse
Affiliation(s)
- Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria; (H.W.-S.); (E.M.T.)
| | - Eva M. Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria; (H.W.-S.); (E.M.T.)
| | - Soonku So
- Korea National Park Research Institute, 171, Dangu-ro, Wonju-si 26441, Gangwon-do, Korea; (S.S.); (H.-H.M.)
| | - Hyeon-Ho Myeong
- Korea National Park Research Institute, 171, Dangu-ro, Wonju-si 26441, Gangwon-do, Korea; (S.S.); (H.-H.M.)
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| |
Collapse
|
22
|
Gordon SP, Contreras-Moreira B, Levy JJ, Djamei A, Czedik-Eysenberg A, Tartaglio VS, Session A, Martin J, Cartwright A, Katz A, Singan VR, Goltsman E, Barry K, Dinh-Thi VH, Chalhoub B, Diaz-Perez A, Sancho R, Lusinska J, Wolny E, Nibau C, Doonan JH, Mur LAJ, Plott C, Jenkins J, Hazen SP, Lee SJ, Shu S, Goodstein D, Rokhsar D, Schmutz J, Hasterok R, Catalan P, Vogel JP. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun 2020; 11:3670. [PMID: 32728126 PMCID: PMC7391716 DOI: 10.1038/s41467-020-17302-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.
Collapse
Affiliation(s)
- Sean P Gordon
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Joshua J Levy
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Armin Djamei
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben. Stadt Seeland, Seeland, Germany
| | | | - Virginia S Tartaglio
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam Session
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Joel Martin
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | - Andrew Katz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | | | - Kerrie Barry
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vinh Ha Dinh-Thi
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, 310058, Hangzhou, China
| | - Antonio Diaz-Perez
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, 2102, Maracay, Venezuela
| | - Ruben Sancho
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Elzbieta Wolny
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - John H Doonan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | | | - Daniel Rokhsar
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Pilar Catalan
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain.
- Institute of Biology, Tomsk State University, Tomsk, 634050, Russia.
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA.
- University California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Choi B, Kim S, Jang T. Micromorphological and cytological comparisons between
Youngia japonica
and
Youngia longiflora
using light and scanning electron microscopy. Microsc Res Tech 2020; 83:1456-1463. [DOI: 10.1002/jemt.23538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology Chungnam National University Daejeon Republic of Korea
| | - Sun‐Yu Kim
- Exhibition & Education Bureau Nakdonggang National Institute of Biological Resources Sangju‐si Gyeongsangbuk‐do Republic of Korea
| | - Tae‐Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
24
|
Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:32-52. [PMID: 31981259 DOI: 10.1111/tpj.14705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ines Walter
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Charlotte Ost
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
25
|
Zwyrtková J, Němečková A, Čížková J, Holušová K, Kapustová V, Svačina R, Kopecký D, Till BJ, Doležel J, Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC PLANT BIOLOGY 2020; 20:280. [PMID: 32552738 PMCID: PMC7302162 DOI: 10.1186/s12870-020-02495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Alžběta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Radim Svačina
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Bradley John Till
- Centro de Genómica Nutricional Agroacuícola, Las Heras 350, Temuco, Chile
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
26
|
McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H. Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae). FRONTIERS IN PLANT SCIENCE 2020; 11:362. [PMID: 32296454 PMCID: PMC7136903 DOI: 10.3389/fpls.2020.00362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
Plant genomes vary greatly in composition and size mainly due to the diversity of repetitive DNAs and the inherent propensity for their amplification and removal from the host genome. Most studies addressing repeatome dynamics focus on model organisms, whereas few provide comprehensive investigations across the genomes of related taxa. Herein, we analyze the evolution of repeats of the 13 species in Melampodium sect. Melampodium, representing all but two of its diploid taxa, in a phylogenetic context. The investigated genomes range in size from 0.49 to 2.27 pg/1C (ca. 4.5-fold variation), despite having the same base chromosome number (x = 10) and very strong phylogenetic affinities. Phylogenetic analysis performed in BEAST and ancestral genome size reconstruction revealed mixed patterns of genome size increases and decreases across the group. High-throughput genome skimming and the RepeatExplorer pipeline were utilized to determine the repeat families responsible for the differences in observed genome sizes. Patterns of repeat evolution were found to be highly correlated with phylogenetic position, namely taxonomic series circumscription. Major differences found were in the abundances of the SIRE (Ty1-copia), Athila (Ty3-gypsy), and CACTA (DNA transposon) lineages. Additionally, several satellite DNA families were found to be highly group-specific, although their overall contribution to genome size variation was relatively small. Evolutionary changes in repetitive DNA composition and genome size were complex, with independent patterns of genome up- and downsizing throughout the evolution of the analyzed diploids. A model-based analysis of genome size and repetitive DNA composition revealed evidence for strong phylogenetic signal and differential evolutionary rates of major lineages of repeats in the diploid genomes.
Collapse
Affiliation(s)
- Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Tod F. Stuessy
- Herbarium and Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Jose L. Villaseñor
- Department of Botany, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
27
|
Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). ANNALS OF BOTANY 2020; 125:611-623. [PMID: 31697800 PMCID: PMC7103019 DOI: 10.1093/aob/mcz183] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Changes in the amount of repetitive DNA (dispersed and tandem repeats) are considered the main contributors to genome size variation across plant species in the absence of polyploidy. However, the study of repeatome dynamism in groups showing contrasting genomic features and complex evolutionary histories is needed to determine whether other processes underlying genome size variation may have been overlooked. The main aim here was to elucidate which mechanism best explains genome size evolution in Anacyclus (Asteraceae). METHODS Using data from Illumina sequencing, we analysed the repetitive DNA in all species of Anacyclus, a genus with a reticulate evolutionary history, which displays significant genome size and karyotype diversity albeit presenting a stable chromosome number. KEY RESULTS By reconstructing ancestral genome size values, we inferred independent episodes of genome size expansions and contractions during the evolution of the genus. However, analysis of the repeatome revealed a similar DNA repeat composition across species, both qualitative and quantitative. Using comparative methods to study repeatome dynamics in the genus, we found no evidence for repeat activity causing genome size variation among species. CONCLUSIONS Our results, combined with previous cytogenetic data, suggest that genome size differences in Anacyclus are probably related to chromosome rearrangements involving losses or gains of chromosome fragments, possibly associated with homoploid hybridization. These could represent balanced rearrangements that do not disrupt gene dosage in merged genomes, for example via chromosome segment exchanges.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
- For correspondence. Email
| | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Levin DA. Has the Polyploid Wave Ebbed? FRONTIERS IN PLANT SCIENCE 2020; 11:251. [PMID: 32211006 PMCID: PMC7077508 DOI: 10.3389/fpls.2020.00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 05/13/2023]
Abstract
There was a wave of whole genome duplications (WGD) during and subsequent to the K-Pg interface, which was followed by an increase in the proportion of species that were polyploid. I consider why this wave of polyploid speciation has continued to rise through the divergent evolution of polyploid lineages, and through rounds of homoploid and heteroploid chromosomal change. I also consider why the polyploid speciation wave is likely to rise in the next millennium. I propose that the speed of polyploid genesis through ploidal increase and through diversification among polyploids likely will be greater than the speed of diploid speciation. The increase in polyploid diversity is expected to lag well behind episodes of WGD, owing to the very long period required for species diversification either by lineage splitting or additional rounds of polyploidy, in addition to the long period of genomic adjustment to higher ploidal levels in neopolyploids.
Collapse
Affiliation(s)
- Donald A. Levin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
29
|
Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ. A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. FRONTIERS IN PLANT SCIENCE 2019; 10:937. [PMID: 31396248 PMCID: PMC6667659 DOI: 10.3389/fpls.2019.00937] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam (Dioscorea) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy (Dioscorea alata, D. communis, and D. sylvatica). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea. We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Laboratori de Botànica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Science and Technology Faculty, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | |
Collapse
|
30
|
Vitales D, Fernández P, Garnatje T, Garcia S. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database (Oxford) 2019; 2019:baz098. [PMID: 31608375 PMCID: PMC6790504 DOI: 10.1093/database/baz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/14/2022]
Abstract
The Genome Size in Asteraceae Database (GSAD, http://www.asteraceaegenomesize.com) has been recently updated, with data from papers published or in press until July 2018. This constitutes the third release of GSAD, currently containing 4350 data entries for 1496 species, which represent a growth of 22.52% in the number of species with available genome size data compared with the previous release, and a growth of 57.72% in terms of entries. Approximately 6% of Asteraceae species are covered in terms of known genome sizes. The number of source papers included in this release (198) means a 48.87% increase with respect to release 2.0. The significant data increase was exploited to study the genome size evolution in the family from a phylogenetic perspective. Our results suggest that the role of chromosome number in genome size diversity within Asteraceae is basically associated to polyploidy, while dysploidy would only cause minor variation in the DNA amount along the family. Among diploid taxa, we found that the evolution of genome size shows a strong phylogenetic signal. However, this trait does not seem to evolve evenly across the phylogeny, but there could be significant scale and clade-dependent patterns. Our analyses indicate that the phylogenetic signal is stronger at low taxonomic levels, with certain tribes standing out as hotspots of autocorrelation between genome size and phylogeny. Finally, we also observe meaningful associations among nuclear DNA content on Asteraceae species and other phenotypical and ecological traits (i.e. plant habit and invasion ability). Overall, this study emphasizes the need to continue generating and analysing genome size data in order to puzzle out the evolution of this parameter and its many biological correlates.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
- Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Dodsworth S, Guignard MS, Christenhusz MJM, Cowan RS, Knapp S, Maurin O, Struebig M, Leitch AR, Chase MW, Forest F. Potential of Herbariomics for Studying Repetitive DNA in Angiosperms. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|