1
|
Ledbetter V, Auerbach S, Everett LJ, Vallanat B, Lowit A, Akerman G, Gwinn W, Wehmas LC, Hughes MF, Devito M, Corton JC. A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. FRONTIERS IN TOXICOLOGY 2024; 6:1422325. [PMID: 39483698 PMCID: PMC11526388 DOI: 10.3389/ftox.2024.1422325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Current methods for cancer risk assessment are resource-intensive and not feasible for most of the thousands of untested chemicals. In earlier studies, we developed a new approach methodology (NAM) to identify liver tumorigens using gene expression biomarkers and associated tumorigenic activation levels (TALs) after short-term exposures in rats. The biomarkers are used to predict the six most common rodent liver cancer molecular initiating events. In the present study, we wished to confirm that our approach could be used to identify liver tumorigens at only one time point/dose and if the approach could be applied to (targeted) RNA-Seq analyses. Male rats were exposed for 4 days by daily gavage to 15 chemicals at doses with known chronic outcomes and liver transcript profiles were generated using Affymetrix arrays. Our approach had 75% or 85% predictive accuracy using TALs derived from the TG-GATES or DrugMatrix studies, respectively. In a dataset generated from the livers of male rats exposed to 16 chemicals at up to 10 doses for 5 days, we found that our NAM coupled with targeted RNA-Seq (TempO-Seq) could be used to identify tumorigenic chemicals with predictive accuracies of up to 91%. Overall, these results demonstrate that our NAM can be applied to both microarray and (targeted) RNA-Seq data generated from short-term rat exposures to identify chemicals, their doses, and mode of action that would induce liver tumors, one of the most common endpoints in rodent bioassays.
Collapse
Affiliation(s)
- Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - Scott Auerbach
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - Gregory Akerman
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - William Gwinn
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Leah C. Wehmas
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael F. Hughes
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael Devito
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
2
|
Corton JC, Ledbetter V, Cohen SM, Atlas E, Yauk CL, Liu J. A transcriptomic biomarker predictive of cell proliferation for use in adverse outcome pathway-informed testing and assessment. Toxicol Sci 2024; 201:174-189. [PMID: 39137154 DOI: 10.1093/toxsci/kfae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
High-throughput transcriptomics (HTTr) is increasingly being used to identify molecular targets of chemicals that can be linked to adverse outcomes. Cell proliferation (CP) is an important key event in chemical carcinogenesis. Here, we describe the construction and characterization of a gene expression biomarker that is predictive of the CP status in human and rodent tissues. The biomarker was constructed from 30 genes known to be increased in expression in prostate cancers relative to surrounding tissues and in cycling human MCF-7 cells after estrogen receptor (ER) agonist exposure. Using a large compendium of gene expression profiles to test utility, the biomarker could identify increases in CP in (i) 308 out of 367 tumor vs. normal surrounding tissue comparisons from 6 human organs, (ii) MCF-7 cells after activation of ER, (iii) after partial hepatectomy in mice and rats, and (iv) the livers of mice and rats after exposure to nongenotoxic hepatocarcinogens. The biomarker identified suppression of CP (i) under conditions of p53 activation by DNA damaging agents in human cells, (ii) in human A549 lung cells exposed to therapeutic anticancer kinase inhibitors (dasatinib, nilotnib), and (iii) in the mouse liver when comparing high levels of CP at birth to the low background levels in the adult. The responses using the biomarker were similar to those observed using conventional markers of CP including PCNA, Ki67, and BrdU labeling. The CP biomarker will be a useful tool for interpretation of HTTr data streams to identify CP status after exposure to chemicals in human cells or in rodent tissues.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198-3135, United States
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, ON K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
3
|
Au Yeung VPW, Obrezanova O, Zhou J, Yang H, Bowen TJ, Ivanov D, Saffadi I, Carter AS, Subramanian V, Dillmann I, Hall A, Corrigan A, Viant MR, Pointon A. Computational approaches identify a transcriptomic fingerprint of drug-induced structural cardiotoxicity. Cell Biol Toxicol 2024; 40:50. [PMID: 38940987 PMCID: PMC11213733 DOI: 10.1007/s10565-024-09880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Structural cardiotoxicity (SCT) presents a high-impact risk that is poorly tolerated in drug discovery unless significant benefit is anticipated. Therefore, we aimed to improve the mechanistic understanding of SCT. First, we combined machine learning methods with a modified calcium transient assay in human-induced pluripotent stem cell-derived cardiomyocytes to identify nine parameters that could predict SCT. Next, we applied transcriptomic profiling to human cardiac microtissues exposed to structural and non-structural cardiotoxins. Fifty-two genes expressed across the three main cell types in the heart (cardiomyocytes, endothelial cells, and fibroblasts) were prioritised in differential expression and network clustering analyses and could be linked to known mechanisms of SCT. This transcriptomic fingerprint may prove useful for generating strategies to mitigate SCT risk in early drug discovery.
Collapse
Affiliation(s)
- Victoria P W Au Yeung
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK.
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jiarui Zhou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Delyan Ivanov
- High-Throughput Screening, R&D, AstraZeneca, Alderley Park, UK
| | - Izzy Saffadi
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie S Carter
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vigneshwari Subramanian
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inken Dillmann
- Disease Molecular Profiling, Discovery Biology, R&D AstraZeneca, Gothenburg, Sweden
| | - Andrew Hall
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Adam Corrigan
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
4
|
Heintz MM, Klaren WD, East AW, Haws LC, McGreal SR, Campbell RR, Thompson CM. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in mouse, rat, and pooled human hepatocytes. Toxicol Sci 2024; 200:165-182. [PMID: 38574381 PMCID: PMC11199992 DOI: 10.1093/toxsci/kfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Like many per- or polyfluorinated alkyl substances (PFAS), toxicity studies with HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), a short-chain PFAS used in the manufacture of some types of fluorinated polymers, indicate that the liver is the primary target of toxicity in rodents following oral exposure. Although the current weight of evidence supports the PPARα mode of action (MOA) for liver effects in HFPO-DA-exposed mice, alternate MOAs have also been hypothesized including PPARγ or cytotoxicity. To further evaluate the MOA for HFPO-DA in rodent liver, transcriptomic analyses were conducted on samples from primary mouse, rat, and pooled human hepatocytes treated for 12, 24, or 72 h with various concentrations of HFPO-DA, or agonists of PPARα (GW7647), PPARγ (rosiglitazone), or cytotoxic agents (ie, acetaminophen or d-galactosamine). Concordance analyses of enriched pathways across chemicals within each species demonstrated the greatest concordance between HFPO-DA and PPARα agonist GW7647-treated hepatocytes compared with the other chemicals evaluated. These findings were supported by benchmark concentration modeling and predicted upstream regulator results. In addition, transcriptomic analyses across species demonstrated a greater transcriptomic response in rodent hepatocytes treated with HFPO-DA or agonists of PPARα or PPARγ, indicating rodent hepatocytes are more sensitive to HFPO-DA or PPARα/γ agonist treatment. These results are consistent with previously published transcriptomic analyses and further support that liver effects in HFPO-DA-exposed rodents are mediated through rodent-specific PPARα signaling mechanisms as part of the MOA for PPARα activator-induced rodent hepatocarcinogenesis. Thus, effects observed in mouse liver are not appropriate endpoints for toxicity value development for HFPO-DA in human health risk assessment.
Collapse
|
5
|
Wen Y, Vechetti IJ, Leng D, Alimov AP, Valentino TR, Zhang XD, McCarthy JJ, Peterson CA. Early transcriptomic signatures and biomarkers of renal damage due to prolonged exposure to embedded metal. Cell Biol Toxicol 2023; 39:2861-2880. [PMID: 37058270 DOI: 10.1007/s10565-023-09806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dongliang Leng
- Faculty of Health Sciences, CRDA, University of Macau, Taipa, Macau, China
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Xiaohua D Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Pandiri AR, Auerbach SS, Stevens JL, Blomme EAG. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver. Toxicol Pathol 2023; 51:470-481. [PMID: 38288963 PMCID: PMC11014763 DOI: 10.1177/01926233241227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.
Collapse
Affiliation(s)
- Arun R Pandiri
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | |
Collapse
|
7
|
Thompson CM, Heintz MM, Wolf JC, Cheru R, Haws LC, Cullen JM. Assessment of Mouse Liver Histopathology Following Exposure to HFPO-DA With Emphasis on Understanding Mechanisms of Hepatocellular Death. Toxicol Pathol 2023; 51:4-14. [PMID: 36987989 PMCID: PMC10278389 DOI: 10.1177/01926233231159078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate (HFPO-DA) is a short chain member of per- and polyfluoroalkyl substances (PFAS). To better understand the relevance of histopathological effects seen in livers of mice exposed to HFPO-DA for human health risk assessment, histopathological effects were summarized from hematoxylin and eosin (H&E)-stained sections in several repeat-dose toxicity studies in mice. Findings across studies revealed histopathological changes consistent with peroxisomal proliferation, whereas two reports of steatosis could not be confirmed in the published figures. In addition, mechanisms of hepatocellular death were assessed in H&E sections as well as with the apoptotic marker cleaved caspase-3 (CCasp3) in newly cut sections from archived liver blocks from select studies. A comparison of serially CCasp3 immunolabeled and H&E-stained sections revealed that mechanisms of hepatocellular death cannot be clearly discerned in H&E-stained liver sections alone as several examples of putatively necrotic cells were positive for CCasp3. Published whole genome transcriptomic data were also reevaluated for enrichment of various forms of hepatocellular death in response to HFPO-DA, which revealed enrichment of apoptosis and autophagy, but not ferroptosis, pyroptosis, or necroptosis. These morphological and molecular findings are consistent with transcriptomic evidence for peroxisome proliferator-activated receptor alpha (PPARα) signaling in HFPO-DA exposed mice.
Collapse
Affiliation(s)
| | | | - Jeffrey C. Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| | - Roza Cheru
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| | | | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Yen NTH, Park SM, Thu VTA, Phat NK, Cho YS, Yoon S, Shin JG, Kim DH, Oh JH, Long NP. Genome-wide gene expression analysis reveals molecular insights into the drug-induced toxicity of nephrotoxic agents. Life Sci 2022; 306:120801. [PMID: 35850247 DOI: 10.1016/j.lfs.2022.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Drug-induced nephrotoxicity is frequently reported. However, the mechanisms underlying nephrotoxic medications and their overlapping molecular events, which might have therapeutic value, are unclear. We performed a genome-wide analysis of gene expression and a gene set enrichment analysis to identify common and unique pathways associated with the toxicity of colistin, ifosfamide, indomethacin, and puromycin. Rats were randomly allocated into the treatment or control group. The treatment group received a toxic dose once daily of each investigated drug for 1 week. Differentially expressed genes were found in the drug-treated kidney and liver compared to the control, except for colistin in the liver. Upregulated pathways were mainly related to cell death, cell cycle, protein synthesis, and immune response modulation in the kidney. Cell cycle was upregulated by all drugs. Downregulated pathways were associated with carbon metabolism, amino acid metabolism, and fatty acid metabolism. Indomethacin, colistin, and puromycin shared the most altered pathways in the kidney. Ifosfamide and indomethacin affected molecular processes greatly in the liver. Our findings provide insight into the mechanisms underlying the renal and hepatic adverse effects of the four drugs. Further investigation should explore the combinatory drug therapies that attenuate the toxic effects and maximize the effectiveness of nephrotoxic drugs.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| |
Collapse
|
9
|
Corton JC, Mitchell CA, Auerbach S, Bushel P, Ellinger-Ziegelbauer H, Escobar PA, Froetschl R, Harrill AH, Johnson K, Klaunig JE, Pandiri AR, Podtelezhnikov AA, Rager JE, Tanis KQ, van der Laan JW, Vespa A, Yauk CL, Pettit SD, Sistare FD. A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicol Sci 2022; 188:4-16. [PMID: 35404422 PMCID: PMC9238304 DOI: 10.1093/toxsci/kfac041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Constance A Mitchell
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pierre Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | - Patricia A Escobar
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Roland Froetschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Alison H Harrill
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Arun R Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keith Q Tanis
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht, The Netherlands
| | - Alisa Vespa
- Therapeutic Products Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Syril D Pettit
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Frank D Sistare
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
11
|
Mandal M, Madeira M, Amin R, Buevich AV, Cheng A, Labroli M, Liu X, Acton J, Pio B, Basso A, Chobanian H, Dong G, Dropinski J, Guo Y, Guo Z, Kurowski S, Korfmacher W, Lee S, Meng D, Ondeyka D, Yang Z, Zhang R, Wei H, Wu Z, Zhang F, Wollenberg G, Biftu T, Greenlee WJ, Chintala M, Maletic M, Zhu Z. Lead Optimization to Advance Protease-Activated Receptor-1 Antagonists in Early Discovery. J Med Chem 2022; 65:5575-5592. [DOI: 10.1021/acs.jmedchem.1c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Vlasakova K, Bourque J, Bailey WJ, Patel S, Besteman EG, Gonzalez RJ, Sistare FD, Glaab WE. Universal Accessible Biomarkers of Drug-Induced Tissue Injury and Systemic Inflammation in Rat: Performance Assessment of TIMP-1, A2M, AGP, NGAL and Albumin. Toxicol Sci 2022; 187:219-233. [PMID: 35285504 DOI: 10.1093/toxsci/kfac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to monitor for general drug-induced tissue injury (DITI) or systemic inflammation in any tissue using blood-based accessible biomarkers would provide a valuable tool in early exploratory animal studies to understand potential drug liabilities. Here we describe the evaluation of four biomarkers of tissue remodeling and inflammation [α2-macroglobin (A2M), α1-acid glycoprotein (AGP), neutrophil gelatinase-associated lipocalin (NGAL) and tissue inhibitor of metalloproteinases (TIMP-1)] as well as the traditional serum parameter albumin as potential blood-based biomarkers of DITI and systemic inflammatory response (SIR). Biomarker performance was assessed in 51 short-term rat in vivo studies with various end-organ toxicities or SIR and receiver operator characteristic (ROC) curves were generated to compare relative performances. All four biomarkers performed well in their ability to detect DITI and SIR with an area under the curve (AUC) of 0.82 - 0.78, however TIMP-1 achieved the best sensitivity (at 95% specificity) of 61%; AGP, NGAL, and A2M sensitivity was 51-52%. AUC for albumin was 0.72 with sensitivity of 39%. A2M was the best performer in studies with only SIR (AUC 0.91). In the subset of studies with drug-induced vascular injury, TIMP-1 performed best with an AUC of 0.96. Poor performance of all tested biomarkers was observed in samples with CNS toxicity. In summary, TIMP-1, A2M, AGP and NGAL demonstrated performance as sensitive accessible biomarkers of DITI and SIR, supporting their potential application as universal accessible tissue toxicity biomarkers to quickly identify dose levels associated with drug-induced injury in early exploratory rat safety and other studies.
Collapse
|
13
|
Gu YZ, Handt L, Vlasakova K, Bakthavatchalu V, Smith R, Fernandez GE, Born SL, Glaab WE, Sistare FD. Kidney Injury Monitoring in Tobramycin-Treated Rhesus Monkeys: Supplementing Urinary Kidney Biomarkers With Kidney Biopsy Gene Expression Profiling. Toxicol Pathol 2021; 50:35-46. [PMID: 34657537 DOI: 10.1177/01926233211049171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kidney biopsies are used sparingly to diagnose kidney injury in the clinic. Here we have conducted a small exploratory study to directly compare the low-grade kidney injury monitoring performance of serum safety biomarkers, novel urine safety biomarkers, microscopic histopathology and targeted gene expression alterations in kidney biopsy specimens in rhesus monkeys treated with tobramycin. Targeted gene expression increases were observed in the kidney biopsy samples and whole kidney sections for kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN) messenger RNA transcripts. In addition, increases of the urinary kidney safety protein biomarkers including KIM-1, CLU, OPN were also observed. These increases in gene expression and urinary protein end point were in concordance with the eventual low-grade kidney lesions seen in terminal tissue sections. In contrast, conventional serum biomarkers blood urea nitrogen and serum creatinine were not as sensitive in monitoring kidney injury. Although these data do not support routinely adding kidney biopsies to regular toxicology studies, they provide evidence on the value and limitations of incorporating gene expression profiling on kidney biopsy specimens, further underscore the value of urinary kidney safety biomarkers for improved low-grade kidney injury monitoring, and open the door for future definitive studies.
Collapse
Affiliation(s)
- Yi-Zhong Gu
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Larry Handt
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Katerina Vlasakova
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | | | - Roger Smith
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Guillermo E Fernandez
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Stephanie L Born
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Warren E Glaab
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| | - Frank D Sistare
- Safety Assessment and Laboratory Animal Resources, 2793Merck & Co, Inc, West Point, PA, USA
| |
Collapse
|