1
|
Beilmann M, Adkins K, Boonen HCM, Hewitt P, Hu W, Mader R, Moore S, Rana P, Steger-Hartmann T, Villenave R, van Vleet T. Application of new approach methodologies for nonclinical safety assessment of drug candidates. Nat Rev Drug Discov 2025:10.1038/s41573-025-01182-9. [PMID: 40316753 DOI: 10.1038/s41573-025-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 05/04/2025]
Abstract
The development of new approach methodologies (NAMs) and advances with in vitro testing systems have prompted revisions in regulatory guidelines and inspired dedicated in vitro/ex vivo studies for nonclinical safety assessment. This Review by a safety reflection initiative subgroup of the European Federation of Pharmaceutical Industries and Associations (EFPIA)/Preclinical Development Expert Group (PDEG) summarizes the current state and potential application of in vitro studies using human-derived material for safety assessment in drug development. It focuses on case studies from recent projects in which animal models alone proved to be limited or inadequate for safety testing. It further highlights four categories of drug candidates for which alternative in vitro approaches are applicable and discusses progress in using in vitro testing solutions for safety assessment in these categories. Finally, the article highlights new risk assessment strategies, initiatives and consortia promoting the advancement of NAMs. This collective work is meant to encourage the use of NAMs for more human-relevant safety assessment, which should ultimately result in reduced animal testing for drug development.
Collapse
Affiliation(s)
- Mario Beilmann
- Global Nonclinical Safety & DMPK, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| | | | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Wenyue Hu
- Vividion Therapeutics, San Diego, CA, USA
| | - Robert Mader
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Payal Rana
- Drug Safety R&D, Pfizer Inc., Groton, CT, USA
| | - Thomas Steger-Hartmann
- Research & Development, Pharmaceuticals, Preclinical Development, Bayer AG, Berlin, Germany
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
2
|
Merrick BA, Brooks AM, Foley JF, Martin NP, Fannin RD, Gladwell W, Gerrish KE. hTERT and SV40LgT Renal Cell Lines Adjust Their Transcriptional Responses After Copy Number Changes from the Parent Proximal Tubule Cells. Int J Mol Sci 2025; 26:3607. [PMID: 40332109 PMCID: PMC12027150 DOI: 10.3390/ijms26083607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Primary mouse renal proximal tubule epithelial cells (moRPTECs) were immortalized by lentivirus transduction to create hTERT or SV40LgT (LgT) cell lines. Prior work showed a more pronounced injury and repair response in LgT versus hTERT cells after chemical challenge. We hypothesized that unique genomic changes occurred after immortalization, altering critical genes and pathways. RNA-seq profiling and whole-genome sequencing (WGS) of parent, hTERT, and LgT cells showed that 92.5% of the annotated transcripts were shared, suggesting a conserved proximal tubule expression pattern. However, the cell lines exhibited unique transcriptomic and genomic profiles different from the parent cells. Three transcript classes were quite relevant for chemical challenge response-Cyps, ion channels, and metabolic transporters-each important for renal function. A pathway analysis of the hTERT cells suggested alterations in intermediary and energy metabolism. LgT cells exhibited pathway activation in cell cycle and DNA repair that was consistent with replication stress. Genomic karyotyping by combining WGS and RNA-seq data showed increased gene copy numbers in chromosome 5 for LgT cells, while hTERT cells displayed gene copy losses in chromosomes 4 and 9. These data suggest that the exaggerated transcriptional responses of LgT cells versus hTERT cells result from differences in gene copy numbers, replication stress, and the unique selection processes underlying LgT or hTERT immortalization.
Collapse
Affiliation(s)
- Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Wesley Gladwell
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| |
Collapse
|
3
|
Moyer HL, Vergara L, Stephan C, Sakolish C, Ford LC, Tsai HHD, Lin HC, Chiu WA, Villenave R, Hewitt P, Ferguson SS, Rusyn I. Comparative analysis of Caco-2 cells and human jejunal and duodenal enteroid-derived cells in gel- and membrane-based barrier models of intestinal permeability. Toxicol Sci 2025; 204:181-197. [PMID: 39886939 PMCID: PMC11939079 DOI: 10.1093/toxsci/kfaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Intestinal absorption is a key toxicokinetics parameter. Although the colon carcinoma cell line Caco-2 is the most used in vitro model to estimate human drug absorption, models representing other intestinal segments are available. We characterized the morphology, tissue-specific markers, and functionality of 3 human intestinal cell types: Caco-2, primary human enteroid-derived cells from jejunum (J2), and duodenum (D109) when cultured in the OrganoPlate 3-lane 40 microphysiological system (MPS) or static 24-well Transwells. In both conditions, J2 and D109 formed dome-like structures; Caco-2 formed uniform monolayers. In MPS, only Caco-2 formed tubules. Cells grown on Transwells formed a thicker monolayer. All cells and conditions exhibited expression of ZO-1 (tight junctions). Polarization markers Ezrin and Villin were highest in J2 and D109 in MPS, highest expression of Mucin was observed with J2. However, J2 and D109 exhibited poor barrier (70 kDa TRITC-dextran) in MPS, whereas robust barrier was recorded in Transwells. Barrier function and drug transport were evaluated using caffeine, indomethacin, and propranolol. The gel lane in MPS acted as a blockade; only a small fraction crossed, even without cells. The permeability ratios were used to parameterize the probabilistic compartmental absorption model to determine whether in vitro data could reduce uncertainty. The most accurate prediction of the fraction absorbed was achieved with Transwell-derived data from Caco-2, combined with the experimentally derived segment-specific absorption ratios. The impact of this study includes demonstration that enteroid-derived cells cultured in MPS show most physiological morphology, but that studies of drug permeability in this MPS are challenging.
Collapse
Affiliation(s)
- Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | | | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
4
|
Sakolish C, Tsai HHD, Lin HC, Bajaj P, Villenave R, Ferguson SS, Stanko JP, Becker RA, Hewitt P, Chiu WA, Rusyn I. Comparative Analysis of Proximal Tubule Cell Sources for In Vitro Studies of Renal Proximal Tubule Toxicity. Biomedicines 2025; 13:563. [PMID: 40149543 PMCID: PMC11940618 DOI: 10.3390/biomedicines13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The kidneys are essential for eliminating drugs and chemicals from the human body and renal epithelial cells are particularly vulnerable to damage caused by xenobiotics and their metabolites. Drug-induced kidney toxicity is a major cause of drug attrition during preclinical and clinical development and the ability to predict renal toxicity remains a pressing challenge, necessitating more predictive in vitro models. However, the abundance of commercially available renal proximal tubule epithelial cell (RPTEC) sources complicates the selection of the most predictive cell types. Methods: This study compared a wide range of RPTEC sources, including primary cells (Lonza) and various RPTEC lines from different vendors, such as ciPTECs (Cell4Pharma), TERT1/RPTECs (ATCC), and HEK293 (GenoMembrane), including OAT1-overexpressing variants. HepG2 cells were included for a comparison of organ specificity. The different cells were cultured in 96- or 384-well plates and exposed to 12 drugs for 72 h at a concentration yielding a response (0.3-300 µM) to evaluate their ability to predict clinical outcomes. The CellTiterGlo® assay was used to measure cell viability, and transcriptome data from unexposed cells was analyzed using the TempO-seq® S1500+ platform. Results: Gene expression data showed that the primary kidney cells most closely matched the transcriptome of the human kidney medulla, followed by the TERT1 and ciPTEC lines, with the HEK lines showing the lowest similarity. The RPTEC sources showed clustering by cell type, with OAT1 overexpression driving changes in metabolic, detoxification, and immune pathways, especially in TERT1 cells. Cell viability data were used to determine points of departure (PODs) which were compared to human serum Cmax values to assess safety margins. The TERT1 and ciPTEC RPTEC lines demonstrated the highest predictive performance for nephrotoxicity, with OAT1 overexpression significantly enhancing sensitivity, accuracy, and overall predictive power (MCC scores: 0.764 and 0.667, respectively). In contrast, HepG2 cells showed the lowest performance across all metrics, highlighting the critical role of cell type and transporter expression in nephrotoxicity prediction. Conclusions: This study highlights important differences among RPTEC sources and their utility in drug safety studies of the renal proximal tubule. We show that while improved cell options for renal proximal tubule are needed, OAT1-overexpressing RPTECs are a superior model to the background cell type.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Han-Hsuan D. Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, USA;
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Stephen S. Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | - Jason P. Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany;
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| |
Collapse
|
5
|
Yamazaki D, Ishida S. Global expansion of microphysiological systems (MPS) and Japan's initiatives: Innovation in pharmaceutical development and path to regulatory acceptance. Drug Metab Pharmacokinet 2025; 60:101047. [PMID: 39847978 DOI: 10.1016/j.dmpk.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025]
Abstract
Microphysiological systems (MPS) are gaining global attention as potential game-changers in pharmaceutical development. Since 2013, MPS suppliers from university laboratories in the United States and Europe have competed to develop these devices. After the development phase, the focus shifted to the accumulation of applications using MPS for pharmaceutical companies and end users. In Japan, the AMED-MPS project was launched in 2017, and since then, several MPS devices have been marketed by project participated suppliers. Initially, while Japanese pharmaceutical companies adopted foreign products, they also exhibited interest in domestically produced MPS devices. The utilization of new approach methodologies, including MPS, is expanding in the field of chemical substances risk assessment, and the Organization for Economic Co-operation and Development test guidelines are expected to adopt in vitro evaluation systems as alternatives to animal testing. This publication reviews global and Japanese trends surrounding MPS and outlines activities aimed at the regulatory acceptance of MPS as evaluation systems for medical drugs and chemicals.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Seiichi Ishida
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan; Sojo University, Graduate School of Engineering, Department of Life Science, 4-22-1 Ikeda, Nishi-ku, Kumamoto City, Kumamoto, 816-0082, Japan.
| |
Collapse
|
6
|
Naraoka H, Iguchi T, Harada K, Usui T, Suwa Y, Ando M, Sakura T, Ohkubo T. Opportunities for microphysiological systems from the view of Japanese industries. Drug Metab Pharmacokinet 2025; 60:101034. [PMID: 39847981 DOI: 10.1016/j.dmpk.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 01/25/2025]
Abstract
Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun. This article focuses on domestic and international trends regarding MPS, especially on Japanese industries related to MPS, and describes the current status, challenges, and prospects of Japanese pharmaceutical companies, CROs, Food company, and MPS-related product development companies including the results of a survey conducted by CSAHi-MPS, an industrial MPS consortium in Japan.
Collapse
Affiliation(s)
- Hitoshi Naraoka
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Takuma Iguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kosuke Harada
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Takeda Pharmaceutical Company Limited, 26-1, Muraoka Higashi 2-chome, Fujisawa, Kanagawa, 251 8555, Japan
| | - Toru Usui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Yoshiaki Suwa
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shin Nippon Biomedical Laboratories, Ltd., 2438, Miyanoura, Kagoshima, 891-1394, Japan
| | - Masamitsu Ando
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Nikon Corporation, 1-5-20, Nishioi, Shinagawa-ku, Tokyo, 140-8601, Japan
| | - Takeshi Sakura
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tomoki Ohkubo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| |
Collapse
|
7
|
Sakolish C, Moyer HL, Tsai HHD, Ford LC, Dickey AN, Bajaj P, Villenave R, Hewitt P, Ferguson SS, Stanko J, Rusyn I. Comparative analysis of the physiological and transport functions of various sources of renal proximal tubule cells under static and fluidic conditions in PhysioMimix T12 platform. Drug Metab Dispos 2025; 53:100001. [PMID: 39884810 PMCID: PMC11822869 DOI: 10.1124/dmd.124.001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiologic and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs). We tested telomerase reverse transcriptase 1 (TERT1)-immortalized RPTECs, including organic anion transporter 1 (OAT1)-, organic cation transporter 2 (OCT2)-, or OAT3-overexpressing variants and primary RPTECs. Cells were cultured on transwell membranes in static (24-well transwells) and fluidic (transwells in PhysioMimix T12 organ-on-chip with 2 μL/s flow) conditions. Barrier formation, transport, and gene expression were evaluated. We show that 2 commercially available primary RPTECs were not suitable for studies of directional transport on transwells because they formed a substandard barrier even though they exhibited higher expression of transporters, especially under flow. TERT1-parent, -OAT1, and -OAT3 cells formed robust barriers but were unaffected by flow. TERT1-OAT1 cells exhibited inhibitable para-aminohippurate transport that was enhanced by flow. However, efficient tenofovir secretion and perfluorooctanoic acid reabsorption by TERT1-OAT1 cells were not modulated by flow. Gene expression showed that TERT1 and TERT1-OAT1 cells were more correlated with human kidney than other cell lines but that flow did not have noticeable effects. Overall, our data show that addition of flow to in vitro studies of the renal proximal tubule may afford benefits in some aspects of modeling kidney function but that careful consideration of the impact such adaptations would have on the cost and throughput of the experiments is needed. SIGNIFICANCE STATEMENT: The topic of reproducibility and robustness of complex microphysiological systems is looming large in the field of biomedical research; therefore, uptake of these new models by the end-users is slow. This study systematically compared various renal proximal tubule epithelial cell sources and experimental conditions, aiming to identify the level of model complexity needed for testing renal tubule transport. We demonstrate that although tissue chips may afford some benefits, their throughput and complexity need careful consideration in each context of use.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, Massachusetts
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jason Stanko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
8
|
LaFollette MR, Baran SW, Curley JL, Dickinson AM, Frazier T, Hobi N, Huang MI, Hutter V, Maisonneuve BGC, Marsh GA, Mahendran R, Müller I, Qian X, Singh D, Thelin WR, Vukasinovic J, Candarlioglu PL, Roper CS. The Use of MPS in Three Rs and Regulatory Applications: Perspectives From Developers on Stakeholder Responsibilities. Altern Lab Anim 2025; 53:26-41. [PMID: 39772941 DOI: 10.1177/02611929241310566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Increasing the use of microphysiological systems (MPS) in Three Rs and regulatory applications is a nuanced but important goal, which would also help increase their scientific impact. There are three distinct and important stakeholder groups that each play a unique role in expediting the use of MPS for regulatory purpose - namely, commercial MPS developers, end-users and regulators. Additionally, non-profit organisations, such as the 3Rs Collaborative (3RsC), can help coordinate these efforts. This paper introduces the MPS Initiative, as organised by the 3RsC, and clarifies the potential for MPS to benefit all Three Rs. Key differences in the use of MPS-derived data for regulatory evidence of efficacy versus safety, and for various other contexts of use, are discussed. Finally, the results are presented from a survey of primarily commercial MPS developers, that collected their views on the realistic responsibilities of each stakeholder group. The results also highlight their key perspectives on the use of MPS, in the context of Three Rs and regulatory applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nina Hobi
- AlveoliX AG Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | | | | | | | | | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
10
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
11
|
Stresser DM, Kopec AK, Hewitt P, Hardwick RN, Van Vleet TR, Mahalingaiah PKS, O'Connell D, Jenkins GJ, David R, Graham J, Lee D, Ekert J, Fullerton A, Villenave R, Bajaj P, Gosset JR, Ralston SL, Guha M, Amador-Arjona A, Khan K, Agarwal S, Hasselgren C, Wang X, Adams K, Kaushik G, Raczynski A, Homan KA. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat Biomed Eng 2024; 8:930-935. [PMID: 38151640 DOI: 10.1038/s41551-023-01154-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- David M Stresser
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA.
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
| | - Anna K Kopec
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT, USA
| | - Philip Hewitt
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | - Rhiannon N Hardwick
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Toxicology, Pharmaceutical Candidate Optimization, Bristol Myers Squibb, San Diego, CA, USA
| | - Terry R Van Vleet
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Prathap Kumar S Mahalingaiah
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Denice O'Connell
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Global Animal Welfare, AbbVie, North Chicago, IL, USA
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Translational and ADME Sciences Leadership Group (TALG)
| | - Rhiannon David
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Jessica Graham
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Product Quality & Occupational Toxicology, Genentech, Inc., South San Francisco, CA, USA
- IQ DruSafe
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Donna Lee
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Jason Ekert
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- UCB Pharma, Cambridge, MA, USA
| | - Aaron Fullerton
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Remi Villenave
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Piyush Bajaj
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA, USA
| | - James R Gosset
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc, Cambridge, MA, USA
| | - Sherry L Ralston
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Preclinical Safety, AbbVie, North Chicago, IL, USA
| | - Manti Guha
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Alejandro Amador-Arjona
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Kainat Khan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Saket Agarwal
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Catrin Hasselgren
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ DruSafe
- Predictive Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Khary Adams
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Laboratory Animal Resources, Incyte, Wilmington, DE, USA
| | - Gaurav Kaushik
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Arkadiusz Raczynski
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Preclinical Safety Assessment, Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Kimberly A Homan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
- Complex in vitro Systems Group, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
12
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
13
|
Bassani D, Parrott NJ, Manevski N, Zhang JD. Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules. Expert Opin Drug Discov 2024; 19:683-698. [PMID: 38727016 DOI: 10.1080/17460441.2024.2348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Prediction of pharmacokinetic (PK) properties is crucial for drug discovery and development. Machine-learning (ML) models, which use statistical pattern recognition to learn correlations between input features (such as chemical structures) and target variables (such as PK parameters), are being increasingly used for this purpose. To embed ML models for PK prediction into workflows and to guide future development, a solid understanding of their applicability, advantages, limitations, and synergies with other approaches is necessary. AREAS COVERED This narrative review discusses the design and application of ML models to predict PK parameters of small molecules, especially in light of established approaches including in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) models. The authors illustrate scenarios in which the three approaches are used and emphasize how they enhance and complement each other. In particular, they highlight achievements, the state of the art and potentials of applying machine learning for PK prediction through a comphrehensive literature review. EXPERT OPINION ML models, when carefully crafted, regularly updated, and appropriately used, empower users to prioritize molecules with favorable PK properties. Informed practitioners can leverage these models to improve the efficiency of drug discovery and development process.
Collapse
Affiliation(s)
- Davide Bassani
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Neil John Parrott
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Nenad Manevski
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jitao David Zhang
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
14
|
Pamies D, Ekert J, Zurich MG, Frey O, Werner S, Piergiovanni M, Freedman BS, Keong Teo AK, Erfurth H, Reyes DR, Loskill P, Candarlioglu P, Suter-Dick L, Wang S, Hartung T, Coecke S, Stacey GN, Wagegg BA, Dehne EM, Pistollato F, Leist M. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Reports 2024; 19:604-617. [PMID: 38670111 PMCID: PMC11103889 DOI: 10.1016/j.stemcr.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cell culture technology has evolved, moving from single-cell and monolayer methods to 3D models like reaggregates, spheroids, and organoids, improved with bioengineering like microfabrication and bioprinting. These advancements, termed microphysiological systems (MPSs), closely replicate tissue environments and human physiology, enhancing research and biomedical uses. However, MPS complexity introduces standardization challenges, impacting reproducibility and trust. We offer guidelines for quality management and control criteria specific to MPSs, facilitating reliable outcomes without stifling innovation. Our fit-for-purpose recommendations provide actionable advice for achieving consistent MPS performance.
Collapse
Affiliation(s)
- David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| | - Jason Ekert
- Jason E Ekert: UCB Pharma, Cambridge, MA, USA
| | - Marie-Gabrielle Zurich
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | | - Sophie Werner
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Proteos, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Darwin R Reyes
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; 3R Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Laura Suter-Dick
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Shan Wang
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hartung
- Doerenkamp-Zbinden Professor and Chair for Evidence-based Toxicology, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Baltimore, MD, USA; CAAT Europe, University of Konstanz, Konstanz, Germany
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts SG88HZ, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regenerative Merdicine, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | - Marcel Leist
- CAAT Europe, University of Konstanz, Konstanz, Germany; In vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Foley B, Hopperstad K, Gamble J, Lynn SG, Thomas RS, Deisenroth C. Technical evaluation and standardization of the human thyroid microtissue assay. Toxicol Sci 2024; 199:89-107. [PMID: 38310358 PMCID: PMC11784494 DOI: 10.1093/toxsci/kfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
The success and sustainability of U.S. EPA efforts to reduce, refine, and replace in vivo animal testing depends on the ability to translate toxicokinetic and toxicodynamic data from in vitro and in silico new approach methods (NAMs) to human-relevant exposures and health outcomes. Organotypic culture models employing primary human cells enable consideration of human health effects and inter-individual variability but present significant challenges for test method standardization, transferability, and validation. Increasing confidence in the information provided by these in vitro NAMs requires setting appropriate performance standards and benchmarks, defined by the context of use, to consider human biology and mechanistic relevance without animal data. The human thyroid microtissue (hTMT) assay utilizes primary human thyrocytes to reproduce structural and functional features of the thyroid gland that enable testing for potential thyroid-disrupting chemicals. As a variable-donor assay platform, conventional principles for assay performance standardization need to be balanced with the ability to predict a range of human responses. The objectives of this study were to (1) define the technical parameters for optimal donor procurement, primary thyrocyte qualification, and performance in the hTMT assay, and (2) set benchmark ranges for reference chemical responses. Thyrocytes derived from a cohort of 32 demographically diverse euthyroid donors were characterized across a battery of endpoints to evaluate morphological and functional variability. Reference chemical responses were profiled to evaluate the range and chemical-specific variability of donor-dependent effects within the cohort. The data-informed minimum acceptance criteria for donor qualification and set benchmark parameters for method transfer proficiency testing and validation of assay performance.
Collapse
Affiliation(s)
- Briana Foley
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kristen Hopperstad
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - John Gamble
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
| | - Scott G. Lynn
- Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, 20460, USA
| | - Russell S. Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Chad Deisenroth
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
16
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
17
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
18
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
19
|
Chen X, Roberts R, Liu Z, Tong W. A generative adversarial network model alternative to animal studies for clinical pathology assessment. Nat Commun 2023; 14:7141. [PMID: 37932302 PMCID: PMC10628291 DOI: 10.1038/s41467-023-42933-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Animal studies are unavoidable in evaluating chemical and drug safety. Generative Adversarial Networks (GANs) can generate synthetic animal data by learning from the legacy animal study results, thus may serve as an alternative approach to assess untested chemicals. AnimalGAN, a GAN method to simulate 38 rat clinical pathology measures, was developed with significant robustness even for the drugs that vary significantly from these used during training, both in terms of chemical structure, drug class, and the year of FDA approval. AnimalGAN showed comparable results in hepatotoxicity assessment as using the real animal data and outperformed 12 conventional quantitative structure-activity relationship approaches. Using AnimalGAN, a virtual experiment of 100,000 rats ranked hepatotoxicity of three structurally similar drugs in a similar trend that has been observed in human population. AnimalGAN represented a significant step with artificial intelligence towards the global effort in replacement, reduction, and refinement (3Rs) of animal use.
Collapse
Affiliation(s)
- Xi Chen
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Ruth Roberts
- ApconiX Ltd, Alderley Park, Alderley Edge, SK10 4TG, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Currently working at Integrative Toxicology, Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA.
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Sakolish C, Moyer HL, Tsai HHD, Ford LC, Dickey AN, Wright FA, Han G, Bajaj P, Baltazar MT, Carmichael PL, Stanko JP, Ferguson SS, Rusyn I. Analysis of reproducibility and robustness of a renal proximal tubule microphysiological system OrganoPlate 3-lane 40 for in vitro studies of drug transport and toxicity. Toxicol Sci 2023; 196:52-70. [PMID: 37555834 PMCID: PMC10613961 DOI: 10.1093/toxsci/kfad080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types. The model was characterized in terms of the functional transport for various tubule-specific proteins, epithelial permeability of small molecules (cisplatin, tenofovir, and perfluorooctanoic acid) versus large molecules (fluorescent dextrans, 60-150 kDa), and gene expression response to a nephrotoxic xenobiotic. The advantages offered by OrganoPlate 3-lane 40 as compared with multiwell cultures are the presence of media flow, albeit intermittent, and increased throughput compared with other microfluidic models. However, OrganoPlate 3-lane 40 model appeared to offer only limited (eg, MRP-mediated transport) advantages in terms of either gene expression or functional transport when compared with the multiwell plate culture conditions. Although OrganoPlate 3-lane 40 can be used to study cellular uptake and direct toxic effects of small molecules, it may have limited utility for drug transport studies. Overall, this study offers refined experimental protocols and comprehensive comparative data on the function of RPETCs in traditional multiwell culture and microfluidic OrganoPlate 3-lane 40, information that will be invaluable for the prospective end-users of in vitro models of the human proximal tubule.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas 77843, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Maria T Baltazar
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedfordshire MK44 1LQ, UK
| | - Jason P Stanko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
21
|
Lim AY, Kato Y, Sakolish C, Valdiviezo A, Han G, Bajaj P, Stanko J, Ferguson SS, Villenave R, Hewitt P, Hardwick RN, Rusyn I. Reproducibility and Robustness of a Liver Microphysiological System PhysioMimix LC12 under Varying Culture Conditions and Cell Type Combinations. Bioengineering (Basel) 2023; 10:1195. [PMID: 37892925 PMCID: PMC10603899 DOI: 10.3390/bioengineering10101195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The liver is one of the key organs for exogenous and endogenous metabolism and is often a target for drug- and chemical-driven toxicity. A wide range of experimental approaches has been established to model and characterize the mechanisms of drug- and chemical-induced hepatotoxicity. A number of microfluidics-enabled in vitro models of the liver have been developed, but the unclear translatability of these platforms has hindered their adoption by the pharmaceutical industry; to achieve wide use for drug and chemical safety evaluation, demonstration of reproducibility and robustness under various contexts of use is required. One of these commercially available platforms is the PhysioMimix LC12, a microfluidic device where cells are seeded into a 3D scaffold that is continuously perfused with recirculating cell culture media to mimic liver sinusoids. Previous studies demonstrated this model's functionality and potential applicability to preclinical drug development. However, to gain confidence in PhysioMimix LC12's robustness and reproducibility, supplementary characterization steps are needed, including the assessment of various human hepatocyte sources, contribution of non-parenchymal cells (NPCs), and comparison to other models. In this study, we performed replicate studies averaging 14 days with either primary human hepatocytes (PHHs) or induced pluripotent stem cell (iPSC)-derived hepatocytes, with and without NPCs. Albumin and urea secretion, lactate dehydrogenase, CYP3A4 activity, and metabolism were evaluated to assess basal function and metabolic capacity. Model performance was characterized by different cell combinations under intra- and inter-experimental replication and compared to multi-well plates and other liver platforms. PhysioMimix LC12 demonstrated the highest metabolic function with PHHs, with or without THP-1 or Kupffer cells, for up to 10-14 days. iPSC-derived hepatocytes and PHHs co-cultured with additional NPCs demonstrated sub-optimal performance. Power analyses based on replicate experiments and different contexts of use will inform future study designs due to the limited throughput and high cell demand. Overall, this study describes a workflow for independent testing of a complex microphysiological system for specific contexts of use, which may increase end-user adoption in drug development.
Collapse
Affiliation(s)
- Alicia Y. Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
- Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, USA
| | - Jason Stanko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Stephen S. Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Rhiannon N. Hardwick
- Discovery Toxicology, Pharmaceutical Candidate Optimization, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
22
|
Salminen AT, Davis KJ, Felton RP, Nischal N, VonTungeln LS, Beland FA, Derr K, Brown PC, Ferrer M, Katz LM, Kleinstreuer NC, Leshin J, Manga P, Sadrieh N, Xia M, Fitzpatrick SC, Camacho L. Parallel evaluation of alternative skin barrier models and excised human skin for dermal absorption studies in vitro. Toxicol In Vitro 2023; 91:105630. [PMID: 37315744 PMCID: PMC10527924 DOI: 10.1016/j.tiv.2023.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.
Collapse
Affiliation(s)
- Alec T Salminen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly J Davis
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Robert P Felton
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nathania Nischal
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Linda S VonTungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Paul C Brown
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Linda M Katz
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jonathan Leshin
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Prashiela Manga
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nakissa Sadrieh
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
23
|
Padmyastuti A, Sarmiento MG, Dib M, Ehrhardt J, Schoon J, Somova M, Burchardt M, Roennau C, Pinto PC. Microfluidic-based prostate cancer model for investigating the secretion of prostate-specific antigen and microRNAs in vitro. Sci Rep 2023; 13:11623. [PMID: 37468746 DOI: 10.1038/s41598-023-38834-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
The study of prostate cancer in vitro relies on established cell lines that lack important physiological characteristics, such as proper polarization and expression of relevant biomarkers. Microphysiological systems (MPS) can replicate cancer microenvironments and lead to cellular phenotypic changes that better represent organ physiology in vitro. In this study, we developed an MPS model comprising conventional prostate cancer cells to evaluate their activity under dynamic culture conditions. Androgen-sensitive (LNCaP) and androgen-insensitive (PC3) cells were grown in conventional and 3D cultures, both static and dynamic. Cell morphology, the secretion of prostate-specific antigen, and the expression of key prostate markers and microRNAs were analyzed. LNCaP formed spheroids in 3D and MPS cultures, with morphological changes supported by the upregulation of cytokeratins and adhesion proteins. LNCaP also maintained a constant prostate-specific antigen secretion in MPS. PC3 cells did not develop complex structures in 3D and MPS cultures. PSA expression at the gene level was downregulated in LNCaP-MPS and considerably upregulated in PC3-MPS. MicroRNA expression was altered by the 3D static and dynamic culture, both intra- and extracellularly. MicroRNAs associated with prostate cancer progression were mostly upregulated in LNCaP-MPS. Overall dynamic cell culture substantially altered the morphology and expression of LNCaP cells, arguably augmenting their prostate cancer phenotype. This novel approach demonstrates that microRNA expression in prostate cancer cells is sensitive to external stimuli and that MPS can effectively promote important physiological changes in conventional prostate cancer models.
Collapse
Affiliation(s)
- Adventina Padmyastuti
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Marina Garcia Sarmiento
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Maria Dib
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleichmannstraße 8, 17475, Greifswald, Germany
| | - Maryna Somova
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Cindy Roennau
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany.
| |
Collapse
|
24
|
Kato Y, Lim AY, Sakolish C, Valdiviezo A, Moyer HL, Hewitt P, Bajaj P, Han G, Rusyn I. Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicol In Vitro 2022; 85:105464. [PMID: 36057418 PMCID: PMC10015056 DOI: 10.1016/j.tiv.2022.105464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Alicia Y Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi USA, MA 01701, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
25
|
Valdiviezo A, Brown GE, Michell AR, Trinconi CM, Bodke VV, Khetani SR, Luo YS, Chiu WA, Rusyn I. Reanalysis of Trichloroethylene and Tetrachloroethylene Metabolism to Glutathione Conjugates Using Human, Rat, and Mouse Liver in Vitro Models to Improve Precision in Risk Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117009. [PMID: 36445294 PMCID: PMC9707501 DOI: 10.1289/ehp12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Both trichloroethylene (TCE) and tetrachloroethylene (PCE) are high-priority chemicals subject to numerous human health risk evaluations by a range of agencies. Metabolism of TCE and PCE determines their ultimate toxicity; important uncertainties exist in quantitative characterization of metabolism to genotoxic moieties through glutathione (GSH) conjugation and species differences therein. OBJECTIVES This study aimed to address these uncertainties using novel in vitro liver models, interspecies comparison, and a sensitive assay for quantification of GSH conjugates of TCE and PCE, S-(1,2-dichlorovinyl)glutathione (DCVG) and S-(1,2,2-trichlorovinyl) glutathione (TCVG), respectively. METHODS Liver in vitro models used herein were suspension, 2-D culture, and micropatterned coculture (MPCC) with primary human, rat, and mouse hepatocytes, as well as human induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep). RESULTS We found that, although efficiency of metabolism varied among models, consistent with known differences in their metabolic capacity, formation rates of DCVG and TCVG generally followed the patterns human ≥ rat ≥ mouse , and primary hepatocytes > iHep . Data derived from MPCC were most consistent with estimates from physiologically based pharmacokinetic models calibrated to in vivo data. DISCUSSION For TCE, the new data provided additional empirical support for inclusion of GSH conjugation-mediated kidney effects as critical for the derivation of noncancer toxicity values. For PCE, the data reduced previous uncertainties regarding the extent of TCVG formation in humans; this information was used to update several candidate kidney-specific noncancer toxicity values. Overall, MPCC-derived data provided physiologically relevant estimates of GSH-mediated metabolism of TCE and PCE to reduce uncertainties in interspecies extrapolation that constrained previous risk evaluations, thereby increasing the precision of risk characterizations of these high-priority toxicants. https://doi.org/10.1289/EHP12006.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Grace E. Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Ashlin R. Michell
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | | | - Vedant V. Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Valdiviezo A, Kato Y, Baker ES, Chiu WA, Rusyn I. Evaluation of Metabolism of a Defined Pesticide Mixture through Multiple In Vitro Liver Models. TOXICS 2022; 10:566. [PMID: 36287846 PMCID: PMC9609317 DOI: 10.3390/toxics10100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The evaluation of exposure to multiple contaminants in a mixture presents a number of challenges. For example, the characterization of chemical metabolism in a mixture setting remains a research area with critical knowledge gaps. Studies of chemical metabolism typically utilize suspension cultures of primary human hepatocytes; however, this model is not suitable for studies of more extended exposures and donor-to-donor variability in a metabolic capacity is unavoidable. To address this issue, we utilized several in vitro models based on human-induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) to characterize the metabolism of an equimolar (1 or 5 µM) mixture of 20 pesticides. We used iHep suspensions and 2D sandwich cultures, and a microphysiological system OrganoPlate® 2-lane 96 (MimetasTM) that also included endothelial cells and THP-1 cell-derived macrophages. When cell culture media were evaluated using gas and liquid chromatography coupled to tandem mass spectrometry methods, we found that the parent molecule concentrations diminished, consistent with metabolic activity. This effect was most pronounced in iHep suspensions with a 1 µM mixture, and was lowest in OrganoPlate® 2-lane 96 for both mixtures. Additionally, we used ion mobility spectrometry-mass spectrometry (IMS-MS) to screen for metabolite formation in these cultures. These analyses revealed the presence of five primary metabolites that allowed for a more comprehensive evaluation of chemical metabolism in vitro. These findings suggest that iHep-based suspension assays maintain higher metabolic activity compared to 2D sandwich and OrganoPlate® 2-lane 96 model. Moreover, this study illustrates that IMS-MS can characterize in vitro metabolite formation following exposure to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Erin S. Baker
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|