1
|
Zuo X, Bai H, Qiu J, Li R, Kuang X, Zhao Y, Tuo J, Zhao Q, Zhao X, Feng X. 17β-Trenbolone modulates anxiety-related synaptic plasticity by affecting the interaction between hippocampal TACR3 and systemic testosterone in male mice. ENVIRONMENTAL RESEARCH 2025; 279:121796. [PMID: 40340005 DOI: 10.1016/j.envres.2025.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Anxiety Disorder is a common neurological disorder for which ubiquitous environmental endocrine disruptors may be risk factors. 17β-trenbolone (17-TB) has been recognized as a potential environmental endocrine disruptor and its neurotoxic effects have attracted attention. Tachykinin receptor 3 (TACR3), a G protein-coupled receptor involved in pubertal anxiety, and its underlying neural mechanisms remain enigmatic. Therefore, this study investigated the possible relationship between 17-TB and TACR3, testosterone (T), and synaptic plasticity. Our results showed that adolescent male Balb/c mice developed significant anxiety-like behavior after four weeks of exposure to environmentally relevant concentrations of 17-TB (100 μg/kg/day). Transcriptomic RNA-Seq results showed that 17-TB affected abnormal synaptic transmission signals in the hippocampus. Electrophysiological results showed that 17-TB reduced the activity of hippocampal dentate gyrus (DG) neurons and led to the downregulation of hippocampal TACR3 and T levels. In addition, Western blot, immunohistochemistry, ELISA, and qRT-PCR showed that 17-TB exposure led to the downregulation of key hippocampal synaptic proteins PSD95, Gephyrin, and Syn, and induced a metabolic imbalance in glutamate (Glu)/GABA signaling, affecting dopamine signaling. Interestingly, testosterone supplementation (10 mg/kg/day) was effective in ameliorating the above phenomena and alleviating anxiety-like behaviors. These results suggest that 17-TB modulates anxiety-related synaptic plasticity by regulating hippocampal TACR3 and T interactions in vivo. In conclusion, our study contributes to understanding the neurobehavioral and potential mechanistic effects of environmental 17-TB exposure in mammals. It alerts the public to the health risks of chemicals to mammals and suggests new research directions and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jinyu Qiu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Ruimin Li
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xiaochen Kuang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yudi Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jingyi Tuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Monfort-Lanzas P, Gostner JM, Hackl H. Modeling omics dose-response at the pathway level with DoseRider. Comput Struct Biotechnol J 2025; 27:1440-1448. [PMID: 40242291 PMCID: PMC12001094 DOI: 10.1016/j.csbj.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
The generation of omics data sets has become an important approach in modern pharmacological and toxicological research as it can provide mechanistic and quantitative information on a large scale. Analyses of these data frequently revealed a non-linear dose-response relationship underscoring the importance of the modeling process to infer biological exposure limits. A number of tools have been developed for dose-response modeling and various thresholds have been defined as a quantitative representation of the effect of a substance, such as effective concentrations or benchmark doses (BMD). Here we present DoseRider an easy-to-use web application and a companion R package for linear and non-linear dose-response modeling and assessment of BMD at the level of biological pathways or signatures using generalized mixed effect models. This approach allows to analyze custom or provided multi-omics data such as RNA sequencing or metabolomics data and its annotation of a collection of pathways and gene sets from various species. Moreover, we introduce the concept of the trend change doses (TCDs) as a numerical descriptor of effects derived from complex dose-response curves. The usability of DoseRider was demonstrated by analyses of RNA sequencing data of bisphenol AF (BPAF) treatment of a human breast cancer cell line (MCF-7) at 8 different concentrations using gene sets for chemical and genetic perturbations (MSigDB). The BMD for BPAF and a set of genes upregulated by estrogen in breast cancer was 0.2 µM (95 %-CI 0.1-0.5 µM) and the lowest TCD (TCD1) was 0.003 µM (95 %-CI 0.0006-0.01 µM). The comprehensive presentation of the results underlines the suitability of the system for pharmacogenomics, toxicogenomics, and applications beyond.
Collapse
Affiliation(s)
- Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Lichtfouse J, Courtier A, Vergunst AC, Giannoni P. Effects of environmental concentrations of toxins BMAA and its isomers DAB and AEG on zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117045. [PMID: 39305776 DOI: 10.1016/j.ecoenv.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024]
Abstract
The increasing concern over the environmental presence of β-N-Methylamino-L-alanine (BMAA), a toxin primarily produced by cyanobacteria and diatoms, has stimulated numerous studies to evaluate the risk for exposed populations, mainly aquatic organisms and humans. This study focuses on the toxicity of environmental concentrations of BMAA and its isomers, l-2,4 diaminobutyric acid dihydrochloride (DAB) and N-(2-aminoethyl) glycine (AEG) on zebrafish embryo development (ng.L-1). Presence of BMAA in various environments, including aquatic sources, air, and desert crusts, has raised concerns due to its potential link to neurodegenerative diseases such as the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). Despite its known toxicity at high concentrations, there is limited information on the effects of environmental concentrations of BMAA and its isomers. These isomers are often found in association with BMAA and have been detected in seafood intended for human consumption, indicating potential risks from bioaccumulation and biomagnification. Zebrafish embryos have been chosen as a model due to their relevance for embryonic development and toxicity studies. The study employed fish embryo acute toxicity tests and behavioural analyses to specifically assess the sublethal effects of BMAA, DAB, and AEG. The results demonstrated larval mortality rates between 0 % and 3.75 %, while morphological defects were detected across all tested concentrations for each molecule. Behavioural analyses showed alterations in swimming behaviour. Unexpectedly, the changes in morphology and locomotion of the zebrafish larvae were detected more frequently at the lowest concentrations tested, suggesting potential non-monotonic dose responses. Overall, this research underscores the environmental risks associated with BMAA and its isomers, highlighting the importance of continuous monitoring and understanding of their sublethal effects on aquatic organisms and potential implications for human health. Further studies are warranted to elucidate the mechanisms of toxicity, evaluate long-term effects, and assess the risks associated with chronic exposure to these toxins.
Collapse
Affiliation(s)
- Jeanne Lichtfouse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - Audrey Courtier
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | | | - Patrizia Giannoni
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France.
| |
Collapse
|
4
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Caffeic Acid: Numerous Chemoprotective Effects are Mediated via Hormesis. J Diet Suppl 2024; 21:842-867. [PMID: 39363555 DOI: 10.1080/19390211.2024.2410776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Caffeic acid is a common phenolic acid found in coffee and numerous fruits and vegetables. Known for its antioxidant properties, it is widely used as a dietary supplement as part of a polyphenol mixture or as an extract in the form of a capsule or powder. It is also available in liquid form as a homeopathic supplement. Caffeic acid phenethyl ester (CAPE) is an active component of propolis produced by honey bees. Propolis extract is used as a supplement and is available in various forms. The present paper is a comprehensive review of the biomedical literature, showing that caffeic acid effects are hormetic and occur in numerous biological models and cell types for a broad range of endpoints including many aging-related processes. Hormesis is a biphasic dose/concentration response displaying a low concentration/dose stimulation and a high concentration/dose inhibition. Complex alternative search strategies for caffeic acid were used since publications rarely used the terms hormesis or hormetic. Evaluation of the data provides the first assessment of caffeic acid-induced hormetic concentration/dose responses and their quantitative features. Their mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications are discussed. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; Department of Environmental Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
5
|
Shi Z, Xiao S, Zhang Q. Interference with Systemic Negative Feedback Regulation as a Potential Mechanism for Nonmonotonic Dose-Responses of Endocrine-Disrupting Chemicals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611257. [PMID: 39282254 PMCID: PMC11398479 DOI: 10.1101/2024.09.04.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Endocrine-disrupting chemicals (EDCs) often exhibit nonmonotonic dose-response (NMDR) relationships, posing significant challenges to health risk assessment and regulations. Several molecular mechanisms operating locally in cells have been proposed, including opposing actions via different receptors, mixed-ligand heterodimer formation, and receptor downregulation. Systemic negative feedback regulation of hormone homeostasis, which is a common feature of many endocrine systems, has also been invoked as a mechanism; however, whether and how exactly such global feedback structure may underpin NMDRs is poorly understood. Objectives We hypothesize that an EDC may compete with the endogenous hormone for receptors (i) at the central site to interfere with the feedback regulation thus altering the physiological hormone level, and (ii) at the peripheral site to disrupt the hormone action; this dual-action may oppose each other, producing nonmonotonic endocrine effects. The objective here is to explore - through computational modeling - how NMDRs may arise through this potential mechanism and the relevant biological variabilities that enable susceptibility to nonmonotonic effects. Methods We constructed a dynamical model of a generic hypothalamic-pituitary-endocrine (HPE) axis with negative feedback regulation between a pituitary hormone and a terminal effector hormone (EH). The effects of model parameters, including receptor binding affinities and efficacies, on NMDR were examined for EDC agonists and antagonists. Monte Carlo human population simulations were then conducted to systemically explore biological parameter conditions that engender NMDR. Results When an EDC interferes sufficiently with the central feedback action of EH, the net endocrine effect at the peripheral target site can be opposite to what is expected of an agonist or antagonist at low concentrations. J/U or Bell-shaped NMDRs arise when the EDC has differential binding affinities and/or efficacies, relative to EH, for the peripheral and central receptors. Quantitative relationships between these biological variabilities and associated distributions were discovered, which can distinguish J/U and Bell-shaped NMDRs from monotonic responses. Conclusions The ubiquitous negative feedback regulation in endocrine systems can act as a universal mechanism for counterintuitive and nonmonotonic effects of EDCs. Depending on key receptor kinetic and signaling properties of EDCs and endogenous hormones, some individuals may be more susceptible to these complex endocrine effects.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, NJ 08854, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Guan Z, Weng X, Zhang L, Feng P. Association between polycyclic aromatic hydrocarbon exposure and cognitive performance in older adults: a cross-sectional study from NHANES 2011-2014. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1348-1359. [PMID: 38954438 DOI: 10.1039/d4em00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Background: polycyclic aromatic hydrocarbons (PAHs) are classified as neurotoxins, but the relationship between exposure to PAHs and cognition in adults is unclear, and their non-linear and mixed exposure association hasn't been explored. Objective: to evaluate the non-linear and joint association between co-exposure to PAHs and multiple cognitive tests in U.S. older people. Methods: restricted cubic spline (RCS) and Bayesian kernel machine regression (BKMR) were conducted to evaluate the non-linear and mixed exposure association, based on the cross-sectional data from NHANES 2011-2014: 772 participants over 60 years old, 4 cognitive test scores, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution test (DSST), and 5 urinary PAH metabolites. Results: a V-shaped nonlinear relationship was found between 3-hydroxyfluorene (3-FLUO), 2-hydroxyfluorene (2-FLUO), and DRT. Negative trends between mixed PAH exposure and IRT, DRT, and DSST scores were observed. 2-FLUO contributed the most to the negative association of multiple PAHs with IRT and DRT scores and 2-hydroxynaphthalene (2-NAP) played the most important role in the decreasing relationship between mixed PAH exposure and DSST scores. Conclusion: our study suggested that PAH exposure in the U.S. elderly might be related to their poor performances in IRT, DRT and DSST. Further prospective studies are needed to validate the association.
Collapse
Affiliation(s)
- Zerong Guan
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xueqiong Weng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ligang Zhang
- School of Medicine, Foshan University, Foshan 528225, China
| | - Peiran Feng
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
7
|
Humann-Guilleminot S, Fuentes A, Maria A, Couzi P, Siaussat D. Cadmium and phthalate impacts developmental growth and mortality of Spodoptera littoralis, but not reproductive success. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116605. [PMID: 38936052 DOI: 10.1016/j.ecoenv.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France.
| |
Collapse
|
8
|
Boretti A. Selectively addressing total risk avoidance for certain chemicals while overlooking others: The case of per-and-poly-fluoroalkyls. Regul Toxicol Pharmacol 2024; 149:105602. [PMID: 38499056 DOI: 10.1016/j.yrtph.2024.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Alberto Boretti
- Melbourne Institute of Technology, 288 Latrobe Street, Melbourne, 3000, VIC, Australia.
| |
Collapse
|
9
|
Colas S, Le Faucheur S. How do biomarkers dance? Specific moves of defense and damage biomarkers for biological interpretation of dose-response model trends. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133180. [PMID: 38104522 DOI: 10.1016/j.jhazmat.2023.133180] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Omics studies are currently increasingly used in ecotoxicology to highlight the induction of known or novel biomarkers when organisms are exposed to contaminants. Although it is virtually impossible to identify all biomarkers from all organisms, biomarkers can be grouped as defense or damage biomarkers, exhibiting a limited number of response trends. Our working hypothesis is that defense and damage biomarkers follow different dose-response patterns. A meta-analysis of 156 articles and 2595 observations of dose-response curves of defense and damage biomarkers was carried out in order to characterize the response trends of these biological parameters in a large panel of living organisms (18 phyla) exposed to inorganic or organic contaminants (176 in total). Using multinomial logistic regression models, defense biomarkers were found to describe biphasic responses (bell- and U-shaped) to a greater extent (2.5 times) than damage biomarkers. In contrast, damage biomarkers varied mainly monotonically (decreasing or increasing), representing 85% of the observations. Neither the nature of the contaminant nor the type of organisms belonging to 4 kingdoms, influence these specific responses. This result suggests that cellular defense and damage mechanisms are not specific to stressors and are conserved throughout life. Trend analysis of dose-response models as a biological interpretation of biomarkers could thus be a valuable way to exploit large omics datasets.
Collapse
Affiliation(s)
- Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | | |
Collapse
|
10
|
Zou X, Shi Y, Su J, Ye Q, Lin F, Cai G. Association between 2,4-dichlorophenoxyacetic acid and cognitive impairment in older adults: a cross-sectional study from NHANES 2001-2002 and 2011-2014. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:308-316. [PMID: 38129668 DOI: 10.1038/s41370-023-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND 2,4-Dichlorophenoxyacetic acid (2,4-D) is reported to be the most widely used herbicide in home and garden environments, rendering it commonly encountered in daily life. Despite being ubiquitous, there is a scarcity of studies that have comprehensively assessed the relationship between 2,4-D exposure and cognition using multiple models. OBJECTIVE To explore the association between 2,4-D exposure and cognition among older American people. METHODS This was a cross-sectional study that included 3 cycles of data from the National Health and Nutrition Examination Survey. Generalized linear models (GLMs), restricted cubic spline (RCS) regression, and generalized additive models (GAMs) were used to assess the relationship between exposure to 2,4-D and cognitive performance by the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) word learning sub-test, Digit Symbol Substitution Test (DSST), and Animal Fluency Test (AFT). RESULTS A total of 1364 older U.S. adults (60+ years) were included in the study. The GLMs revealed a negative association between median high levels (0.315-0.566 μg/L) of 2,4-D and cognitive impairment on the DSST and AFT, with multivariate-adjusted ORs of 0.403 (95% CI: 0.208-0.781, P = 0.009) and 0.396 (95% CI: 0.159-0.986, P = 0.047); the RCS regression and GAMs revealed a "U" shaped curve, the left part of which is consistent with the result of the GLMs. IMPACT STATEMENT There is a U-shaped relationship between human urinary 2,4-D concentrations and cognitive impairment in older U.S. adults, especially in males, so controlling 2,4-D exposure within an appropriate range is particularly important for cognitive function.
Collapse
Affiliation(s)
- Xinyang Zou
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou, 350001, China
- Fujian Medical University, Fuzhou, 35001, China
| | - Yisen Shi
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou, 350001, China
- Fujian Medical University, Fuzhou, 35001, China
| | - Jiaqi Su
- Fujian Medical University, Fuzhou, 35001, China
| | - Qinyong Ye
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Union Hospital, Institute of Neuroscience, Institute of Clinical Neurology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
11
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
12
|
Braga APA, Gonçalves MDMC, de Souza CP, Marin-Morales MA. Evaluation of the ecotoxicological effects of biogenic amines derived from cadaverous putrefaction on springtails Folsomia candida. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1494. [PMID: 37982899 DOI: 10.1007/s10661-023-11978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
Necro-leachate, a liquid released during cadaveric decomposition, is considered the main culprit for impacts on cemetery environments. The biogenic amines cadaverine and putrescine make up part of the composition of necro-leachate and have a certain toxicity to different organisms. Springtails are among the most used bioindicators to assess the impacts of soil contaminants. As there are no data on the acute and chronic toxicity of springtails exposed to cadaverine and putrescine, the objective of this study was to evaluate the toxic potential of both amines, under the behavioral effect of avoidance and reproduction in the species Folsomia candida. Springtails were exposed to soils contaminated with different concentrations of cadaverine and putrescine, and different mixtures of these amines. To evaluate the avoidance and reproduction test, the individuals were exposed for periods of 48 h and 28 days, respectively. The results obtained in the avoidance test showed that springtails exhibited a preference for the treated soil in both isolated and mixed treatments. The chronic evaluation assays showed that the reproduction was affected, particularly in the treatments with combined amines, resulting in a reduction in the total number of juveniles. From the results, it is possible to infer that the methods applied in this research have provided information that will contribute to a better understanding of the toxicity of putrefactive biogenic amines, since there exist few ecotoxicological studies carried out with these amines, and especially with those from cemetery environments.
Collapse
Affiliation(s)
- Ana Paula Andrade Braga
- Department of Biology, São Paulo State University, Avenue 24-A, 1515, P.O Box 178, Rio Claro, São Paulo State, 13506-900, Brazil
| | | | - Cleiton Pereira de Souza
- Department of Biology, São Paulo State University, Avenue 24-A, 1515, P.O Box 178, Rio Claro, São Paulo State, 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, São Paulo State University, Avenue 24-A, 1515, P.O Box 178, Rio Claro, São Paulo State, 13506-900, Brazil.
| |
Collapse
|
13
|
Hilz EN, Gore AC. Endocrine-Disrupting Chemicals: Science and Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:142-150. [PMID: 39758979 PMCID: PMC11698485 DOI: 10.1177/23727322231196794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that disrupt the normal functioning of endocrine system hormones, leading to a range of adverse health effects in humans and wildlife. Exposure to EDCs is ubiquitous and occurs through contaminated food and water, air, consumer products, and transfer from parents to offspring. Effective regulation has been challenging due to a limited understanding of EDCs' complex and nonlinear dose-response relationships, as well as difficulty in attributing specific health effects to individual EDC exposures in real-world scenarios. Current EDC policies face limitations in terms of the diversity and complexity of EDCs, the lack of comprehensive testing requirements, and the need for more robust regulatory frameworks that consider cumulative and mixture effects of EDCs. Understanding these aspects is crucial for developing effective and evidence-based EDC policies that can safeguard public health and the environment.
Collapse
|
14
|
Jaki T, Burdon A, Chen X, Mozgunov P, Zheng H, Baird R. Early phase clinical trials in oncology: Realising the potential of seamless designs. Eur J Cancer 2023; 189:112916. [PMID: 37301716 PMCID: PMC7614750 DOI: 10.1016/j.ejca.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The pharmaceutical industry's productivity has been declining over the last two decades and high attrition rates and reduced regulatory approvals are being seen. The development of oncology drugs is particularly challenging with low rates of approval for novel treatments when compared with other therapeutic areas. Reliably establishing the potential of novel treatment and the corresponding optimal dosage is a key component to ensure efficient overall development. A growing interest lies in terminating developments of poor treatments quickly while enabling accelerated development for highly promising interventions. METHODS One approach to reliably establish the optimal dosage and the potential of a novel treatment and thereby improve efficiency in the drug development pathway is the use of novel statistical designs that make efficient use of the data collected. RESULTS In this paper, we discuss different (seamless) strategies for early oncology development and illustrate their strengths and weaknesses through real trial examples. We provide some directions for good practices in early oncology development, discuss frequently seen missed opportunities for improved efficiency and some future opportunities that have yet to fully develop their potential in early oncology treatment development. DISCUSSION Modern methods for dose-finding have the potential to shorten and improve dose-finding and only small changes to current approaches are required to realise this potential.
Collapse
Affiliation(s)
- Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, UK; University of Regensburg, Germany.
| | | | - Xijin Chen
- MRC Biostatistics Unit, University of Cambridge, UK
| | | | - Haiyan Zheng
- MRC Biostatistics Unit, University of Cambridge, UK
| | | |
Collapse
|
15
|
Mincarelli LF, Chapman EC, Rotchell JM, Turner AP, Wollenberg Valero KC. Sex and gametogenesis stage are strong drivers of gene expression in Mytilus edulis exposed to environmentally relevant plasticiser levels and pH 7.7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23437-23449. [PMID: 36322353 PMCID: PMC9938808 DOI: 10.1007/s11356-022-23801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution and changes in oceanic pH are both pressing environmental issues. Little emphasis, however, has been placed on the influence of sex and gametogenesis stage when investigating the effects of such stressors. Here, we examined histology and molecular biomarkers of blue mussels Mytilus edulis exposed for 7 days to a pH 7.7 scenario (- 0.4 units) in combination with environmentally relevant concentrations (0, 0.5 and 50 µg/L) of the endocrine disrupting plasticiser di-2-ethylhexyl phthalate (DEHP). Through a factorial design, we investigated the gametogenesis cycle and sex-related expression of genes involved in pH homeostasis, stress response and oestrogen receptor-like pathways after the exposure to the two environmental stressors. As expected, we found sex-related differences in the proportion of developing, mature and spawning gonads in histological sections. Male gonads also showed higher levels of the acid-base regulator CA2, but females had a higher expression of stress response-related genes (i.e. sod, cat, hsp70). We found a significant effect of DEHP on stress response-related gene expression that was dependent on the gametogenesis stage, but there was only a trend towards downregulation of CA2 in response to pH 7.7. In addition, differences in gene expression between males and females were most pronounced in experimental conditions containing DEHP and/or acidified pH but never the control, indicating that it is important to consider sex and gametogenesis stage when studying the response of mussels to diverse stressors.
Collapse
Affiliation(s)
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | | |
Collapse
|
16
|
Poretsky L, Yeshua A, Cantor T, Avtanski D, Stojchevski R, Ziskovich K, Singer T. The effects of irisin and leptin on steroidogenic enzyme gene expression in human granulosa cells: In vitro studies. Metabol Open 2023; 17:100230. [PMID: 36686605 PMCID: PMC9853360 DOI: 10.1016/j.metop.2023.100230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Reproduction and energy metabolism are closely related, and fertility can be directly affected by either obesity or malnutrition. In this study, we investigated the in vitro effects of irisin and leptin, two hormones primarily involved in energy metabolism, on the expression of genes encoding key steroidogenic enzymes in primary cultures of human granulosa cells. Granulosa cells were purified from follicular fluid samples obtained during in vitro fertilization (IVF) procedure, cultured, and treated with irisin (125-2000 ng/ml) or leptin (25-400 ng/ml) for 1-3 days. mRNA expression levels of cytochrome P450 enzymes [CYP11A1, CYP19A1, CYP21A2], hydroxy-delta-5-steroid dehydrogenase, 3 beta and steroid delta-isomerase 1 (HSD3B1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3) were measured using qRT-PCR analysis. Irisin significantly upregulated CYP19A1 mRNA levels, while leptin upregulated CYP19A1 and HSD3B1 mRNA levels. These preliminary results show that irisin and leptin may directly affect the expression of the genes important for ovarian steroidogenesis and female reproduction.
Collapse
Affiliation(s)
- Leonid Poretsky
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Corresponding author. 110 E 59th Street, Suite 8B, New York, NY, 10022, USA.
| | | | - Tal Cantor
- Shady Grove Fertility Clinic, New York, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Karina Ziskovich
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | |
Collapse
|
17
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
18
|
Weng X, Liang H, Liu K, Chen J, Fei Q, Liu S, Guo X, Wen L, Wu Y, Nie Z, Jing C. Relationship between urinary dichlorophenols and cognitive function among people over 60 years old from NHANES. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73341-73352. [PMID: 35624369 DOI: 10.1007/s11356-022-20840-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Studies have shown that exposure to dichlorophenols (DCPs) and their precursors might have potential neurotoxicity, which may be related to low cognitive function, but there are few large-scale, representative population data to explore the association between DCP exposure and cognitive function. We aimed to examine the relationship between urinary DCPs and cognitive function in the US older people. A total of 952 participants ≥ 60 years old from the National Health and Nutrition Examination Survey (NHANES) in two cycles (2011-2014) were enrolled. The Consortium to Establish a Registry for Alzheimer's disease Word Learning subtest (CERAD W-L), the Animal Fluency test (AFT), and the Digit Symbol Substitution test (DSST) were used to assess cognition. Multivariate logistic regression and restricted cubic spline (RCS) were used to evaluate the relationship between DCP exposure and cognitive function. A positive association between 2,5-DCP and the risk of bad performance of DSST was observed (P for trend = 0.024) after adjusting for the covariates. Compared to the lowest quartile, OR of DSST for the highest quartile of 2,5-DCP was 1.72 (95%CI:1.03-2.87, P = 0.039). There were no significant associations between DCPs and the other tests. The RCS plot showed an inverted J-shaped relationship between 2,5-DCP, 2,4-DCP, and the DSST score. The inflection points for the curves were found at 1.531 μg/L and 0.230 μg/L, respectively. On the right side of the inflection points, the DSST score dropped sharply. In subgroup analysis, those under 70 years old, smokers, and alcohol drinkers had a higher risk of bad performance in DSST when exposed to 2,5-DCP. The higher concentration of urinary DCPs is associated with a lower score of DSST in the US older people.
Collapse
Affiliation(s)
- Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Kun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Zhiqiang Nie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
19
|
Shi Z, Xia M, Xiao S, Zhang Q. Identification of nonmonotonic concentration-responses in Tox21 high-throughput screening estrogen receptor assays. Toxicol Appl Pharmacol 2022; 452:116206. [PMID: 35988584 PMCID: PMC9452481 DOI: 10.1016/j.taap.2022.116206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) interfere with the metabolism and actions of endogenous hormones. It has been well documented in numerous in vivo and in vitro studies that EDCs can exhibit nonmonotonic dose response (NMDR) behaviors. Not conforming to the conventional linear or linear-no-threshold response paradigm, these NMDR relationships pose practical challenges to the risk assessment of EDCs. In the meantime, the endocrine signaling pathways and biological mechanisms underpinning NMDR remain incompletely understood. The US Tox21 program has conducted in vitro cell-based high-throughput screening assays for estrogen receptors (ER), androgen receptors, and other nuclear receptors, and screened the 10 K-compound library for potential endocrine activities. Using 15 concentrations across several orders of magnitude of concentration range and run in both agonist and antagonist modes, these Tox21 assay datasets contain valuable quantitative information that can be explored to evaluate the nonlinear effects of EDCs and may infer potential mechanisms. In this study we analyzed the concentration-response curves (CRCs) in all 8 Tox21 ERα and ERβ assays by developing clustering and classification algorithms customized to the datasets to identify various shapes of CRCs. After excluding NMDR curves likely caused by cytotoxicity, luciferase inhibition, or autofluorescence, hundreds of compounds were identified to exhibit Bell or U-shaped CRCs. Bell-shaped CRCs are about 7 times more frequent than U-shaped ones in the Tox21 ER assays. Many compounds exhibit NMDR in at least one assay, and some EDCs well-known for their NMDRs in the literature were also identified, suggesting their nonmonotonic effects may originate at cellular levels involving transcriptional ER signaling. The developed computational methods for NMDR identification in ER assays can be adapted and applied to other high-throughput bioassays.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Teng M, Zhao X, Wang C, Wang C, White JC, Zhao W, Zhou L, Duan M, Wu F. Polystyrene Nanoplastics Toxicity to Zebrafish: Dysregulation of the Brain-Intestine-Microbiota Axis. ACS NANO 2022; 16:8190-8204. [PMID: 35507640 DOI: 10.1021/acsnano.2c01872] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In animal species, the brain-gut axis is a complex bidirectional network between the gastrointestinal (GI) tract and the central nervous system (CNS) consisting of numerous microbial, immune, neuronal, and hormonal pathways that profoundly impact organism development and health. Although nanoplastics (NPs) have been shown to cause intestinal and neural toxicity in fish, the role of the neurotransmitter and intestinal microbiota interactions in the underlying mechanism of toxicity, particularly at environmentally relevant contaminant concentrations, remains unknown. Here, the effect of 44 nm polystyrene nanoplastics (PS-NPs) on the brain-intestine-microbe axis and embryo-larval development in zebrafish (Danio rerio) was investigated. Exposure to 1, 10, and 100 μg/L PS-NPs for 30 days inhibited growth and adversely affected inflammatory responses and intestinal permeability. Targeted metabolomics analysis revealed an alteration of 42 metabolites involved in neurotransmission. The content of 3,4-dihydroxyphenylacetic acid (DOPAC; dopamine metabolite formed by monoamine oxidase activity) was significantly decreased in a dose-dependent manner after PS-NP exposure. Changes in the 14 metabolites correlated with changes to 3 microbial groups, including Proteobacteria, Firmicutes, and Bacteroidetes, as compared to the control group. A significant relationship between Firmicutes and homovanillic acid (0.466, Pearson correlation coefficient) was evident. Eight altered metabolites (l-glutamine (Gln), 5-hydroxyindoleacetic acid (5-HIAA), serotonin, 5-hydroxytryptophan (5-HTP), l-cysteine (Cys), l-glutamic acid (Glu), norepinephrine (NE), and l-tryptophan (l-Trp)) had a negative relationship with Proteobacteria although histamine (His) and acetylcholine chloride (ACh chloride) levels were positively correlated with Proteobacteria. An Associated Network analysis showed that Firmicutes and Bacteroidetes were highly correlated (0.969). Furthermore, PS-NPs accumulated in the gastrointestinal tract of offspring and impaired development of F1 (2 h post-fertilization) embryos, including reduced spontaneous movements, hatching rate, and length. This demonstration of transgenerational deficits is of particular concern. These findings suggest that PS-NPs cause intestinal inflammation, growth inhibition, and restricted development of zebrafish, which are strongly linked to the disrupted regulation within the brain-intestine-microbiota axis. Our study provides insights into how xenobiotics can disrupt the regulation of brain-intestine-microbiota and suggests that these end points should be taken into account when assessing environmental health risks of PS-NPs to aquatic organisms.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
21
|
Safarpour S, Ghasemi-Kasman M, Safarpour S, Darban YM. Effects of Di-2-Ethylhexyl Phthalate on Central Nervous System Functions: A Narrative Review. Curr Neuropharmacol 2022; 20:766-776. [PMID: 34259148 PMCID: PMC9878957 DOI: 10.2174/1570159x19666210713122517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Phthalates are widely used in the plastics industry. Di-2-Ethylhexyl Phthalate (DEHP) is one of the most important phthalate metabolites that disrupt the function of endocrine glands. Exposure to DEHP causes numerous effects on animals, humans, and the environment. Low doses of DEHP increase neurotoxicity in the nervous system that has arisen deep concerns due to the widespread nature of DEHP exposure and its high absorption during brain development. OBJECTIVE In this review article, we evaluated the impacts of DEHP exposure from birth to adulthood on neurobehavioral damages. Then, the possible mechanisms of DEHP-induced neurobehavioral impairment were discussed. METHODOLOGY Peer-reviewed articles were extracted through Embase, PubMed, and Google Scholar till the year 2021. RESULTS The results showed that exposure to DEHP during pregnancy and infancy leads to memory loss and irreversible nervous system damage. CONCLUSION Overall, it seems that increased levels of oxidative stress and inflammatory mediators possess a pivotal role in DEHP-induced neurobehavioral impairment.
Collapse
Affiliation(s)
- Soheila Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran;,Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | - Samaneh Safarpour
- Department of Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
22
|
d'Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of Metal Oxide Nanoparticles in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3313016. [PMID: 35154565 PMCID: PMC8837465 DOI: 10.1155/2022/3313016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanoparticles (MO NPs) are increasingly employed in many fields with a wide range of applications from industries to drug delivery. Due to their semiconducting properties, metal oxide nanoparticles are commonly used in the manufacturing of several commercial products available in the market, including cosmetics, food additives, textile, paint, and antibacterial ointments. The use of metallic oxide nanoparticles for medical and cosmetic purposes leads to unavoidable human exposure, requiring a proper knowledge of their potentially harmful effects. This review offers a comprehensive overview of the possible toxicity of metallic oxide nanoparticles in zebrafish during both adulthood and growth stages, with an emphasis on the role of oxidative stress.
Collapse
Affiliation(s)
- Marta d'Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | |
Collapse
|
23
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Lamotrigine effects on immune gene expression in larval zebrafish. Epilepsy Res 2021; 178:106823. [PMID: 34844088 DOI: 10.1016/j.eplepsyres.2021.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Despite growing evidence that neuroinflammation and pro-inflammatory cytokines are involved in the pathogenesis of seizures and epilepsy, this knowledge has not been incorporated in the proposed mechanism of action of any of the current antiseizure medications (ASMs). Here, we tested the hypothesis by assessing inflammation markers in larval zebrafish (Danio rerio) exposed to lamotrigine (LTG). METHODS In order to establish the most appropriate LTG concentrations for the transcriptome analysis (RNAseq), we initially assessed for teratogenic (spinal cord deformation, heart oedema, failed inflation of the swim bladder) and behavioural effects (distance moved, time spent active, and average swimming speed during a light/dark test) in zebrafish larvae exposed to 0, 50, 100, 300, 500, 750, and 1000 μM LTG continuously between 5 and 120 h post fertilisation. Subsequently, we repeated the experiment with 0, 50, 100, or 300 μM LTG for transcriptomic analyses. Two databases (Kyoto Encyclopedia of Genes and Genomes; Gene Ontology) were used to interpret changes in gene expression between groups. RESULTS Major teratogenic effects were observed at concentrations of ≥ 500 μM LTG, whereas behavioural changes were observed at ≥ 300 μM LTG. Transcriptome analysis revealed a non-linear response to LTG. From the suite of differentially expressed genes (DEG), 85% (n = 80 DEGs) were upregulated following exposure to 50 μM LTG, whereas 58% (n = 12 DEGs) and 91% (n = 210 DEGs) were downregulated in response to 100 and 300 μM LTG. The metabolic pathways affected following exposure to 50 and 300 μM LTG were associated with responses to inflammation and pathogens as well development and regulation of the immune system in both groups. Notable genes within the lists of DEGs included component complement 3 (C3.a), which was significantly upregulated in response to 50 μM LTG, whereas interleukin 1β (IL-1β) was significantly downregulated in the 300 μM LTG group. The lowest exposure of 50 μM LTG is regarded as clinically relevant to therapeutic exposure. CONCLUSION We demonstrated that LTG had an impact on the immune system, with a non-monotonic response curve. This dose-dependent relation could indicate that LTG can affect inflammatory responses and also at clinically relevant concentration. Further studies are needed to establish this method as a tool for screening the effects of ASMs on the immune system.
Collapse
|
25
|
Zhang S, Jiao Z, Zhao X, Sun M, Feng X. Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117710. [PMID: 34243057 DOI: 10.1016/j.envpol.2021.117710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg-1 d-1 of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zihao Jiao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Yang Y, Filipovic D, Bhattacharya S. A Negative Feedback Loop and Transcription Factor Cooperation Regulate Zonal Gene Induction by 2, 3, 7, 8-Tetrachlorodibenzo-p-Dioxin in the Mouse Liver. Hepatol Commun 2021; 6:750-764. [PMID: 34726355 PMCID: PMC8948569 DOI: 10.1002/hep4.1848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 01/04/2023] Open
Abstract
The cytochrome P450 (Cyp) proteins Cyp1A1 and Cyp1A2 are strongly induced in the mouse liver by the potent environmental toxicant 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD), acting through the aryl hydrocarbon receptor (AHR). The induction of Cyp1A1 is localized within the centrilobular regions of the mouse liver at low doses of TCDD, progressing to pan‐lobular induction at higher doses. Even without chemical perturbation, metabolic functions and associated genes are basally zonated in the liver lobule along the central‐to‐portal axis. To investigate the mechanistic basis of spatially restricted gene induction by TCDD, we have developed a multiscale computational model of the mouse liver lobule with single‐cell resolution. The spatial location of individual hepatocytes in the model was calibrated from previously published high‐resolution images. A systems biology model of the network of biochemical signaling pathways underlying Cyp1A1 and Cyp1A2 induction was then incorporated into each hepatocyte in the model. Model simulations showed that a negative feedback loop formed by binding of the induced Cyp1A2 protein to TCDD, together with cooperative gene induction by the β‐catenin/AHR/TCDD transcription factor complex and β‐catenin, help produce the spatially localized induction pattern of Cyp1A1. Although endogenous WNT regulates the metabolic zonation of many genes, it was not a driver of zonal Cyp1A1 induction in our model. Conclusion: In this work, we used data‐driven computational modeling to identify the mechanistic basis of zonally restricted gene expression induced by the potent and persistent environmental pollutant TCDD. The multiscale model and derived results clarify the mechanisms of dose‐dependent hepatic gene induction responses to TCDD. Additionally, this work contributes to our broader understanding of spatial gene regulation along the liver lobule.
Collapse
Affiliation(s)
- Yongliang Yang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
EFSA Scientific Committee, More S, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson T, Hernandez‐Jerez A, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Tarazona J, Younes M. Opinion on the impact of non-monotonic dose responses on EFSA's human health risk assessments. EFSA J 2021; 19:e06877. [PMID: 34712366 PMCID: PMC8528485 DOI: 10.2903/j.efsa.2021.6877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This Opinion assesses the biological relevance of the non-monotonic dose responses (NMDR) identified in a previous EFSA External Report (Beausoleil et al., 2016) produced under GP/EFSA/SCER/2014/01 and the follow-up probabilistic assessment (Chevillotte et al., 2017a,b), focusing on the in vivo data sets fulfilling most of the checkpoints of the visual/statistical-based analysis identified in Beausoleil et al. (2016). The evaluation was completed with cases discussed in EFSA assessments and the update of the scientific literature. Observations of NMDR were confirmed in certain studies and are particularly relevant for receptor-mediated effects. Based on the results of the evaluation, the Opinion proposes an approach to be applied during the risk assessment process when apparent non-monotonicity is observed, also providing advice on specific elements to be considered to facilitate the assessment of NMDR in EFSA risk assessments. The proposed approach was applied to two case studies, Bisphenol A and bis(2-ethylhexyl phthalate (DEHP) and these evaluations are reported in dedicated annexes. Considering the potential impact of NMDRs in regulatory risk assessment, the Scientific Committee recommends a concerted international effort on developing internationally agreed guidance and harmonised frameworks for identifying and addressing NMDRs in the risk assessment process.
Collapse
|
28
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
29
|
Schlezinger JJ, Hyötyläinen T, Sinioja T, Boston C, Puckett H, Oliver J, Heiger-Bernays W, Webster TF. Perfluorooctanoic acid induces liver and serum dyslipidemia in humanized PPARα mice fed an American diet. Toxicol Appl Pharmacol 2021; 426:115644. [PMID: 34252412 DOI: 10.1016/j.taap.2021.115644] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are pervasive in the environment resulting in nearly universal detection in people. Human serum PFAS concentrations are strongly associated with increased serum low-density lipoprotein cholesterol (LDL-C), and growing evidence suggests an association with serum triacylglycerides (TG). Here, we tested the hypothesis that perfluorooctanoic acid (PFOA) dysregulates liver and serum triacylglycerides in human peroxisome proliferator activated receptor α (hPPARα)-expressing mice fed an American diet. Mice were exposed to PFOA (3.5 mg/L) in drinking water for 6 weeks resulting in a serum concentration of 48 ± 9 μg/ml. In male and female hPPARα mice, PFOA increased total liver TG and TG substituted with saturated and monounsaturated fatty acids. Lack of expression of PPARα alone also increased total liver TG, and PFOA treatment had little effect on liver TG in PPARα null mice. In hPPARα mice, PFOA neither significantly increased nor decreased serum TG; however, there was a modest increase in TG associated with very low-density cholesterol particles in both sexes. Intriguingly, in female PPARα null mice, PFOA significantly increased serum TG, with a similar trend in males. PFOA also modified fatty acid and TG homeostasis-related gene expression in liver, in a hPPARα-dependent manner, but not in adipose. The results of our study and others reveal the importance of context (serum concentration and genotype) in determining the effect of PFOA on lipid homeostasis.
Collapse
Affiliation(s)
- J J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.
| | - T Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - T Sinioja
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - C Boston
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - H Puckett
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - J Oliver
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - W Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - T F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
30
|
Safarpour S, Zabihi E, Ghasemi-Kasman M, Nosratiyan N, Feizi F. Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food Chem Toxicol 2021; 154:112322. [PMID: 34111487 DOI: 10.1016/j.fct.2021.112322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Diethylhexyl phthalate (DEHP) is one of the most important derivatives of phthalate that has devastating effects on nervous system function. In this study, the effects of exposure with low doses of DEHP during pregnancy and lactation periods have been evaluated in rat's puppies. DEHP at doses 5, 40, 400 μg/kg/day and 300 mg/kg/day was given to mothers by gavage during pregnancy and lactation. The spatial and working memories were evaluated by Morris water maze test and Y maze, respectively. Oxidative stress levels were measured by biochemical tests. Histopathology of hippocampal tissue was assessed using hematoxylin and eosin, Nissl staining, and immunohistofluorescence in 60-days-old puppies. Behavioral data showed that low doses of DEHP decreased the working and spatial memories of male rats. Increased oxidative stress and decreased antioxidant activity were also observed in the hippocampus of rats which received the low doses of DEHP. However, neuronal damage, inflammation, and astrocyte activation were not significantly increased in the hippocampus of rats. Overall, exposure of mothers to low doses of DEHP during pregnancy and lactation cause behavioral deficits, especially in male newborn. The destructive effects of low doses of DEHP might be mediated through increased levels of oxidative stress in the brain.
Collapse
Affiliation(s)
- Soheila Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
31
|
Silva CO, Simões T, Félix R, Soares AM, Barata C, Novais SC, Lemos MF. Asparagopsis armata Exudate Cocktail: The Quest for the Mechanisms of Toxic Action of an Invasive Seaweed on Marine Invertebrates. BIOLOGY 2021; 10:biology10030223. [PMID: 33799463 PMCID: PMC8002046 DOI: 10.3390/biology10030223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary The invasive red seaweed Asparagopsis armata exhibits a strong invasive behavior, producing harmful secondary metabolites that negatively affect the surrounding community. This study addressed the antioxidant defenses, oxidative damage, and a neuronal parameter, as well as the fatty acid composition responses to sublethal concentrations of A. armata released compounds on the marine snail Gibbula umbilicalis and the shrimp Palaemon serratus. Results revealed that the test species had different metabolic responses to the A. armata exudate concentrations tested. Impacts in G. umbilicalis does not seem to arise from oxidative stress or neurotoxicity, while for P. elegans, an inhibition of AChE and the decrease of antioxidant capacity and increase of LPO suggest neurotoxicity and oxidative stress as contributing to the observed toxicity. Additionally, there were different fatty acid profile changes between species, but omega-3 PUFAs ARA and DPA increased in both invertebrates, indicating a common regulation mechanism of inflammation and immunity responses. Abstract The seaweed Asparagopsis armata exhibits a strong invasive behavior, producing halogenated compounds with effective biological effects. This study addresses the biochemical responses to sublethal concentrations of A. armata exudate on the marine snail Gibbula umbilicalis whole body and the shrimp Palaemon elegans eyes and hepatopancreas. Antioxidant defenses superoxide dismutase (SOD) and glutathione-S-transferase (GST), oxidative damage endpoints lipid peroxidation (LPO) and DNA damage, the neuronal parameter acetylcholinesterase (AChE), and the fatty acid profile were evaluated. Results revealed different metabolic responses in both species. Despite previous studies indicating that the exudate affected G. umbilicalis’ survival and behavior, this does not seem to result from oxidative stress or neurotoxicity. For P. elegans, the inhibition of AChE and the decrease of antioxidant capacity is concomitant with the increase of LPO, suggesting neurotoxicity and oxidative stress as contributor mechanisms of toxicity for this species. Fatty acid profile changes were more pronounced for P. elegans with a general increase in polyunsaturated fatty acids (PUFAs) with the exudate exposure, which commonly means a defense mechanism protecting from membrane disruption. Nonetheless, the omega-3 PUFAs arachidonic acid (ARA) and docosapentaenoic acid (DPA) increased in both invertebrates, indicating a common regulation mechanism of inflammation and immunity responses.
Collapse
Affiliation(s)
- Carla O. Silva
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.O.S.); (T.S.); (R.F.); (S.C.N.)
| | - Tiago Simões
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.O.S.); (T.S.); (R.F.); (S.C.N.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.O.S.); (T.S.); (R.F.); (S.C.N.)
| | - Amadeu M.V.M. Soares
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Barata
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain;
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.O.S.); (T.S.); (R.F.); (S.C.N.)
| | - Marco F.L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.O.S.); (T.S.); (R.F.); (S.C.N.)
- Correspondence: ; Tel.: +351-262-783-607; Fax: +351-262-783-088
| |
Collapse
|
32
|
Klimenko K. Examining the evidence of non-monotonic dose-response in Androgen Receptor agonism high-throughput screening assay. Toxicol Appl Pharmacol 2020; 410:115338. [PMID: 33217376 DOI: 10.1016/j.taap.2020.115338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022]
Abstract
Modern High-Throughput Screening (HTS) techniques allow to determine in vitro bioactivity of tens of thousands of chemicals within a relatively short period of time and tested compounds are usually interpreted as either active or inactive. The interpretation is mostly based on the assumption of monotonic dose-response. This approach ignores potential abnormal dose-response relationships, such as non-monotonic dose-response (NMDR). NMDR presents a serious challenge to toxicologists and pharmacologists, since they undermine the usefulness of such concepts as lowest-observed-adverse-effect level (LOAEL) and no-observed-adverse-effect level (NOAEL). The possible presence of the NMDR in Androgen receptor (AR) agonism was examined for a structurally diverse set of chemicals (~8 300 unique compounds) from Tox21 project library. The source of activity data is Tox21 AR agonism luciferase-based HTS on the MDA-MB-453 cell line. The examination of curve fitting for 35,328 dose-response data entries was based on modified version of existing criteria for determination of NMDR. The bias that arises from compounds' cytotoxicity and interference with firefly luciferase protein was also studied. The examination has shown evidence of NMDR for several compounds, including known AR antagonists (e. g. Cyproterone acetate) and other known endocrine disruptors (e. g. Tranilast). Compounds were divided into 3 groups based on chemical class, known biological activity profile and the shape of dose-response curve. The challenges of using HTS data to determine NMDR and benefits of this analysis are discussed.
Collapse
Affiliation(s)
- Kyrylo Klimenko
- Private consultant in Computational Toxicology, Av. 1 de Maio, 11, 2825-396 Costa de Caparica, Portugal.
| |
Collapse
|
33
|
Colpaert R, Villard PH, de Jong L, Mambert M, Benbrahim K, Abraldes J, Cerini C, Pique V, Robin M, Moreau X. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41052-41062. [PMID: 31919830 DOI: 10.1007/s11356-019-06859-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Chlordecone (CLD) is an organochlorine pesticide widely used in the past to control pest insects in banana plantations in the French West Indies. Due to its persistence in the environment, CLD has contaminated the soils where it has been spread, as well as the waters, and is still present in them. The objective of our study was to evaluate the effects of chronic exposure to environmentally relevant CLD concentrations in an animal model, the freshwater hydra (Hydra circumcincta). In a multi-marker approach, we have studied the expression of some target stress genes, the morphology, and the asexual reproduction rates. Our data showed that exposure to low concentrations of chlordecone leads to (i) a modulation of the expression of target genes involved in oxidative stress, detoxification, and neurobiological processes, and (ii) morphological damages and asexual reproduction impairment. We have observed non-monotonic dose-response curves, which agree with endocrine-disrupting chemical effects. Thus, "U-shaped" dose-response curves were observed for SOD, GRed, Hym355, and potentially GST gene expressions; inverted "U-shaped" curves for GPx and CYP1A gene expressions and reproductive rates; and a biphasic dose-response curve for morphological damages. Therefore, in the range of environmental concentrations tested, very low concentrations of CLD can produce equally or more important deleterious effects than higher ones. Finally, to our knowledge, this study is the first one to fill the lack of knowledge concerning the effects of CLD in Hydra circumcincta and confirms that this diploblastic organism is a pertinent freshwater model in the risk assessment.
Collapse
Affiliation(s)
- Romain Colpaert
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | | | - Laetitia de Jong
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Marina Mambert
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Karim Benbrahim
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Joelle Abraldes
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Claire Cerini
- Aix Marseille Univ, Inserm U1263, C2VN, Marseille, France
| | - Valérie Pique
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Maxime Robin
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | - Xavier Moreau
- Aix Marseille Univ, Avignon University, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
34
|
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations†. Biol Reprod 2020; 101:635-644. [PMID: 31077281 DOI: 10.1093/biolre/ioz081] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. Likewise, exposures to endocrine disruptors during developmental periods are particularly concerning because programming during development can be adversely impacted by hormone level changes. Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
35
|
Wang Y, Wen Y, Xiao P, Sun J, Chen M, Gu C, Kong Y, Gu A, Zhang J, Wang Y. Di-n-butyl phthalate promotes lipid accumulation via the miR200c-5p-ABCA1 pathway in THP-1 macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114723. [PMID: 32417575 DOI: 10.1016/j.envpol.2020.114723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Di-n-butyl phthalate (DBP) is ubiquitously in the environment and has been detected in almost all of human bodies. Few data could be found about the effects of DBP on cardiovascular system, though its reproductive toxicities have been studied extensively. This study aimed to explore the effects of DBP on lipid metabolism, a key step during the formation of atherosclerosis, since DBP was recently reported to be associated with atherosclerosis. THP-1 macrophages were employed and exposed to various levels of DBP (10-8, 10-7, 10-6, 10-5 and 10-4 mol/L) or DMSO as control. Lipid accumulation was determined by detection of cellular total cholesterol, free cholesterol, cholesterol ester and content of lipid drops. Expressions of mRNA/miRNAs and proteins were measured by qRT-PCR and western blotting, respectively. Bioinformatic analysis and dual luciferase reporter assay were used to analyze the combination between miR200c-5p and ATP-binding cassette transporter A1 (ABCA1). Cholesterol efflux assay was executed to study the inhibitory effects of DBP on cholesterol efflux capability. Results revealed that DBP at 10-7 mol/L prompted THP-1 macrophages lipid accumulation by inhibiting cholesterol efflux via suppressing ABCA1 expression. In addition, a non-linear inverted U-shaped relationship between DBP and lipid accumulation could be observed. Moreover, miR200c-5p could directly targets to ABCA1 3'UTR and modulate ABCA1 expression. Besides, downregulation of ABCA1 expression and reduction of lipid efflux induced by DBP were due to the miR200c-5p upregulation. Collectively, these data suggested that DBP at levels relative to human exposure could increase lipid accumulation in THP-1 macrophages by decreasing cholesterol efflux through miR200c-5p-ABCA1, then potentiate the formation of atherosclerosis.
Collapse
Affiliation(s)
- Yidi Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chenxi Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yi Kong
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Guard J, Rothrock M, Jones D, Gast R. Low Dose Infection of Hens in Lay with Salmonella enterica Serovar Enteritidis from Different Genomic Clades. Avian Dis 2020; 64:7-15. [PMID: 32267120 DOI: 10.1637/0005-2086-64.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Enteritidis is the leading cause of salmonellosis in people, and modeling of infections in chickens is used to identify intervention strategies. A review of 80 manuscripts encompassing 119 experiments indicated that the mean dose of infection was 108 CFU per bird. Experiments of less than 106 CFU were primarily conducted in immature birds. To address a lack of information on the impact of low dosages on the hen at lay, two experiments were conducted in triplicate. Experiment A addressed issues associated with vaccination; thus, hens were infected intramuscularly at 103, 105, and 107 CFU. For Experiment B, which was focused more on colonization and invasion, hens were infected orally with 5 × 103 CFU with 4 strains from different genomic clades. Samples from liver, spleen, ovarian pedicle, and paired ceca in both experiments were cultured 5, 6, 7, and 8 days postinfection. Eggshell microbiome taxa were assessed in Experiment B. Results indicated that dosages of 103 CFU in both experiments produced enough positive samples to be used within models. The intramuscular route resulted in approximately twice as many positive samples as the oral route. The kinetics of infection appeared to differ between low and high dosages suggestive of a J-curve response. These results could impact risk assessments if the hen at lay has a nonlinear response to infectious dose.
Collapse
Affiliation(s)
- Jean Guard
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605,
| | - Michael Rothrock
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| | - Deana Jones
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| | - Richard Gast
- United States Department of Agriculture, United States National Poultry Research Center, Athens, GA 30605
| |
Collapse
|
37
|
Association of Blood Cadmium with Cardiovascular Disease in Korea: From the Korea National Health and Nutrition Examination Survey 2008-2013 and 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176288. [PMID: 32872339 PMCID: PMC7503499 DOI: 10.3390/ijerph17176288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally, although the mortality rate has declined with improved technology and risk factor control. The incidence rate of stroke, one of the CVDs, is increasing in young adults, whereas it is decreasing in the elderly. The risk factors for CVD may differ between young adults and the elderly. Previous studies have suggested that cadmium was a potential CVD risk factor in the overall and middle-aged to elderly populations. We assessed the associations between cadmium and CVD events in the Korean population aged 20-59 years using the 2008-2013 and 2016 Korea National Health and Nutrition Examination Survey (KNHANES), a population-based cross-sectional study. Among 10,626 participants aged 20-59 years, those with high blood cadmium (BCd) level (>1.874 µg/L, 90th percentile) were higher associated with stroke and hypertension (stroke: odds ratio (OR), 2.39; 95% confidence interval (CI), 1.03-5.56; hypertension: OR, 1.46; 95% CI, 1.20-1.76). The strongest association between high blood cadmium concentrations and hypertension was among current smokers. Ischemic heart disease (IHD) was not associated with high blood cadmium level. These findings suggest that high blood cadmium levels may be associated with prevalent stroke and hypertension in the Korean population under 60 years of age.
Collapse
|
38
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|
39
|
Klapacz J, Gollapudi BB. Considerations for the Use of Mutation as a Regulatory Endpoint in Risk Assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:84-93. [PMID: 31301246 DOI: 10.1002/em.22318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Assessment of a chemical's potential to cause permanent changes in the genetic code has been a common practice in the industry and regulatory settings for decades. Furthermore, the genetic toxicity battery of tests has typically been employed during the earliest stages of the research and development programs of new product development. A positive outcome from such battery has a major impact on the chemical's utility, industrial hygiene, product stewardship practices, and product life cycle analysis, among many other decisions that need to be taken by the industry, even before the registration of a chemical is undertaken. Under the prevailing regulatory paradigm, the dichotomous (yes/no) evaluation of the chemical's genotoxic potential leads to a conservative, linear no-threshold (LNT) risk assessment, unless compelling and undeniable data to the contrary can be provided to satisfy regulators, typically in a number of different global jurisdictions. With the current advent of predictive methods, new testing paradigms, mode-of-action/adverse outcome pathways, and quantitative risk assessment approaches, various stakeholders are starting to employ these state-of-the-science methodologies to further the conversation on decision making and advance the regulatory paradigm beyond the dominant LNT status quo. This commentary describes these novel methodologies, relevant biological responses, and how these can affect internal and regulatory risk assessment approaches. Environ. Mol. Mutagen. 61:84-93, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Klapacz
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | | |
Collapse
|
40
|
Neumann S, Malik SS, Marcus-Samuels B, Eliseeva E, Jang D, Klubo-Gwiezdzinska J, Krieger CC, Gershengorn MC. Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by G s and G i/o Proteins. Mol Pharmacol 2020; 97:2-8. [PMID: 31704717 PMCID: PMC6864415 DOI: 10.1124/mol.119.117382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
The thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and β-arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an "inverted U-shaped dose-response curve" with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml). Since protein kinase A inhibition by H-89 and knockdown of β-arrestin 1 or β-arrestin 2 did not affect the decreased cAMP production at high TSH doses, we studied the roles of TSHR downregulation and of Gi/Go proteins. A high TSH dose (100 mU/ml) caused a 33% decrease in cell-surface TSHR. However, because inhibiting TSHR downregulation with combined expression of a dominant negative dynamin 1 and β-arrestin 2 knockdown had no effect, we concluded that downregulation is not involved in the biphasic cAMP response. Pertussis toxin, which inhibits activation of Gi/Go, abolished the biphasic response with no statistically significant difference in cAMP levels at 1 and 100 mU/ml TSH. Concordantly, co-knockdown of Gi/Go proteins increased cAMP levels stimulated by 100 mU/ml TSH from 55% to 73% of the peak level. These data show that biphasic regulation of cAMP production is mediated by Gs and Gi/Go at low and high TSH doses, respectively, which may represent a mechanism to prevent overstimulation in TSHR-expressing cells. SIGNIFICANCE STATEMENT: We demonstrate biphasic regulation of TSH-mediated cAMP production involving coupling of the TSH receptor (TSHR) to Gs at low TSH doses and to Gi/o at high TSH doses. We suggest that this biphasic cAMP response allows the TSHR to mediate responses at lower levels of TSH and that decreased cAMP production at high doses may represent a mechanism to prevent overstimulation of TSHR-expressing cells. This mechanism could prevent chronic stimulation of thyroid gland function.
Collapse
Affiliation(s)
- Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah S Malik
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daesong Jang
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joanna Klubo-Gwiezdzinska
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, Vasiliou V, Whirledge S. Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. ENVIRONMENT INTERNATIONAL 2019; 131:104969. [PMID: 31310931 PMCID: PMC6728168 DOI: 10.1016/j.envint.2019.104969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
Collapse
Affiliation(s)
- Olubusayo Alofe
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Edwina Kisanga
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Salmaan H Inayat-Hussain
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Masao Fukumura
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
42
|
Pesticides as a risk factor for metabolic syndrome: Population-based longitudinal study in Korea. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0047-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Runyan RB, Selmin OI, Smith SM, Freeman JL. Letter to the Editor. Birth Defects Res 2019; 111:1234-1236. [DOI: 10.1002/bdr2.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ornella I. Selmin
- Nutrition and Arizona Cancer CenterUniversity of Arizona Tucson Arizona
| | - Susan M. Smith
- Nutrition Research InstituteUniversity of North Carolina at Chapel Hill Kannapolis North Carolina
| | | |
Collapse
|
44
|
Rattan S, Beers HK, Kannan A, Ramakrishnan A, Brehm E, Bagchi I, Irudayaraj JMK, Flaws JA. Prenatal and ancestral exposure to di(2-ethylhexyl) phthalate alters gene expression and DNA methylation in mouse ovaries. Toxicol Appl Pharmacol 2019; 379:114629. [PMID: 31211961 DOI: 10.1016/j.taap.2019.114629] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer and known endocrine disrupting chemical, which causes transgenerational reproductive toxicity in female rodents. However, the mechanisms of action underlying the transgenerational toxicity of DEHP are not understood. Therefore, this study determined the effects of prenatal and ancestral DEHP exposure on various ovarian pathways in the F1, F2, and F3 generations of mice. Pregnant CD-1 dams were orally exposed to corn oil (vehicle control) or DEHP (20 μg/kg/day-750 mg/kg/day) from gestation day 10.5 until birth. At postnatal day 21 for all generations, ovaries were removed for gene expression analysis of various ovarian pathways and for 5-methyl cytosine (5-mC) quantification. In the F1 generation, prenatal DEHP exposure disrupted the expression of cell cycle regulators, the expression of peroxisome-proliferator activating receptors, and the percentage of 5-mC compared to control. In the F2 generation, exposure to DEHP decreased the expression of steroidogenic enzymes, apoptosis factors, and ten-eleven translocation compared to controls. It also dysregulated the expression of phosphoinositide 3-kinase (PI3K) factors. In the F3 generation, ancestral DEHP exposure decreased the expression of steroidogenic enzymes, PI3K factors, cell cycle regulators, apoptosis factors, Esr2, DNA methylation mediators, and the percentage of 5-mC compared to controls. Overall, the data show that prenatal and ancestral DEHP exposure greatly suppress gene expression of pathways required for folliculogenesis and steroidogenesis in the ovary in a transgenerational manner and that gene expression may be influenced by DNA methylation. These results provide insight into some of the mechanisms of DEHP-mediated toxicity in the ovary across generations.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Hannah K Beers
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Anujaianthi Ramakrishnan
- Department of Bioengineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Emily Brehm
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Indrani Bagchi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Joseph M K Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
45
|
Jones EM, Jajoo R, Cancilla D, Lubock NB, Wang J, Satyadi M, Chong R, de March C, Bloom JS, Matsunami H, Kosuri S. A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Syst 2019; 8:254-260.e6. [PMID: 30904378 PMCID: PMC6907015 DOI: 10.1016/j.cels.2019.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rishi Jajoo
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Cancilla
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Nathan B Lubock
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Megan Satyadi
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Claire de March
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Copper-induced non-monotonic dose response in Caco-2 cells. In Vitro Cell Dev Biol Anim 2019; 55:221-225. [DOI: 10.1007/s11626-019-00333-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
|
47
|
Mozgunov P, Jaki T. An information theoretic phase I-II design for molecularly targeted agents that does not require an assumption of monotonicity. J R Stat Soc Ser C Appl Stat 2019; 68:347-367. [PMID: 31007292 PMCID: PMC6472641 DOI: 10.1111/rssc.12293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many years phase I and phase II clinical trials have been conducted separately, but there has been a recent shift to combine these phases. Although a variety of phase I-II model-based designs for cytotoxic agents have been proposed in the literature, methods for molecularly targeted agents (TAs) are just starting to develop. The main challenge of the TA setting is the unknown dose-efficacy relationship that can have either an increasing, plateau or umbrella shape. To capture these, approaches with more parameters are needed or, alternatively, more orderings are required to account for the uncertainty in the dose-efficacy relationship. As a result, designs for more complex clinical trials, e.g. trials looking at schedules of a combination treatment involving TAs, have not been extensively studied yet. We propose a novel regimen finding design which is based on a derived efficacy-toxicity trade-off function. Because of its special properties, an accurate regimen selection can be achieved without any parametric or monotonicity assumptions. We illustrate how this design can be applied in the context of a complex combination-schedule clinical trial. We discuss practical and ethical issues such as coherence, delayed and missing efficacy responses, safety and futility constraints.
Collapse
|
48
|
Jeffries KM, Fangue NA, Connon RE. Multiple sub-lethal thresholds for cellular responses to thermal stressors in an estuarine fish. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:33-45. [DOI: 10.1016/j.cbpa.2018.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
|
49
|
De Almeida LKS, Pletschke BI, Frost CL. Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status. 3 Biotech 2018; 8:438. [PMID: 30306007 DOI: 10.1007/s13205-018-1464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
In vitro studies were conducted to determine the short-term cytotoxic and genotoxic effects of pure glyphosate and two glyphosate formulations (Roundup® and Wipeout®) at concentrations relevant to human exposure using whole blood (cytotoxicity) and various cancer cell lines (cytotoxicity and genotoxicity). Pure glyphosate (pure glyph) and Roundup® (Ro) showed similar non-monotonic toxicological profiles at low dose exposure (from 10 µg/ml), whereas Wipeout® (Wo) demonstrated a monotonic reduction in cell viability from a threshold concentration of 50 µg/ml, when tested in whole blood. We evaluated whether using various cancer cells (the estrogen-E2-responsive HEC1A, MCF7 and the estrogen-insensitive MDA-MB-231) exposed to moderate doses (75-500 µg/ml) would indicate varied toxicity and results indicated significant effects in the HEC1A cancer cells. A non-monotonic reduction in cell viability was observed in HEC1A exposed to pure glyph (75-500 µg/ml) and proliferative effects were observed after exposure to Wo (75, 125 and 250 µg/ml). Genotoxicity assessment (test concentration 500 µg/ml) demonstrated DNA damage in the HEC1A and MDA-MB-231 cells. Adjuvants and/or glyphosate impurities were potential contributing factors of toxicity based on the differential toxicities displayed by Ro and Wo in human whole blood and the HEC1A cells. This study contributes to the existing knowledge about in vitro exposure to moderate concentrations of glyphosate or glyphosate formulations at cytotoxic and genotoxic levels. In addition, a suggestion on the relevance of the estrogen receptor status of the cell lines used is provided, leading to the need to further investigate a potential endocrine disruptive role.
Collapse
Affiliation(s)
- L K S De Almeida
- 1Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - B I Pletschke
- 1Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - C L Frost
- 2Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031 South Africa
| |
Collapse
|
50
|
Zhang C, Gong P, Ye Y, Zhang L, Chen M, Hu Y, Gu A, Chen S, Wang Y. NF-κB-vimentin is involved in steroidogenesis stimulated by di- n-butyl phthalate in prepubertal female rats. Toxicol Res (Camb) 2018; 7:826-833. [PMID: 30310660 PMCID: PMC6116176 DOI: 10.1039/c8tx00035b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
This study was aimed at assessing steroidogenesis stimulated by low-dose exposure to DBP in prepubertal female rats. Animals were gavaged with DBP from postnatal day 21 to 33 at 0, 1, 10 and 500 mg kg-1 day-1. 500 mg kg-1 day-1 was selected since it was used in numerous studies and the inhibitory effect could be observed at this dosage. After treatment, hormone levels in serum were detected by enzyme-linked immunosorbent assay. mRNA and protein expressions of vimentin, nuclear factor-κB (NF-κB) p65 and phosphorylation of NF-κB p65 (p-p65) were assayed by quantitative real-time polymerase chain reaction (qRT-PCR) assay, western blotting, and immunohistochemistry, respectively. Uterus weights, progesterone levels in serum, and protein expression of vimentin and p-p65 in ovaries increased significantly after the animals were exposed to DBP at 1 mg kg-1 day-1. Additionally, steroidogenesis and vimentin expression stimulated by DBP were blocked when the activity of NF-κB p65 was inhibited by the NF-κB inhibitor, pyrrolidine dithiocarbamic acid (PDTC). These results strongly suggested that DBP may activate uterus development by up-regulated steroidogenesis through the NF-κB-vimentin signaling pathway.
Collapse
Affiliation(s)
- Chang Zhang
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Pan Gong
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yan Ye
- Donghai Town Community Health Service Center , Qidongcounty , Jiangsu province 226253 , PR China
| | - Lulu Zhang
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yanhui Hu
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing , 211166 , PR China . ; ; Tel: +86-25-8686-8390
- The Key Laboratory of Reproductive Medicine , Institute of Toxicology , Nanjing Medical University , Nanjing , 211166 , PR China
- Safety Assessment and Research Center for Drug , Pesticide and Veterinary Drug of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , PR China
| |
Collapse
|