1
|
Ghosh D, Bernstein JA. Health Effects of Trimellitic Anhydride Occupational Exposure: Insights from Animal Models and Immunosurveillance Programs. Clin Rev Allergy Immunol 2021; 59:61-77. [PMID: 32594360 DOI: 10.1007/s12016-020-08801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acid anhydrides are used by chemical industries as plasticizers. Trimellitic acid (TMA) is an acid anhydride widely utilized in factories to produce paints, varnishes, and plastics. In addition to causing direct irritant effects, TMA can augment antibody responses in exposed factory workers leading to occupational asthma. Therefore, industries producing TMA have implemented occupational immunosurveillance programs (OISPs) to ensure early diagnosis and medical management, involving exposure reduction/ complete removal of sensitized workers from exposure areas. Multiple animal models (mice strains, rat stains, guinea pig, swine) with different exposure patterns (dermal, nasal, vapor inhalation exposures for different time frames) have been described to elucidate the pathophysiology of TMA exposure. In TMA factories, in spite of implementing advanced environmental controls and personal protective measures to limit exposure, workers become TMA-sensitized. Animal models revealed sIgG, sIgE, sIgA, and sIgM along with pulmonary lesions, cellular infiltrates, alveolar hemorrhage, and pneumonitis associated with TMA exposure. Molecular studies showed involvement of specific functional gene clusters related to cytokine and chemokine responses, lung remodeling, and arginase function. However, thus far, there is no evidence supporting fetotoxic or carcinogenic effects of TMA. OISP data showed IgG and IgE responses in exposed factory workers. Interestingly, timelines for detectable sIgG response, in conjunction with its magnitude, have been shown to be a predictor for future sIgE response. OISPs have been very successful so far at creating a healthy and safe working environment for TMA-exposed factory workers. Graphical Abstract Trimellitic Acid (TMA), used to produce paints, varnishes and plastics, can cause irritant-mediated and immune-mediated occupational health problems. NCBI pubmed search indicated that multiple animal models (different animal types, with chronic vs. acute exposure type, using TMA dust/suspension applied via dermal or other routes) have been used by investigators to elucidate the pathobiology of TMA-exposure. Several outcomes have been measured including humoral, lung/ airway, lymph nodes and dermal/ ear thickening responses. Studies on human subjects have been conducted mostly as parts of Occupational immunosurveillance programs (OISPs) implemented to identify TMA-sensitized workers (using ImmunoCAP and Skin prick testing), monitoring them longitudinally and their medical management including exposure reduction/ complete removal of sensitized workers from exposure areas. Clinical management also includes identification of irritant-induced and/ or immune-mediated outcomes of TMA occupational exposure. Collectively, these studies have led to important insights into the pathomechanism of TMA-exposure and have been very successful at creating a safe working environment for TMA-exposed factory workers.
Collapse
Affiliation(s)
- Debajyoti Ghosh
- Division of Immunology, Allergy Section, Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Jonathan A Bernstein
- Division of Immunology, Allergy Section, Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
2
|
Donthi S, Neela VSK, Gaddam S, Mohammed HH, Ansari SS, Valluri VL, Sivasai KSR. Association of increased risk of asthma with elevated arginase & interleukin-13 levels in serum & rs2781666 G/T genotype of arginase I. Indian J Med Res 2019; 148:159-168. [PMID: 30381539 PMCID: PMC6206777 DOI: 10.4103/ijmr.ijmr_379_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives High expression of arginase gene and its elevated level in serum and bronchial lavage reported in animal models indicated an association with the pathogenesis of asthma. This study was undertaken to assess the serum arginase activity in symptomatic asthma patients and healthy controls and to correlate it with cytokine levels [interleukin (IL)-4 and IL-13] and arginase I (ARG1) gene polymorphism. Methods Asthma was confirmed by lung function test according to the GINA guidelines in patients attending Allergy and Pulmonology Clinic, Bhagwan Mahavir Hospital and Research Centre, Hyderabad, India, a tertiary care centre, during 2013-2015. Serum arginase was analyzed using a biochemical assay, total IgE and cytokine levels by enzyme-linked immunosorbent assay and genotyping of ARG1 for single-nucleotide polymorphisms (SNPs) rs2781666 and rs60389358 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results There was a significant two-fold elevation in the arginase activity in asthmatics as compared to healthy controls which correlated with disease severity. Non-atopic asthmatics showed elevated activity of arginase compared to atopics, indicating its possible role in intrinsic asthma. Levels of serum IL-13 and IL-4 were significantly high in asthma group which correlated with disease severity that was assessed by spirometry. A positive correlation was observed between arginase activity and IL-13 concentration. Genetic analysis of ARG1 SNPs revealed that rs2781666 G/T genotype, T allele and C-T haplotype (rs60389358 and rs2781666) were associated with susceptibility to asthma. Interpretation & conclusions This study indicated that high arginase activity and IL-13 concentration in the serum and ARG1 rs2781666 G/T genotype might increase the risk of asthma in susceptible population. Further studies need to be done with a large sample to confirm these findings.
Collapse
Affiliation(s)
- Suhasini Donthi
- Department of Biotechnology, Sreenidhi Institute of Science & Technology; Immunology & Molecular Biology Division, LEPRA Society Blue Peter Public Health & Research Centre, Hyderabad, India
| | - Venkata Sanjeev Kumar Neela
- Immunology & Molecular Biology Division, LEPRA Society Blue Peter Public Health & Research Centre, Hyderabad, India
| | - Sumanlatha Gaddam
- Allergy & Pulmonology Clinic, Bhagwan Mahavir Hospital & Research Centre, Hyderabad, India
| | | | - Soheb Sadath Ansari
- Allergy & Pulmonology Clinic, Bhagwan Mahavir Hospital & Research Centre, Hyderabad, India
| | - Vijaya Lakshmi Valluri
- Immunology & Molecular Biology Division, LEPRA Society Blue Peter Public Health & Research Centre, Hyderabad, India
| | - Krovvidi S R Sivasai
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Hyderabad, India
| |
Collapse
|
3
|
Lillegard KE, Loeks-Johnson AC, Opacich JW, Peterson JM, Bauer AJ, Elmquist BJ, Regal RR, Gilbert JS, Regal JF. Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats. J Pharmacol Exp Ther 2014; 351:344-51. [PMID: 25150279 PMCID: PMC4201271 DOI: 10.1124/jpet.114.218123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022] Open
Abstract
Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia-induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N(2)-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14-18. Both the C3aRA and C5aRA attenuated placental ischemia-induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia-induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia-induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia-induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti-inflammatory approach.
Collapse
Affiliation(s)
- Kathryn E Lillegard
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Alex C Loeks-Johnson
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jonathan W Opacich
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jenna M Peterson
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Ashley J Bauer
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Barbara J Elmquist
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Ronald R Regal
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth (K.E.L., A.C.L.-J., J.W.O., J.M.P., A.J.B., B.J.E., J.S.G., J.F.R.) and Department of Mathematics and Statistics, University of Minnesota Duluth (R.R.R.), Duluth, Minnesota
| |
Collapse
|
4
|
Regal JF, Lawrence BP, Johnson AC, Lojovich SJ, O’Reilly MA. Neonatal oxygen exposure alters airway hyper-responsiveness but not the response to allergen challenge in adult mice. Pediatr Allergy Immunol 2014; 25:180-6. [PMID: 24520985 PMCID: PMC3976144 DOI: 10.1111/pai.12206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infants born prematurely are often treated with supplemental oxygen, which can increase their risk for airway hyper-responsiveness (AHR), asthma, reduced lung function, and altered responses to respiratory viral infections later in childhood. Likewise, exposure of newborn mice to hyperoxia alters baseline pulmonary mechanics and the host response to influenza A virus infection in adult mice. Here, we use this mouse model to test the hypothesis that neonatal hyperoxia also promotes AHR and exacerbated allergen-induced symptoms in adult mice. METHODS Baseline lung mechanics and AHR measured by methacholine provocation were assessed in adult male and female mice exposed to room air or 100% oxygen (hyperoxia) between post-natal days 0-4. AHR and lung inflammation were evaluated after adult female mice were sensitized with ovalbumin (OVA) plus alum and challenged with aerosolized OVA. RESULTS Baseline lung compliance increased and resistance decreased in adult female, but not male, mice exposed to neonatal hyperoxia compared with siblings exposed to room air. Neonatal hyperoxia significantly enhanced methacholine-induced AHR in female mice, but did not affect allergen-induced AHR to methacholine or lung inflammation. CONCLUSION Increased incidence of AHR and asthma is reported in children born prematurely and exposed to supplemental oxygen. Our findings in adult female mice exposed to hyperoxia as neonates suggest that this AHR reported in children born prematurely may reflect non-atopic wheezing due to intrinsic structural changes in airway development.
Collapse
Affiliation(s)
- Jean F. Regal
- Department of Biomedical Sciences University of Minnesota Medical School, Duluth, Minnesota, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Alex C. Johnson
- Department of Biomedical Sciences University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Sarah J. Lojovich
- Department of Biomedical Sciences University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Michael A. O’Reilly
- Department of Pediatrics School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Regal JF, Greene AL, Regal RR. Mechanisms of occupational asthma: Not all allergens are equal. Environ Health Prev Med 2012; 12:165-71. [PMID: 21432060 DOI: 10.1007/bf02897986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/09/2007] [Indexed: 01/17/2023] Open
Abstract
Asthma is a heterogeneous lung disorder characterized by airway obstruction, inflammation and eosinophil infiltration into the lung. Both genetics and environmental factors influence the expression of asthma, and not all asthma is the result of a specific immune response to allergen. Numerous asthma phenotypes have been described, including occupational asthma, and therapeutic strategies for asthma control are similar regardless of phenotype. We hypothesized that mechanistic pathways leading to asthma symptoms in the effector phase of the disorder differ with the inciting allergen. Since route of allergen exposure can influence mechanistic pathways, mice were sensitized by identical routes with a high molecular weight occupational allergen ovalbumin and a low molecular weight occupational allergen trimellitic anhydride (TMA). Different statistical methods with varying selection criteria resulted in identification of similar candidate genes. Array data are intended to provide candidate genes for hypothesis generation and further experimentation. Continued studies focused on genes showing minimal changes in the TMA-induced model but with clear up-regulation in the ovalbumin model. Two of these genes, arginase 1 and eotaxin 1 are the focus of continuing investigations in mouse models of asthma regarding differences in mechanistic pathways depending on the allergen. Microarray data from the ovalbumin and TMA model of asthma were also compared to previous data usingAspergillus as allergen to identify putative asthma 'signature genes', i.e. genes up-regulated with all 3 allergens. Array studies provide candidate genes to identify common mechanistic pathways in the effector phase, as well as mechanistic pathways unique to individual allergens.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biochemistry & Molecular Biology, University of Minnesota Medical School Duluth, 1035 University Drive, 55812, Duluth, MN, USA,
| | | | | |
Collapse
|
6
|
Royce SG, Lim C, Muljadi RC, Samuel CS, Ververis K, Karagiannis TC, Giraud AS, Tang MLK. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease. Am J Respir Cell Mol Biol 2012; 48:135-44. [PMID: 22652198 DOI: 10.1165/rcmb.2011-0320oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma.
Collapse
Affiliation(s)
- Simon G Royce
- Department of Allergy and Immune Disorders, Murdoch Children's Research Institute Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Royce SG, Lim C, Muljadi RC, Tang MLK. Trefoil factor 2 regulates airway remodeling in animal models of asthma. J Asthma 2011; 48:653-9. [PMID: 21793772 DOI: 10.3109/02770903.2011.599906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Epithelial denudation and metaplasia are important in the pathogenesis of airway remodeling and asthma. Trefoil factor 2 (TFF2) is a member of a family of peptides involved in protection and healing of the gastrointestinal epithelium but which are also secreted in the airway mucosa. METHODS We investigated the role of TFF2 in airway remodeling by histological and morphometric analysis of lung tissue from TFF2-deficient mice subjected to two relevant animal models of asthma: an ovalbumin model of allergic airways disease and an Aspergillus fumigatus antigen sensitization model. RESULTS In the ovalbumin model TFF2-deficient mice had increased goblet cell hyperplasia, but not epithelial thickening compared to wild-type (WT) counterparts. In the Aspergillus model TFF2-deficient mice also had increased goblet cell hyperplasia, and epithelial thickness was also increased in the Aspergillus-sensitized mice compared to WT controls. TFF2 deficiency was also associated with increased subepithelial collagen layer thickness. DISCUSSION The current study demonstrates a role of TFF2 in airway remodeling in mouse models of airway disease. Further studies into the mechanisms of action of TFF2 and its role in asthma are warranted.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | |
Collapse
|
8
|
Ghosh S, Erzurum SC. Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta Gen Subj 2011; 1810:1008-16. [PMID: 21718755 DOI: 10.1016/j.bbagen.2011.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory disease is typically characterized by bronchoconstriction and airway hyper-reactivity. SCOPE OF REVIEW A wealth of studies applying chemistry, molecular and cell biology to animal model systems and human asthma over the last decade has revealed that asthma is associated with increased synthesis of the gaseous molecule nitric oxide (NO). MAJOR CONCLUSION The high NO levels in the oxidative environment of the asthmatic airway lead to greater formation of reactive nitrogen species (RNS) and subsequent oxidation and nitration of proteins, which adversely affect protein functions that are biologically relevant to chronic inflammation. In contrast to the high levels of NO and nitrated products, there are lower levels of beneficial S-nitrosothiols (RSNO), which mediate bronchodilation, due to greater enzymatic catabolism of RSNO in the asthmatic airways. GENERAL SIGNIFICANCE This review discusses the rapidly accruing data linking metabolic products of NO as critical determinants in the chronic inflammation and airway reactivity of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
9
|
Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011; 2011:736319. [PMID: 21747870 PMCID: PMC3124954 DOI: 10.1155/2011/736319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO) homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS), thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Renée C. Benson
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Karen A. Hardy
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Claudia R. Morris
- Department of Emergency Medicine, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| |
Collapse
|
10
|
North ML, Amatullah H, Khanna N, Urch B, Grasemann H, Silverman F, Scott JA. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma. Respir Res 2011; 12:19. [PMID: 21291525 PMCID: PMC3037317 DOI: 10.1186/1465-9921-12-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.
Collapse
Affiliation(s)
- Michelle L North
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010; 49:307-16. [PMID: 20388537 PMCID: PMC2900489 DOI: 10.1016/j.freeradbiomed.2010.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where it is being produced. The organ where nitric oxide is produced is relevant, and within the organ, which types of cells are actually contributing to this production seem to play a major determinant of its effect. Subcellular compartmentalization of specific nitric oxide synthase enzymes has been shown to play a major role in health and disease. Pathophysiological conditions affect the cellular expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this study, we describe the compartmentalization of nitric oxide in organs, cells, and subcellular organelles and how its localization relates to several relevant clinical conditions. Understanding the complexity of the compartmentalization of nitric oxide production and the implications of this compartmentalization in terms of cellular targets and downstream effects will eventually contribute toward the development of better strategies for treating or preventing pathological events associated with the increase, inhibition, or mislocalization of nitric oxide production.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F. 11320
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
- Corresponding author: Dr. Cecilia Giulivi, Department of Molecular Biosciences, 1120 Haring Hall, University of California, Davis, CA. 95616, Tel. 530 754 8603, Fax. 530 754 9342,
| |
Collapse
|
12
|
Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenet Genomics 2010; 20:179-86. [PMID: 20124949 DOI: 10.1097/fpc.0b013e328336c7fd] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Arginase probably plays an important role in asthma development, severity and progression. Polymorphisms in arginase 1 and arginase 2 genes have been associated with childhood asthma and FEV1 reversibility to beta2 agonists. OBJECTIVES We investigated the association between arginase 1 and arginase 2 polymorphisms and adult asthma, asthma severity and treatment response in a longitudinal cohort of 200 asthma patients. METHODS Patients were studied during 1962-1975 and reexamined during 1990-1999, together with their families. Longitudinal data on lung function and treatment were extracted from medical records. Associations between haplotype-tagging polymorphisms in arginase 1 (n=3) and arginase 2 (n=8) and asthma, asthma severity, acute response to bronchodilators and chronic response to inhaled corticosteroids were analyzed. MEASUREMENTS AND MAIN RESULTS Two polymorphisms in arginase 2 (rs17249437 and rs3742879) were associated with asthma and with more severe airway obstruction. Increased airway hyperresponsiveness and lower beta2 agonist reversibility, but not anticholinergic reversibility, were associated with both arginase 1 and arginase 2. Inhaled corticosteroids slowed down the annual FEV1 decline, which was significantly less effective in homozygote carriers of the C-allele of the arginase 1 polymorphism, rs2781667. CONCLUSION We show that previously reported associations between arginase polymorphisms and childhood asthma are also present in adult asthma and the previously found associations with lower reversibility are specific for beta2 agonists. Furthermore, we identified associations of arginase 1 and arginase 2 genes with asthma severity, as reflected by a lower lung function, more severe airway hyperresponsiveness, and less long-term response to inhaled corticosteroids. Studies on the functionality of the polymorphisms are warranted to further unravel the complex mechanisms underlying these observations.
Collapse
|
13
|
Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 2009; 158:652-64. [PMID: 19703164 DOI: 10.1111/j.1476-5381.2009.00374.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase activity in the airways induces reduced bioavailability of L-arginine to constitutive (cNOS) and inducible (iNOS) nitric oxide synthases, causing a deficiency of bronchodilating and anti-inflammatory NO, as well as increased formation of peroxynitrite, which may be involved in allergen-induced airways obstruction, AHR and inflammation. In addition, both via reduced NO production and enhanced synthesis of L-ornithine, increased arginase activity may be involved in airway remodelling by promoting cell proliferation and collagen deposition in the airway wall. Therefore, arginase inhibitors may have therapeutic potential in the treatment of acute and chronic asthma. This review focuses on the pathophysiological role of arginase in allergic asthma and the emerging effectiveness of arginase inhibitors in the treatment of this disease.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
14
|
Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 2009; 106:14978-83. [PMID: 19706447 DOI: 10.1073/pnas.0809784106] [Citation(s) in RCA: 497] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells of the monocyte-macrophage lineage play a central role in the orchestration and resolution of inflammation. Plasticity is a hallmark of mononuclear phagocytes, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic or M1 and alternative or M2. NF-kappaB is a key regulator of inflammation and resolution, and its activation is subject to multiple levels of regulation, including inhibitory, which finely tune macrophage functions. Here we identify the p50 subunit of NF-kappaB as a key regulator of M2-driven inflammatory reactions in vitro and in vivo. p50 NF-kappaB inhibits NF-kappaB-driven, M1-polarizing, IFN-beta production. Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and defective capacity to mount allergy and helminth-driven M2-polarized inflammatory reactions. Thus, NF-kappaB p50 is a key component in the orchestration of M2-driven inflammatory reactions.
Collapse
|
15
|
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 296:L911-20. [PMID: 19286931 DOI: 10.1152/ajplung.00025.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
l-Arginine metabolism by the arginase and nitric oxide (NO) synthase (NOS) families of enzymes is important in NO production, and imbalances between these pathways contribute to airway hyperresponsiveness (AHR) in asthma. To investigate the role of arginase isozymes (ARG1 and ARG2) in AHR, we determined the protein expression of ARG1, ARG2, the NOS isozymes, and other proteins involved in l-arginine metabolism in lung tissues from asthma patients and in acute (3-wk) and chronic (12-wk) murine models of ovalbumin-induced airway inflammation. Expression of ARG1 was increased in human asthma, whereas ARG2, NOS isoforms, and the other l-arginine-related proteins (i.e., cationic amino acid transporters 1 and 2, agmatinase, and ornithine decarboxylase) were unchanged. In the acute murine model of allergic airway inflammation, augmentation of ARG1 expression was similarly the most dramatic change in protein expression. However, ARG2, NOS1, NOS2, and agmatinase were also increased, whereas NOS3 expression was decreased. Arginase inhibition in vivo with nebulized S-(2-boronoethyl)-l-cysteine attenuated the methacholine responsiveness of the central airways in mice from the acute model. Further investigations in the chronic murine model revealed an expression profile that more closely paralleled the human asthma samples: only ARG1 expression was significantly increased. Interestingly, in the chronic mouse model, which generates a remodeling phenotype, arginase inhibition attenuated methacholine responsiveness of the central and peripheral airways. The similarity in arginase expression between human asthma and the chronic model and the attenuation of AHR after in vivo treatment with an arginase inhibitor suggest the potential for therapeutic modification of arginase activity in asthma.
Collapse
Affiliation(s)
- Michelle L North
- Institutes of Medical Sciences, Dalla Lana School of Public Health, Faculty of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Henjakovic M, Martin C, Hoymann HG, Sewald K, Ressmeyer AR, Dassow C, Pohlmann G, Krug N, Uhlig S, Braun A. Ex Vivo Lung Function Measurements in Precision-Cut Lung Slices (PCLS) from Chemical Allergen–Sensitized Mice Represent a Suitable Alternative to In Vivo Studies. Toxicol Sci 2008; 106:444-53. [DOI: 10.1093/toxsci/kfn178] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
17
|
Lara A, Khatri SB, Wang Z, Comhair SAA, Xu W, Dweik RA, Bodine M, Levison BS, Hammel J, Bleecker E, Busse W, Calhoun WJ, Castro M, Chung KF, Curran-Everett D, Gaston B, Israel E, Jarjour N, Moore W, Peters SP, Teague WG, Wenzel S, Hazen SL, Erzurum SC. Alterations of the arginine metabolome in asthma. Am J Respir Crit Care Med 2008; 178:673-81. [PMID: 18635886 DOI: 10.1164/rccm.200710-1542oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE As the sole nitrogen donor in nitric oxide (NO) synthesis and key intermediate in the urea cycle, arginine and its metabolic pathways are integrally linked to cellular respiration, metabolism, and inflammation. OBJECTIVES We hypothesized that arginine (Arg) bioavailability would be associated with airflow abnormalities and inflammation in subjects with asthma, and would be informative for asthma severity. METHODS Arg bioavailability was assessed in subjects with severe and nonsevere asthma and healthy control subjects by determination of plasma Arg relative to its metabolic products, ornithine and citrulline, and relative to methylarginine inhibitors of NO synthases, and by serum arginase activity. Inflammatory parameters, including fraction of exhaled NO (Fe(NO)), IgE, skin test positivity to allergens, bronchoalveolar lavage, and blood eosinophils, were also evaluated. MEASUREMENTS AND MAIN RESULTS Subjects with asthma had greater Arg bioavailability, but also increased Arg catabolism compared with healthy control subjects, as evidenced by higher levels of Fe(NO) and serum arginase activity. However, Arg bioavailability was positively associated with Fe(NO) only in healthy control subjects; Arg bioavailability was unrelated to Fe(NO) or other inflammatory parameters in severe or nonsevere asthma. Inflammatory parameters were related to airflow obstruction and reactivity in nonsevere asthma, but not in severe asthma. Conversely, Arg bioavailability was related to airflow obstruction in severe asthma, but not in nonsevere asthma. Modeling confirmed that measures of Arg bioavailabilty predict airflow obstruction only in severe asthma. CONCLUSIONS Unlike Fe(NO), Arg bioavailability is not a surrogate measure of inflammation; however, Arg bioavailability is strongly associated with airflow abnormalities in severe asthma.
Collapse
Affiliation(s)
- Abigail Lara
- Department of Pathobiology, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maarsingh H, Zuidhof AB, Bos IST, van Duin M, Boucher JL, Zaagsma J, Meurs H. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am J Respir Crit Care Med 2008; 178:565-73. [PMID: 18583571 DOI: 10.1164/rccm.200710-1588oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction. OBJECTIVES Using the same animal model, we investigated the acute effects of the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) and of L-arginine on AHR after the early and late reaction in vivo. In addition, we investigated the protection of allergen-induced asthmatic reactions, AHR, and airway inflammation by pretreatment with the drug. METHODS Airway responsiveness to inhaled histamine was measured in permanently instrumented, freely moving guinea pigs sensitized to ovalbumin at 24 hours before allergen challenge and after the allergen-induced early and late asthmatic reactions by assessing histamine PC(100) (provocative concentration causing a 100% increase of pleural pressure) values. MEASUREMENTS AND MAIN RESULTS Inhaled ABH acutely reversed AHR to histamine after the early reaction from 4.77 +/- 0.56-fold to 2.04 +/- 0.34-fold (P < 0.001), and a tendency to inhibition was observed after the late reaction (from 1.95 +/- 0.56-fold to 1.56 +/- 0.47-fold, P < 0.10). Quantitatively similar results were obtained with inhaled l-arginine. Remarkably, after pretreatment with ABH a 33-fold higher dose of allergen was needed to induce airway obstruction (P < 0.01). Consequently, ABH inhalation 0.5 hour before and 8 hours after allergen challenge protected against the allergen-induced early and late asthmatic reactions, AHR and inflammatory cell infiltration. CONCLUSIONS Inhalation of ABH or l-arginine acutely reverses allergen-induced AHR after the early and late asthmatic reaction, presumably by attenuating arginase-induced substrate deficiency to NO synthase in the airways. Moreover, ABH considerably reduces the airway sensitivity to inhaled allergen and protects against allergen-induced bronchial obstructive reactions, AHR, and airway inflammation. This is the first in vivo study indicating that arginase inhibitors may have therapeutic potential in allergic asthma.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Center for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Arginase and pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 378:171-84. [PMID: 18437360 PMCID: PMC2493601 DOI: 10.1007/s00210-008-0286-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/17/2008] [Indexed: 10/31/2022]
Abstract
Recent studies have indicated that arginase, which converts L-arginine into L-ornithine and urea, may play an important role in the pathogenesis of various pulmonary disorders. In asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis, increased arginase activity in the airways may contribute to obstruction and hyperresponsiveness of the airways by inducing a reduction in the production of bronchodilatory nitric oxide (NO) that results from its competition with constitutive (cNOS) and inducible (iNOS) NO synthases for their common substrate. In addition, reduced L-arginine availability to iNOS induced by arginase may result in the synthesis of both NO and the superoxide anion by this enzyme, thereby enhancing the production of peroxynitrite, which has procontractile and pro-inflammatory actions. Increased synthesis of L-ornithine by arginase may also contribute to airway remodelling in these diseases. L-Ornithine is a precursor of polyamines and L-proline, and these metabolic products may promote cell proliferation and collagen production, respectively. Increased arginase activity may also be involved in other fibrotic disorders of the lung, including idiopathic pulmonary fibrosis. Finally, through its action of inducing reduced levels of vasodilating NO, increased arginase activity has been associated with primary and secondary forms of pulmonary hypertension. Drugs targeting the arginase pathway could have therapeutic potential in these diseases.
Collapse
|
20
|
Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur J Pharmacol 2008; 585:375-84. [PMID: 18410920 DOI: 10.1016/j.ejphar.2008.02.096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/16/2022]
Abstract
Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in l-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased formation of peroxynitrite, polyamines and l-proline. Intracellular l-arginine levels are regulated by at least three distinct mechanisms: (i) cellular uptake by cationic amino acid (CAT) transporters, (ii) metabolism by NO-synthase (NOS) and arginase, and (iii) recycling from l-citrulline. Ex vivo studies using animal models of allergic asthma have indicated that attenuated l-arginine bioavailability to NOS causes deficiency of bronchodilating NO and increased production of procontractile peroxynitrite, which importantly contribute to allergen-induced airway hyperresponsiveness after the early and late asthmatic reaction, respectively. Decreased cellular uptake of l-arginine, due to (eosinophil-derived) polycations inhibiting CATs, as well as increased consumption by increased arginase activity are major causes of substrate limitation to NOS. Increasing substrate availability to NOS by administration of l-arginine, l-citrulline, the polycation scavenger heparin, or an arginase inhibitor alleviates allergen-induced airway hyperresponsiveness by restoring the production of bronchodilating NO. In addition, reduced l-arginine levels may contribute to the airway inflammation associated with the development of airway hyperresponsiveness, which similarly may involve decreased NO synthesis and increased peroxynitrite formation. Increased arginase activity could also contribute to airway remodelling and persistent airway hyperresponsiveness in chronic asthma via increased synthesis of l-ornithine, the precursor of polyamines and l-proline. Drugs that increase the bioavailability of l-arginine in the airways - particularly arginase inhibitors - may have therapeutic potential in allergic asthma.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
21
|
Takemoto K, Ogino K, Shibamori M, Gondo T, Hitomi Y, Takigawa T, Wang DH, Takaki J, Ichimura H, Fujikura Y, Ishiyama H. Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1419-26. [PMID: 17890324 DOI: 10.1152/ajplung.00418.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the expression of arginase and their association with nitrosative stress were investigated using an asthmatic model previously established in NC/Nga mice with mite extract. Mite crude extract (100 microg/day) from Dermatophagoides farinae was administered intranasally for 5 consecutive days (day 0-4), and a single challenge was performed on day 11. On day 12, upregulation of the mRNA expression of inducible types of nitric oxide synthase (iNOS) and increases in immunohistochemical staining for iNOS and nitrotyrosine were observed. However, the level of nitrite + nitrate was unchanged. An increase in enzymatic activity, upregulation of mRNA expression, and immunostaining for arginase I was detected in the lung tissue and serum. Moreover, increases in both arginase I and II were revealed by immunoblotting. Goblet cell hyperplasia in bronchial epithelial cells and increasing collagen synthesis around the bronchus were also observed. These results suggested that an increase in arginase may lead to decreased availability of arginine for nitric oxide synthase and may contribute to the remodeling of the lung.
Collapse
Affiliation(s)
- Kei Takemoto
- Shin Nippon Biomedical Laboratories, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nikolaidis NM, Wang TC, Hogan SP, Rothenberg ME. Allergen induced TFF2 is expressed by mucus-producing airway epithelial cells but is not a major regulator of inflammatory responses in the murine lung. Exp Lung Res 2007; 32:483-97. [PMID: 17169855 DOI: 10.1080/01902140601059547] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Asthma is a complex pulmonary disorder characterized by reversible airflow obstruction, airway hyperresponsiveness, mucus cell metaplasia, and inflammation. Employing animal models of pulmonary inflammation induced by different allergens and Th2 cytokines, the authors have previously described the up-regulation of trefoil factor 2 (TFF2) in the lung. Given the known biological role of trefoil factors in epithelial restitution, it has been postulated that allergen-induced TFF2 might have an important role in asthmatic responses. Here the authors show that TFF2 is induced early and maintained for 2 weeks following allergen challenge in the mouse lung. In situ mRNA hybridization demonstrated expression of TFF2 primarily in a subset of bronchial epithelial cells and TFF2 immunohistochemistry identified expression in alcian blue-positive bronchial epithelial cells. TFF2 gene-deleted mice inoculated with allergen displayed a 10-fold increase in total cellularity compared with saline controls. Although this response was modestly attenuated compared to wild type controls, the loss of TFF2 did not affect gross levels of tissue inflammation. Furthermore, the loss of TFF2 did not affect induction or resolution of mucus cell metaplasia as measured by periodic acid-Schiff (PAS) or alcian blue staining. Thus, TFF2 is an allergen-induced gene, which is expressed in mucus-positive airways, but is not a major contributor to allergen-induced goblet cell metaplasia, mucus production, or inflammatory responses in the lung.
Collapse
Affiliation(s)
- Nikolaos M Nikolaidis
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
23
|
Kouznetsova I, Chwieralski CE, Bälder R, Hinz M, Braun A, Krug N, Hoffmann W. Induced trefoil factor family 1 expression by trans-differentiating Clara cells in a murine asthma model. Am J Respir Cell Mol Biol 2006; 36:286-95. [PMID: 16990615 DOI: 10.1165/rcmb.2006-0008oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that is accompanied by goblet cell metaplasia and mucus hypersecretion. Trefoil factor family (TFF) peptides represent major secretory products of the respiratory tract and are synthesized together with mucins. In the murine lung, TFF2 is mainly expressed, whereas TFF1 transcripts represent only a minor species. TFF peptides are well known for their motogenic and anti-apoptotic effects, and they modulate the inflammatory response of bronchial epithelial cells. Here, an established mouse model of asthma was investigated (i.e., exposure to Aspergillus fumigatus [AF] antigens). RT-PCR analysis of lung tissue showed elevated levels particularly of TFF1 transcripts in AF-sensitized/challenged animals. In contrast, transcripts encoding Clara cell secretory protein (CCSP/CC10) were strongly diminished in these animals. For comparison, the expression of the goblet cell secretory granule marker mCLCA3/Gob-5, the mucins Muc1-Muc6 and Muc19, and the secretoglobins ScgB3A1 and ScgB3A2, as well as the mammalian ependymin-related gene MERP2, were monitored. Immunohistochemistry localized TFF1 mainly in cells with a mixed phenotype (e.g., TFF1-positive cells stain with the lectin wheat germ agglutinin (WGA), which recognizes mucins characteristic of goblet cells). In addition, these cells express CCSP/CC10, a Clara cell marker. When compared with mucins or CCSP/CC10, TFF1 was stored in a different population of secretory granules localized at the more basolateral portion of these cells. Thus, the results presented indicate for the first time that allergen exposure leads to the trans-differentiation of Clara cells toward a TFF1-expressing mucous phenotype.
Collapse
Affiliation(s)
- Irina Kouznetsova
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg; and Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Luebke RW, Holsapple MP, Ladics GS, Luster MI, Selgrade M, Smialowicz RJ, Woolhiser MR, Germolec DR. Immunotoxicogenomics: the potential of genomics technology in the immunotoxicity risk assessment process. Toxicol Sci 2006; 94:22-7. [PMID: 16882865 PMCID: PMC1847338 DOI: 10.1093/toxsci/kfl074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evaluation of xenobiotic-induced changes in gene expression as a method to identify and classify potential toxicants is being pursued by industry and regulatory agencies worldwide. A workshop was held at the Research Triangle Park campus of the Environmental Protection Agency to discuss the current state-of-the-science of "immunotoxicogenomics" and to explore the potential role of genomics techniques for immunotoxicity testing. The genesis of the workshop was the current lack of widely accepted triggering criteria for Tier 1 immunotoxicity testing in the context of routine toxicity testing data, the realization that traditional screening methods would require an inordinate number of animals and are inadequate to handle the number of chemicals that may need to be screened (e.g., high production volume compounds) and the absence of an organized effort to address the state-of-the-science of toxicogenomics in the identification of immunotoxic compounds. The major focus of the meeting was on the theoretical and practical utility of genomics techniques to (1) replace or supplement current immunotoxicity screening procedures, (2) provide insight into potential modes or mechanisms of action, and (3) provide data suitable for immunotoxicity hazard identification or risk assessment. The latter goal is of considerable interest to a variety of stakeholders as a means to reduce animal use and to decrease the cost of conducting and interpreting standard toxicity tests. A number of data gaps were identified that included a lack of dose response and kinetic data for known immunotoxic compounds and a general lack of data correlating genomic alterations to functional changes observed in vivo. Participants concluded that a genomics approach to screen chemicals for immunotoxic potential or to generate data useful to risk assessors holds promise but that routine use of these methods is years in the future. However, recent progress in molecular immunology has made mode and mechanism of action studies much more practical. Furthermore, a variety of published immunotoxicity studies suggest that microarray analysis is already a practical means to explore pathway-level changes that lead to altered immune function. To help move the science of immunotoxicogenomics forward, a partnership of industry, academia, and government was suggested to address data gaps, validation, quality assurance, and protocol development.
Collapse
Affiliation(s)
- Robert W Luebke
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Valstar DL, Schijf MA, Arts JHE, Kuper CF, Nijkamp FP, Storm G, Bloksma N, Henricks PAJ. Alveolar macrophages suppress non-specific inflammation caused by inhalation challenge with trimellitic anhydride conjugated to albumin. Arch Toxicol 2006; 80:561-71. [PMID: 16485118 DOI: 10.1007/s00204-006-0081-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter these inhaled compounds and were previously shown to affect TMA-induced asthma-like symptoms in the Brown Norway rat (Valstar et al., Toxicol. Appl. Pharmacology 211:20-29, 2006). TMA is a hapten that will bind to endogenous proteins upon entrance of the body. Therefore, in the present study we determined if TMA conjugated to albumin is able to induce asthma-like symptoms and if these are affected by AM depletion. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day prior to the inhalation challenge the rats were treated intratracheally with either empty liposomes or liposomes containing clodronate (dichloromethylene diphosphonate) to specifically deplete the lungs of AMs. On day 21, all groups of rats were challenged by inhalation of TMA-BSA. Breathing frequency, tidal volume, and minute ventilation were measured before, during, within 1 h, and 24 h after challenge and the gross respiratory rate score was determined during challenge. Total and TMA-specific IgE levels were determined in serum and lung lavage fluid and parameters of inflammation and tissue damage were assessed in lung lavage fluid and/or lung tissue 24 h after challenge. Sensitization with TMA had no effect on the lung function before challenge, but TMA-BSA challenge resulted in an early asthmatic response as compared to the non-sensitized rats, irrespective of AM depletion. AM depletion had no effect on the sensitization-induced serum and lung lavage fluid IgE levels. TMA-BSA inhalation did not induce airway inflammation and tissue damage irrespective of sensitization, unless AM were depleted. Data indicate that AMs inhibit immunologically non-specific damage and inflammatory cell influx into the lungs as caused by TMA-BSA inhalation. Since effects of inhalation challenge with TMA-BSA are partly different from those of TMA, challenge with the latter is to be preferred for hazard identification.
Collapse
Affiliation(s)
- Dingena L Valstar
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|