1
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025; 112:1-19. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
2
|
Da Costa RT, Nichenko A, Perez MM, Tokarska-Schlattner M, Kavehmoghaddam S, Hambardikar V, Scoma ER, Seifert EL, Schlattner U, Drake JC, Solesio ME. Mammalian mitochondrial inorganic polyphosphate (polyP) and cell signaling: Crosstalk between polyP and the activity of AMPK. Mol Metab 2025; 91:102077. [PMID: 39617267 PMCID: PMC11696858 DOI: 10.1016/j.molmet.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Inorganic polyphosphate (polyP) is an evolutionary and ancient polymer composed by orthophosphate units linked by phosphoanhydride bonds. In mammalian cells, polyP shows a high localization in mammalian mitochondria, and its regulatory role in various aspects of bioenergetics has already been demonstrated, via molecular mechanism(s) yet to be fully elucidated. In recent years, a role for polyP in signal transduction, from brain physiology to the bloodstream, has also emerged. OBJECTIVE In this manuscript, we explored the intriguing possibility that the effects of polyP on signal transduction could be mechanistically linked to those exerted on bioenergetics. METHODS To conduct our studies, we used a combination of cellular and animal models. RESULTS Our findings demonstrate for the first time the intimate crosstalk between the levels of polyP and the activation status of the AMPK signaling pathway, via a mechanism involving free phosphate homeostasis. AMPK is a key player in mammalian cell signaling, and a crucial regulator of cellular and mitochondrial homeostasis. Our results show that the depletion of mitochondrial polyP in mammalian cells downregulates the activity of AMPK. Moreover, increased levels of polyP activate AMPK. Accordingly, the genetic downregulation of AMPKF0611 impairs polyP levels in both SH-SY5Y cells and in the brains of female mice. CONCLUSIONS This manuscript sheds new light on the regulation of AMPK and positions polyP as a potent regulator of mammalian cell physiology beyond mere bioenergetics, paving the road for using its metabolism as an innovative pharmacological target in pathologies characterized by dysregulated bioenergetics.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Anna Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matheus M Perez
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | | | - Sheida Kavehmoghaddam
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Vedangi Hambardikar
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Erin L Seifert
- MitoCare and Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Maria E Solesio
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
3
|
Cui C, Chen S, Mi B, Qi Y, Jiao C, Zhang M, Dai Y, Wang X, Hu J, Shi B, Wang J, Zhao Z, Liu X, Zhang X. Transcriptomic and Metabolomic Insights into Age-Related Changes in Lung Tissue of Yaks Under Highland Stress. Int J Mol Sci 2024; 25:12071. [PMID: 39596139 PMCID: PMC11593661 DOI: 10.3390/ijms252212071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
As an indigenous species on the Tibetan Plateau, the yak is well adapted to the plateau hypoxic environment. The high-altitude hypoxia adaptation of the yak requires the adaptive reshaping of multiple tissues and organs, especially the lungs. To reveal the adaptive development of yak lungs under hypoxic stress at the tissue and molecular levels, we conducted histomorphological observations as well as transcriptomic and metabolomic studies of yak lungs at three ages (0.5, 2.5, and 4.5 years). The results showed that the lung tissue developed significantly with age. The mean alveolar area was higher (p < 0.01) in 4.5 and 2.5-year-old yaks than in 0.5-year-old yaks. The percentage of elastic fibers, micro-arterial wall thickness, and micro-arterial area showed an increasing trend (p < 0.01) from 0.5-year-old yaks to 2.5-year-old yaks and then to 4.5-year-old yaks. In addition, some critical differentially expressed genes related to angiogenesis (MYC, EPHA2, TNF), fiber formation (EREG), smooth muscle proliferation (HBEGF), erythropoiesis (SOCS3), and hypoxia response (ZFP36) were identified. Some metabolites associated with these genes were also found simultaneously. These findings provide a deeper understanding of the molecular strategies underlying this species' extraordinary ability to survive normally in low-oxygen environments. In conclusion, the lungs of yaks undergo continuous adaptive development under hypoxic stress, and these findings are crucial for understanding the molecular mechanisms by which native species of the Tibetan Plateau survive in harsh environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.C.); (S.C.); (B.M.); (Y.Q.); (C.J.); (M.Z.); (Y.D.); (X.W.); (J.W.); (Z.Z.); (X.L.); (X.Z.)
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.C.); (S.C.); (B.M.); (Y.Q.); (C.J.); (M.Z.); (Y.D.); (X.W.); (J.W.); (Z.Z.); (X.L.); (X.Z.)
| | | | | | | | | |
Collapse
|
4
|
Shakiba M, Pourmadadi M, Hosseini SM, Bigham A, Rahmani E, Sheikhi M, Pahnavar Z, Foroozandeh A, Tajiki A, Jouybar S, Abdouss M. A bi-functional nanofibrous composite membrane for wound healing applications. Arch Pharm (Weinheim) 2024; 357:e2400001. [PMID: 38747690 DOI: 10.1002/ardp.202400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyede M Hosseini
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
6
|
Zhong W, He J, Huang W, Yin G, Liu G, Cao Y, Miao J. Effect of the phosphorylation structure in casein phosphopeptides on the proliferation, differentiation, and mineralization of osteoblasts and its mechanism. Food Funct 2023; 14:10107-10118. [PMID: 37874279 DOI: 10.1039/d3fo03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 μg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 μg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jian He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Guangling Yin
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Bromet BA, Blackwell NP, Abokefa N, Freudenberger P, Blatt RL, Brow RK, Semon JA. The angiogenic potential of pH-neutral borophosphate bioactive glasses. J Biomed Mater Res A 2023; 111:1554-1564. [PMID: 37129409 DOI: 10.1002/jbm.a.37553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Borate bioactive glasses have gained attention in recent years due to their therapeutic and regenerative effects in vivo. However, borate bioactive glasses release alkaline ions, increasing the local pH and creating a toxic environment for cell culture studies. A partial compositional substitution of phosphate for borate can create a pH-neutral glass that does not significantly affect the local pH while still releasing therapeutic ions. In the present study, a series of Na-Ca-borophosphate bioactive glasses with different borate-to-phosphate ratios was evaluated in vitro and in vivo for cytotoxicity and angiogenic effects. Compared to more basic borate glasses, the pH-neutral glasses supported endothelial cell migration and stimulated greater blood vessel formation in a chick chorioallantoic membrane model. The results from this study indicate that these pH-neutral glasses are promising angiogenic biomaterials for use in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Nathaniel P Blackwell
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Nada Abokefa
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Parker Freudenberger
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Rebekah L Blatt
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Richard K Brow
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
8
|
Shanti A, Al Adem K, Stefanini C, Lee S. Hydrogen phosphate selectively induces MDA MB 231 triple negative breast cancer cell death in vitro. Sci Rep 2022; 12:5333. [PMID: 35351930 PMCID: PMC8964734 DOI: 10.1038/s41598-022-09299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphate ions are the most abundant anions inside the cells, and they are increasingly gaining attention as key modulators of cellular function and gene expression. However, little is known about the effect of inorganic phosphate ions on cancer cells, particularly breast cancer cells. Here, we investigated the toxicity of different phosphate compounds to triple-negative human breast cancer cells, particularly, MDA-MB-231, and compared it to that of human monocytes, THP-1. We found that, unlike dihydrogen phosphate (H2PO4−), hydrogen phosphate (HPO42−) at 20 mM or lower concentrations induced breast cancer cell death more than immune cell death, mainly via apoptosis. We correlate this effect to the fact that phosphate in the form of HPO42− raises pH levels to alkaline levels which are not optimum for transport of phosphate into cancer cells. The results in this study highlight the importance of further exploring hydrogen phosphate (HPO42−) as a potential therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aya Shanti
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates. .,Khalifa University's Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Michigami T, Yamazaki M, Razzaque MS. Extracellular Phosphate, Inflammation and Cytotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:15-25. [DOI: 10.1007/978-3-030-91623-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
12
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
13
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
14
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
do Monte FA, Awad KR, Ahuja N, Kim HK, Aswath P, Brotto M, Varanasi VG. Amorphous Silicon Oxynitrophosphide-Coated Implants Boost Angiogenic Activity of Endothelial Cells. Tissue Eng Part A 2020; 26:15-27. [PMID: 31044666 PMCID: PMC6983748 DOI: 10.1089/ten.tea.2019.0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Lack of osteointegration is a major cause of aseptic loosening and failure of implants used in bone replacement. Implants coated with angiogenic biomaterials can improve osteointegration and potentially reduce these complications. Silicon- and phosphorus-based materials have been shown to upregulate expression of angiogenic factors and improve endothelial cell functions. In the present study, we hypothesize that implants coated with amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP) by using plasma-enhanced chemical vapor deposition (PECVD) technique could enhance human umbilical vein endothelial cell angiogenic properties in vitro. The tested groups were: glass coverslip (GCS), tissue culture plate, SiON, SiONP1 (O: 7.3 at %), and SiONP2 (O: 14.2 at %) implants. The SiONP2 composition demonstrated 3.5-fold more fibronectin deposition than the GCS (p < 0.001). The SiONP2 group also presented a significant improvement in the capillary tubule length and thickness compared with the other groups (p < 0.01). At 24 h, we observed at least a twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2, more evident in the SiONP1 and SiONP2 groups. In conclusion, the studied amorphous silica-coated implants, especially the SiONP2 composition, could enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing. Impact Statement In this study, we report for the first time the significant enhancement of human umbilical vein endothelial cell angiogenic properties (in vitro) by the amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP). The SiONP2 demonstrated 3.5-fold more fibronectin deposition than the glass coverslip and presented a significant improvement in the capillary tubule length and thickness. At 24 h, SiONP reported twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2. The studied amorphous silica-coated implants enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing.
Collapse
Affiliation(s)
- Felipe A. do Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
| | - Kamal R. Awad
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Harry K.W. Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pranesh Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Venu G. Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
16
|
Fu X, Zhao J, Liang QR, Luo RG, Fan GQ, Tang Q. Intratumoral inorganic phosphate deprivation: A new anticancer strategy? Med Hypotheses 2019; 135:109497. [PMID: 31759311 DOI: 10.1016/j.mehy.2019.109497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022]
Abstract
Tumor epidemiology, as well as tumor microenvironments and cancer cell signaling study, has been presented with statistical relevance of inorganic phosphate (Pi) to tumorigenesis. Although serum Pi is still not acknowledged as a clinical tumor biomarker, abnormally high Pi concentration in serum or tumor lesions is gradually recognized as a characteristic of malignancy. On the other hand, phosphate binder (e.g. La2 (CO3)3, Fosrenols) has been clinically approved to treat hyperphosphatemia, a metabolic disease characterized by a high serum phosphate level. We hypothesize that, if reducing phosphate burden comes to benefit tumor therapy, could systemic or intratumoral administration of phosphate binder effectively deprive tumor Pi concentration, and then inhibit tumor growth and metastases? From the past clinical and preclinical outcomes, we'd conclude that Pi is not only a metabolite during tumor growth but also a force to trigger tumor progression and metastases. Two types of cancer models were developed to initiate this study. Firstly, a patient-derived xenograft mouse model of colorectal cancer was designed, where mice were administered systemically or intratumorally with lanthanum acetate (a molecular phosphate binder), and the serum or intratumoral Pi concentration levels were found to a dropdown. Secondly, a rabbit VX2 liver tumor was set up for the local-regional therapy model, where lanthanum acetate was intratumorally administered by the standard transcatheter arterial chemoembolization procedure, and it significantly reduced intratumoral Pi concentration. Therefore, Pi deprivation by phosphate binder might be a new anticancer strategy if reducing phosphate burden could effectively arrest tumor growth and delay metastatic progression.
Collapse
Affiliation(s)
- Xin Fu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Jun Zhao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Qing-Rong Liang
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Rong-Guang Luo
- Department of Medical Imaging and Interventional Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guang-Qin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China.
| |
Collapse
|
17
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
18
|
Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends Biotechnol 2018; 36:430-444. [PMID: 29397989 DOI: 10.1016/j.tibtech.2017.12.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 02/08/2023]
Abstract
The biggest strategic challenge for tissue engineering is the development of efficient vascularized networks in engineered tissues and organs. Bioactive glasses (BGs) are potent biomaterials for inducing angiogenesis in hard and soft tissue engineering applications. Because tissue-healing processes strongly depend on angiogenesis, recent interest in BGs has increased dramatically. BGs with improved angiogenetic properties can be developed by adding a range of metallic ions (e.g., Cu2+, Co2+) into their structure, but further development of BGs with improved angiogenic activity is required, and many crucial questions remain to be answered. We introduce here the salient features, the hurdles that must be overcome, and the hopes and constraints for the development of this approach.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; These authors contributed equally to this work
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy; These authors contributed equally to this work
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Robert G Hill
- Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), PO Box 14155-4777, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
19
|
McClelland R, Christensen K, Mohammed S, McGuinness D, Cooney J, Bakshi A, Demou E, MacDonald E, Caslake M, Stenvinkel P, Shiels PG. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging (Albany NY) 2017; 8:1135-49. [PMID: 27132985 PMCID: PMC4931858 DOI: 10.18632/aging.100948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. RESULTS We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. CONCLUSIONS Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status.
Collapse
Affiliation(s)
- Ruth McClelland
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Kelly Christensen
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Suhaib Mohammed
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | | | | | - Andisheh Bakshi
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Evangelia Demou
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Ewan MacDonald
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Muriel Caslake
- School of Medicine, MVLS, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
20
|
Sapio L, Naviglio S. Inorganic phosphate in the development and treatment of cancer: A Janus Bifrons? World J Clin Oncol 2015; 6:198-201. [PMID: 26677430 PMCID: PMC4675902 DOI: 10.5306/wjco.v6.i6.198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient to living organisms. It is required as a component of the energy metabolism, kinase/phosphatase signaling and in the formation and function of lipids, carbohydrates and nucleic acids and, at systemic level, it plays a key role for normal skeletal and dentin mineralization. Pi represents an abundant dietary element and its intestinal absorption is efficient, minimally regulated and typically extends to approximately 70%. Maintenance of proper Pi homeostasis is a critical event and serum Pi level is maintained within a narrow range through an elaborate network of humoral interactions and feedback loops involving intestine, kidney, parathyroid gland and bone, and depends on the activity of a number of hormones, including parathyroid hormone, 1,25-dihydroxy vitamin D, and fibroblast growth factor 23 as major regulators of Pi homeostasis. Notably, Pi intake seemingly continues to increase as a consequence of chronic high-phosphorus (P) diets deriving from the growing consumption of highly processed foods, especially restaurant meals, fast foods, and convenience foods. Several recent reports have generated significant associations between high-P intake or high-serum Pi concentration and morbidity and mortality. Many chronic diseases, including cardiovascular diseases, obesity and even cancer have been proposed to be associated with high-P intakes and high-serum Pi concentrations. On the other hand, there is also evidence that Pi can have antiproliferative effects on some cancer cell types, depending on cell status and genetic background and achieve additive cytotoxic effects when combined with doxorubicin, illustrating its potential for clinical applications and suggesting that up-regulating Pi levels at local sites for brief times, might contribute to the development of novel and cheap modalities for therapeutic intervention in some tumours. Overall, the influence of Pi on cell function and the possible relationship to cancer have to be fully understood and investigated further.
Collapse
|
21
|
Rahabi-Layachi H, Ourouda R, Boullier A, Massy ZA, Amant C. Distinct Effects of Inorganic Phosphate on Cell Cycle and Apoptosis in Human Vascular Smooth Muscle Cells. J Cell Physiol 2015; 230:347-55. [PMID: 24976589 DOI: 10.1002/jcp.24715] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
Inorganic phosphate (Pi) is an essential nutrient to all living organisms. Nevertheless, hyperphosphatemia is now recognized as a risk factor for cardiovascular events and mortality in chronic kidney disease (CKD) patients. To our knowledge, the mechanisms by which elevated Pi alters smooth muscle cell proliferation have been poorly addressed. Therefore, in this study, we investigated the effects of Pi on cell cycle regulation and apoptosis in human aortic smooth muscle cells (HAoSMC). HAoSMC were treated with physiologic (1 mM) or high (2 and 3 mM) Pi concentrations. We showed that Pi not only decreased significantly cell viability (P < 0.001) but also induced apoptosis of HAoSMC. Moreover, Pi treatment blocked G1/S cell cycle progression by increasing cell number in G0/G1 phase up to 82.4 ± 3.4% for 3 mM vs 76.2 ± 3.1% for control (P < 0.01) while decreasing cell number in S phase. Accordingly, this was associated with a decrease protein expression of cyclin E and its associated CDK (CDK2), and phosphorylated retinoblastoma protein. Moreover, we observed an increase of protein expression of cell cycle inhibitors p15, p21, and p27. Interestingly, we also found that induction of cell cycle arrest was partially dependent on phosphate uptake. Our results demonstrated that Pi reduced HAoSMC proliferation by inducing apoptosis and cell cycle arrest. Indeed, we showed for the first time that Pi affected HAoSMC cell cycle by blocking G1/S progression. These findings would be useful for a better understanding of molecular mechanisms involved in vascular complications observed in CKD patients.
Collapse
Affiliation(s)
| | - Roger Ourouda
- HERVI EA3801, Université de Picardie Jules Verne, UFR de Médecine, Amiens, France
| | - Agnes Boullier
- Inserm U1088, Université de Picardie Jules Verne, Amiens, France
- Centre de Biologie Humaine, CHU Amiens, Amiens, France
- Laboratoire de Biochimie, CHU Amiens, Amiens, France
| | - Ziad A Massy
- Inserm U1088, Université de Picardie Jules Verne, Amiens, France
- Nephrology Division CHU Ambroise Paré, Avenue Charles de Gaulle, Boulogne-Billancourt, France
| | - Carole Amant
- HERVI EA3801, Université de Picardie Jules Verne, UFR de Médecine, Amiens, France
- Centre de Biologie Humaine, CHU Amiens, Amiens, France
| |
Collapse
|
22
|
Functional role of inorganic trace elements in angiogenesis—Part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol 2015; 96:129-42. [DOI: 10.1016/j.critrevonc.2015.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023] Open
|
23
|
Lee S, Kim JE, Hong SH, Lee AY, Park EJ, Seo HW, Chae C, Doble P, Bishop D, Cho MH. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS One 2015; 10:e0135582. [PMID: 26285136 PMCID: PMC4540575 DOI: 10.1371/journal.pone.0135582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention.
Collapse
Affiliation(s)
- Somin Lee
- Laboratory of Toxicology, BK21 PLUSProgram for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, 151–742, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, BK21 PLUSProgram for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUSProgram for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Ah-Young Lee
- Laboratory of Toxicology, BK21 PLUSProgram for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Hwi Won Seo
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Chanhee Chae
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Philip Doble
- Elemental Bio-imaging Facility, Department of Chemistry and Forensic Science, University of Technology, Sydney, Australia
| | - David Bishop
- Elemental Bio-imaging Facility, Department of Chemistry and Forensic Science, University of Technology, Sydney, Australia
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUSProgram for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 443–270, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, 151–742, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 443–270, Korea
- * E-mail:
| |
Collapse
|
24
|
Bosco C, Wulaningsih W, Melvin J, Santaolalla A, De Piano M, Arthur R, Van Hemelrijck M. Metabolic serum biomarkers for the prediction of cancer: a follow-up of the studies conducted in the Swedish AMORIS study. Ecancermedicalscience 2015; 9:555. [PMID: 26284119 PMCID: PMC4531132 DOI: 10.3332/ecancer.2015.555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
The Swedish Apolipoprotein MOrtality RISk study (AMORIS) contains information on more than 500 biomarkers collected from 397,443 men and 414,630 women from the greater Stockholm area during the period 1985–1996. Using a ten-digit personal identification code, this database has been linked to Swedish national registries, which provide data on socioeconomic status, vital status, cancer diagnosis, comorbidity, and emigration. Within AMORIS, 18 studies assessing risk of overall and site-specific cancers have been published, utilising a range of serum markers representing glucose and lipid metabolism, immune system, iron metabolism, liver metabolism, and bone metabolism. This review briefly summarises these findings in relation to more recently published studies and provides an overview of where we are today and the challenges of observational studies when studying cancer risk prediction. Overall, more recent observational studies supported previous findings obtained in AMORIS, although no new results have been reported for serum fructosamine and inorganic phosphate with respect to cancer risk. A drawback of using serum markers in predicting cancer risk is the potential fluctuations following other pathological conditions, resulting in non-specificity and imprecision of associations observed. Utilisation of multiple combination markers may provide more specificity, as well as give us repeated instead of single measurements. Associations with other diseases may also necessitate further analytical strategies addressing effects of serum markers on competing events in addition to cancer. Finally, delineating the role of serum metabolic markers may generate valuable information to complement emerging clinical studies on preventive effects of drugs and supplements targeting metabolic disorders against cancer.
Collapse
Affiliation(s)
- Cecilia Bosco
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Wahyu Wulaningsih
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Jennifer Melvin
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Aida Santaolalla
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mario De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Rhonda Arthur
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
25
|
Wang Y, Yang W, Pu Q, Yang Y, Ye S, Ma Q, Ren J, Cao Z, Zhong G, Zhang X, Liu L, Zhu W. The effects and mechanisms of SLC34A2 in tumorigenesis and progression of human non-small cell lung cancer. J Biomed Sci 2015; 22:52. [PMID: 26156586 PMCID: PMC4497375 DOI: 10.1186/s12929-015-0158-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/18/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND SLC34A2 with highest expressions in lung, small intestine and kidney encoded a type 2b sodium-dependent phosphate transporter (NaPi-IIb). In lung, SLC34A2 only expressed in the apical membrane of type II alveolar epithelium cells (ATII cells) and played a pivotal role during the fetal lung development and embryonic development. ATII cells acting as multifunctional stem cells might transform into NSCLC after undergoing exogenous or endogenous factors. Increasing evidences showed that the genes performing critical roles during embryogenesis were also expressed during the development of cancer. In addition, recent research found the expression of SLC34A2 had a significant difference between the surgical samples of NSCLC and normal tissues, and SLC34A2 was down-regulated in lung adenocarcinoma cell line A549 and up-regulation expression of SLC34A2 could significantly inhibit cell viability and invasion of A549 in vitro. These results suggested SLC34A2 might play an important role in the development of NSCLC. However, the role of SLC34A2 in tumorigenesis and progression of NSCLC remains unknown. RESULTS Our study found that SLC34A2 was also significantly down-regulated in 14/15 of examined NSCLC tissues. Moreover, we found that expressions of SLC34A2 were reduced in six NSCLC cell lines for the first time. Our result also revealed a dramatic inhibitory effects of SLC34A2 on cell growth, migration and invasion of several NSCLC cell lines. SLC34A2 also strongly inhibited tumor growth and metastasis ability in A549 subcutaneous tumor model and lung metastasis model, respectively. Further studies found that the suppressive effects of SLC34A2 on tumorigenesis and progression might be associated with the down-regulation of related protein in PI3K/Akt and Ras/Raf/MEK signal pathway. CONCLUSIONS For the first time, our data indicated that SLC34A2 could exert significantly suppressive effects on tumorigenesis and progression of NSCLC. SLC34A2 might provide new insights for further understanding the early pathogenesis of human NSCLC.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Weihan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, P. R. China.
| | - Yan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Sujuan Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Qingping Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Jiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Zhixing Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Guoxing Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Xuechao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, Sichuan, P. R. China.
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, NO. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, 610041, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
26
|
Hong SH, Park SJ, Lee S, Kim S, Cho MH. Biological effects of inorganic phosphate: potential signal of toxicity. J Toxicol Sci 2015; 40:55-69. [DOI: 10.2131/jts.40.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sung-Jin Park
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Somin Lee
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sanghwa Kim
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Myung-Haing Cho
- Advanced Institute of Convergence Technology, Seoul National University, Korea
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
27
|
Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr 2014; 99:320-7. [PMID: 24225358 PMCID: PMC3893724 DOI: 10.3945/ajcn.113.073148] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Elevated serum phosphorus is associated with all-cause mortality, but little is known about risk associated with dietary phosphorus intake. OBJECTIVE We investigated the association between phosphorus intake and mortality in a prospective cohort of healthy US adults (NHANES III; 1998-1994). DESIGN Study participants were 9686 nonpregnant adults aged 20-80 y without diabetes, cancer, or kidney or cardiovascular disease. Exposure to dietary phosphorus, which was assessed by using a 24-h dietary recall, was expressed as the absolute intake and phosphorus density (phosphorus intake divided by energy intake). All-cause and cardiovascular mortality was assessed through 31 December 2006. RESULTS Median phosphorus intake was 1166 mg/d (IQR: 823-1610 mg/d); median phosphorus density was 0.58 mg/kcal (0.48-0.70 mg/kcal). Individuals who consumed more phosphorus-dense diets were older, were less often African American, and led healthier lifestyles (smoking, physical activity, and Healthy Eating Index). In analyses adjusted for demographics, cardiovascular risk factors, kidney function, and energy intake, higher phosphorus intake was associated with higher all-cause mortality in individuals who consumed >1400 mg/d [adjusted HR (95% CI): 2.23 (1.09, 4.5) per 1-unit increase in ln(phosphorus intake); P = 0.03]. At <1400 mg/d, there was no association. A similar association was seen between higher phosphorus density and all-cause mortality at a phosphorus density amount >0.35 mg/kcal [adjusted HR (95% CI): 2.27 (1.19, 4.33) per 0.1-mg/kcal increase in phosphorus density; P = 0.01]. At <0.35 mg/kcal (approximately the fifth percentile), lower phosphorus density was associated with increased mortality risk. Phosphorus density was associated with cardiovascular mortality [adjusted HR (95% CI): 3.39 (1.43, 8.02) per 0.1 mg/kcal at >0.35 mg/kcal; P = 0.01], whereas no association was shown in analyses with phosphorus intake. Results were similar by subgroups of diet quality and in analyses adjusted for sodium and saturated fat intakes. CONCLUSIONS High phosphorus intake is associated with increased mortality in a healthy US population. Because of current patterns in phosphorus consumption in US adults, these findings may have important public health implications.
Collapse
Affiliation(s)
- Alex R Chang
- Division of Nephrology, Geisinger Health System, Danville, PA (ARC); the Welch Center for Prevention, Epidemiology, and Clinical Research (ARC, ML, LJA, and MEG) and Divisions of Nephrology (ARC and MEG) and General Internal Medicine (LJA), Johns Hopkins University, Baltimore, MD; and the Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL (OMG)
| | | | | | | | | |
Collapse
|
28
|
Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, Lin Y, Garneys LM, Bouloux GF, Young MR, Veenstra TD, Stephens RM, Colburn NH, Conrads TP, Beck GR. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol 2013; 228:1536-50. [PMID: 23280476 DOI: 10.1002/jcp.24312] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that changes in serum phosphate levels influence pathological states associated with aging such as cancer, bone metabolism, and cardiovascular function, even in individuals with normal renal function. The causes are only beginning to be elucidated but are likely a combination of endocrine, paracrine, autocrine, and cell autonomous effects. We have used an integrated quantitative biology approach, combining transcriptomics and proteomics to define a multi-phase, extracellular phosphate-induced, signaling network in pre-osteoblasts as well as primary human and mouse mesenchymal stromal cells. We identified a rapid mitogenic response stimulated by elevated phosphate that results in the induction of immediate early genes including c-fos. The mechanism of activation requires FGF receptor signaling followed by stimulation of N-Ras and activation of AP-1 and serum response elements. A distinct long-term response also requires FGF receptor signaling and results in N-Ras activation and expression of genes and secretion of proteins involved in matrix regulation, calcification, and angiogenesis. The late response is synergistically enhanced by addition of FGF23 peptide. The intermediate phase results in increased oxidative phosphorylation and ATP production and is necessary for the late response providing a functional link between the phases. Collectively, the results define elevated phosphate, as a mitogen and define specific mechanisms by which phosphate stimulates proliferation and matrix regulation. Our approach provides a comprehensive understanding of the cellular response to elevated extracellular phosphate, functionally connecting temporally coordinated signaling, transcriptional, and metabolic events with changes in long-term cell behavior.
Collapse
Affiliation(s)
- Corinne E Camalier
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hong SH, Minai-Tehrani A, Chang SH, Jiang HL, Lee S, Lee AY, Seo HW, Chae C, Beck GR, Cho MH. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis. PLoS One 2013; 8:e77121. [PMID: 24194864 PMCID: PMC3806752 DOI: 10.1371/journal.pone.0077121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022] Open
Abstract
The sodium-dependent phosphate co-transporter 2b (NPT2b) plays an important role in maintaining phosphate homeostasis. In previous studies, we have shown that high dietary inorganic phosphate (Pi) consumption in mice stimulated lung tumorigenesis and increased NPT2b expression. NPT2b has also been found to be highly expressed in human lung cancer tissues. The association of high expression of NPT2b in the lung with poor prognosis in oncogenic lung diseases prompted us to test whether knockdown of NPT2b may regulate lung cancer growth. To address this issue, aerosols that contained small interfering RNA (siRNA) directed against NPT2b (siNPT2b) were delivered into the lungs of K-ras (LA1) mice, which constitute a murine model reflecting human lung cancer. Our results clearly showed that repeated aerosol delivery of siNPT2b successfully suppressed lung cancer growth and decreased cancer cell proliferation and angiogenesis, while facilitating apoptosis. These results strongly suggest that NPT2b plays a role lung tumorigenesis and represents a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hu-Lin Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Somin Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
| | - Ah-Young Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hwi Won Seo
- Laboratrory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Chanhee Chae
- Laboratrory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - George R. Beck
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea
- * E-mail:
| |
Collapse
|
30
|
Wulaningsih W, Michaelsson K, Garmo H, Hammar N, Jungner I, Walldius G, Holmberg L, Van Hemelrijck M. Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer 2013; 13:257. [PMID: 23706176 PMCID: PMC3664604 DOI: 10.1186/1471-2407-13-257] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023] Open
Abstract
Background Both dietary and serum levels of inorganic phosphate (Pi) have been linked to development of cancer in experimental studies. This is the first population-based study investigating the relation between serum Pi and risk of cancer in humans. Methods From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (> 20 years old) with baseline measurements of serum Pi, calcium, alkaline phosphatase, glucose, and creatinine (n = 397,292). Multivariable Cox proportional hazards regression analyses were used to assess serum Pi in relation to overall cancer risk. Similar analyses were performed for specific cancer sites. Results We found a higher overall cancer risk with increasing Pi levels in men ( HR: 1.02 (95% CI: 1.00-1.04) for every SD increase in Pi), and a negative association in women (HR: 0.97 (95% CI: 0.96-0.99) for every SD increase in Pi). Further analyses for specific cancer sites showed a positive link between Pi quartiles and the risk of cancer of the pancreas, lung, thyroid gland and bone in men, and cancer of the oesophagus, lung, and nonmelanoma skin cancer in women. Conversely, the risks for developing breast and endometrial cancer as well as other endocrine cancer in both men and women were lower in those with higher Pi levels. Conclusions Abnormal Pi levels are related to development of cancer. Furthermore, the in verse association between Pi levels and risk of breast, endometrial and other endocrine cancers may indicate the role of hormonal factors in the relation between Pi metabolism and cancer.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- King's College London, School of Medicine, Division of Cancer Studies, Cancer Epidemiology Unit, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Spina A, Sapio L, Esposito A, Di Maiolo F, Sorvillo L, Naviglio S. Inorganic Phosphate as a Novel Signaling Molecule with Antiproliferative Action in MDA-MB-231 Breast Cancer Cells. Biores Open Access 2013; 2:47-54. [PMID: 23515235 PMCID: PMC3569927 DOI: 10.1089/biores.2012.0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for living organisms. It plays a key role in diverse physiological functions, including osteoblast differentiation and skeletal mineralization. Relevantly, Pi is emerging as an important signaling molecule capable of modulating multiple cellular functions by altering signal transduction pathways, gene expression, and protein abundance in many cell types. To our knowledge, the consequences of elevated Pi on behavior of breast cancer cells have been poorly addressed. In this study we investigate the effects of Pi on proliferation of MDA-MB-231 breast cancer cells. We report that Pi inhibits proliferation of MDA-MB-231 cells by slowing cell cycle progression, without apoptosis occurrence. We found that Pi causes cells to accumulate in G1 phase in a time-dependent manner. Accordingly, G1 accumulation was associated with a decrease of cyclin A and cyclin E and an increase of cell cycle inhibitors p21 and p27 protein levels, respectively. Moreover, the Pi-induced antiproliferative effect was dynamically accompanied by profound changes in ERK1/2 and STAT3 protein and phosphorylation levels in response to Pi. Altogether, our data represent the first evidence of Pi acting as a novel signaling molecule in MDA-MB-231 breast cancer cells, capable of eliciting a strong antiproliferative action and suggest that targeting Pi levels at local sites might represent the rationale for developing novel strategies for therapeutic intervention in triple-negative breast cancer.
Collapse
Affiliation(s)
- Annamaria Spina
- Department of Biochemistry and Biophysics, Medical School, Second University of Naples , Naples, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
33
|
Xu CX, Jin H, Lim HT, Ha YC, Chae CH, An GH, Lee KH, Cho MH. Low dietary inorganic phosphate stimulates lung tumorigenesis through altering protein translation and cell cycle in K-ras(LA1) mice. Nutr Cancer 2010; 62:525-32. [PMID: 20432174 DOI: 10.1080/01635580903532432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent surveys indicate that Pi intake has increased steadily as Pi-containing foods have increased. Our previous study demonstrated that high dietary Pi strongly stimulated lung tumorigeneis. In order to answer the issue whether low Pi may be chemopreventive, we examined the effects of low Pi on lung cancer. Eighteen 5-wk-old male K-ras(LA1) lung cancer model mice were randomly allocated to 2 groups. One group was fed a normal diet (0.5% Pi) and other group was fed low Pi (0.1% Pi) diet for 4 wk. Lung cancer development was evaluated by histopathological examination, Western blot, kinase assay, and immunohistochemistry. Low Pi increased the expression of sodium-dependent phosphate co-transporter 2b, and activated Akt signal with decreased PTEN expression in the lungs of K-ras(LA1) mice. Low Pi increased the Akt/mTOR-mediated protein translation through upregulating the phosphorylation of p70S6K and 4E-BP1. In addition, low Pi stimulated cell cycling as evidenced by altered cell cycle regulators such as cyclin D1 and D3. Finally, low Pi increased lung tumorigenesis in K-ras(LA1) mice compared to the normal diet group. Our results clearly demonstrated that low Pi also promoted lung tumorigenesis, thus suggesting that an appropriate intake of dietary Pi may be critical for lung cancer prevention as well as treatment.
Collapse
|
34
|
Xu CX, Jin H, Chung YS, Shin JY, Hwang SK, Kwon JT, Park SJ, Lee ES, Minai-Tehrani A, Chang SH, Woo MA, Noh MS, An GH, Lee KH, Cho MH. Low dietary inorganic phosphate affects the lung growth of developing mice. J Vet Sci 2009; 10:105-13. [PMID: 19461205 PMCID: PMC2801121 DOI: 10.4142/jvs.2009.10.2.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inorganic phosphate (Pi) plays a critical role in diverse cellular functions, and regulating the Pi balance is accomplished by sodium-dependent Pi co-transporter (NPT). Pulmonary NPT has recently been identified in mammalian lungs. However, to date, many of the studies that have involved Pi have mainly focused on its effect on bone and kidney. Therefore, current study was performed to discover the potential effects of low Pi on the lung of developing transgenic mice expressing the renilla/firefly luciferase dual reporter gene. Two-weeks old male mice divided into 2 groups and these groups were fed either a low PI diet or a normal control diet (normal: 0.5% Pi, low: 0.1% Pi) for 4 weeks. After 4 weeks of the diet, all the mice were sacrificed. Their lungs were harvested and analyzed by performing luciferase assay, Western blotting, kinase assay and immunohistochemistry. Our results demonstrate that low Pi affects the lungs of developing mice by disturbing protein translation, the cell cycle and the expression of fibroblast growth factor-2. These results suggest that optimally regulating Pi consumption may be important to maintain health.
Collapse
Affiliation(s)
- Cheng Xiong Xu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jin H, Xu CX, Lim HT, Park SJ, Shin JY, Chung YS, Park SC, Chang SH, Youn HJ, Lee KH, Lee YS, Ha YC, Chae CH, Beck GR, Cho MH. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 2009; 179:59-68. [PMID: 18849498 PMCID: PMC2615662 DOI: 10.1164/rccm.200802-306oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Phosphate (Pi) is an essential nutrient to living organisms. Recent surveys indicate that the intake of Pi has increased steadily. Our previous studies have indicated that elevated Pi activates the Akt signaling pathway. An increased knowledge of the response of lung cancer tissue to high dietary Pi may provide an important link between diet and lung tumorigenesis. OBJECTIVES The current study was performed to elucidate the potential effects of high dietary Pi on lung cancer development. METHODS Experiments were performed on 5-week-old male K-ras(LA1) lung cancer model mice and 6-week-old male urethane-induced lung cancer model mice. Mice were fed a diet containing 0.5% Pi (normal Pi) and 1.0% Pi (high Pi) for 4 weeks. At the end of the experiment, all mice were killed. Lung cancer development was evaluated by diverse methods. MEASUREMENT AND MAIN RESULTS A diet high in Pi increased lung tumor progression and growth compared with normal diet. High dietary Pi increased the sodium-dependent inorganic phosphate transporter-2b protein levels in the lungs. High dietary consumption of Pi stimulated pulmonary Akt activity while suppressing the protein levels of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 as well as Akt binding partner carboxyl-terminal modulator protein, resulting in facilitated cap-dependent protein translation. In addition, high dietary Pi significantly stimulated cell proliferation in the lungs of K-ras(LA1) mice. CONCLUSIONS Our results showed that high dietary Pi promoted tumorigenesis and altered Akt signaling, thus suggesting that careful regulation of dietary Pi may be critical for lung cancer prevention as well as treatment.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu CX, Jin H, Lim HT, Kim JE, Shin JY, Lee ES, Chung YS, Lee YS, Beck G, Lee KH, Cho MH. High dietary inorganic phosphate enhances cap-dependent protein translation, cell-cycle progression, and angiogenesis in the livers of young mice. Am J Physiol Gastrointest Liver Physiol 2008; 295:G654-63. [PMID: 18703640 PMCID: PMC2575911 DOI: 10.1152/ajpgi.90213.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inorganic phosphate (P(i)) plays a key role in diverse physiological functions. Recent studies have indicated that P(i) affects Akt signaling through the sodium-dependent phosphate cotransporter. Akt signaling, in turn, plays an important role in liver development; however, the effects of high dietary P(i) on the liver have not been investigated. Here, we examined the effects of high dietary phosphate on the liver in developing mice. We found that high dietary P(i) increased liver mass through enhancing Akt-related cap-dependent protein translation, cell cycle progression, and angiogenesis. Thus careful regulation of P(i) consumption may be important in maintaining normal development of the liver.
Collapse
Affiliation(s)
- Cheng-Xiong Xu
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Hwang-Tae Lim
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Eun-Sun Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Youn-Sun Chung
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Yeon-Sook Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - George Beck
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Kee Ho Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Nano Systems Institute-National Core Research Center, Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea; Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia; Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Center for Developmental Pharmacology and Toxicology, Seattle Children's Hospital Research Institute, Seattle, Washington; and National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea
| |
Collapse
|