1
|
Adebambo TH, Medina-Flores F, Zhang S, Lerit DA. Arsenic impairs Drosophila neural stem cell mitotic progression and sleep behavior in a tauopathy model. G3 (BETHESDA, MD.) 2025; 15:jkaf049. [PMID: 40192438 PMCID: PMC12060243 DOI: 10.1093/g3journal/jkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 04/25/2025]
Abstract
Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.
Collapse
Affiliation(s)
- Temitope H Adebambo
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Fernanda Medina-Flores
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Shirley Zhang
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
3
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
4
|
Kilwein MD, Dao TK, Welte MA. Drosophila embryos allocate lipid droplets to specific lineages to ensure punctual development and redox homeostasis. PLoS Genet 2023; 19:e1010875. [PMID: 37578970 PMCID: PMC10449164 DOI: 10.1371/journal.pgen.1010875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that facilitate neutral lipid storage in cells, including energy-dense triglycerides. They are found in all investigated metazoan embryos where they are thought to provide energy for development. Intriguingly, early embryos of diverse metazoan species asymmetrically allocate LDs amongst cellular lineages, a process which can involve massive intracellular redistribution of LDs. However, the biological reason for asymmetric lineage allocation is unknown. To address this issue, we utilize the Drosophila embryo where the cytoskeletal mechanisms that drive allocation are well characterized. We disrupt allocation by two different means: Loss of the LD protein Jabba results in LDs adhering inappropriately to glycogen granules; loss of Klar alters the activities of the microtubule motors that move LDs. Both mutants cause the same dramatic change in LD tissue inheritance, shifting allocation of the majority of LDs to the yolk cell instead of the incipient epithelium. Embryos with such mislocalized LDs do not fully consume their LDs and are delayed in hatching. Through use of a dPLIN2 mutant, which appropriately localizes a smaller pool of LDs, we find that failed LD transport and a smaller LD pool affect embryogenesis in a similar manner. Embryos of all three mutants display overlapping changes in their transcriptome and proteome, suggesting that lipid deprivation results in a shared embryonic response and a widespread change in metabolism. Excitingly, we find abundant changes related to redox homeostasis, with many proteins related to glutathione metabolism upregulated. LD deprived embryos have an increase in peroxidized lipids and rely on increased utilization of glutathione-related proteins for survival. Thus, embryos are apparently able to mount a beneficial response upon lipid stress, rewiring their metabolism to survive. In summary, we demonstrate that early embryos allocate LDs into specific lineages for subsequent optimal utilization, thus protecting against oxidative stress and ensuring punctual development.
Collapse
Affiliation(s)
- Marcus D. Kilwein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - T. Kim Dao
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
5
|
Holsopple JM, Smoot SR, Popodi EM, Colbourne JK, Shaw JR, Oliver B, Kaufman TC, Tennessen JM. Assessment of Chemical Toxicity in Adult Drosophila Melanogaster. J Vis Exp 2023:10.3791/65029. [PMID: 37036230 PMCID: PMC10247286 DOI: 10.3791/65029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Human industries generate hundreds of thousands of chemicals, many of which have not been adequately studied for environmental safety or effects on human health. This deficit of chemical safety information is exacerbated by current testing methods in mammals that are expensive, labor-intensive, and time-consuming. Recently, scientists and regulators have been working to develop new approach methodologies (NAMs) for chemical safety testing that are cheaper, more rapid, and reduce animal suffering. One of the key NAMs to emerge is the use of invertebrate organisms as replacements for mammalian models to elucidate conserved chemical modes of action across distantly related species, including humans. To advance these efforts, here, we describe a method that uses the fruit fly, Drosophila melanogaster, to assess chemical safety. The protocol describes a simple, rapid, and inexpensive procedure to measure the viability and feeding behavior of exposed adult flies. In addition, the protocol can be easily adapted to generate samples for genomic and metabolomic approaches. Overall, the protocol represents an important step forward in establishing Drosophila as a standard model for use in precision toxicology.
Collapse
Affiliation(s)
- Jessica M Holsopple
- Department of Biology, Indiana University; Bloomington Drosophila Stock Center, Department of Biology, Indiana University
| | | | - Ellen M Popodi
- Department of Biology, Indiana University; Bloomington Drosophila Stock Center, Department of Biology, Indiana University
| | | | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health
| | | | | |
Collapse
|
6
|
Investigation of the Molecular Evolution of Treg Suppression Mechanisms Indicates a Convergent Origin. Curr Issues Mol Biol 2023; 45:628-648. [PMID: 36661528 PMCID: PMC9857879 DOI: 10.3390/cimb45010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cell (Treg) suppression of conventional T cells is a central mechanism that ensures immune system homeostasis. The exact time point of Treg emergence is still disputed. Furthermore, the time of Treg-mediated suppression mechanisms’ emergence has not been identified. It is not yet known whether Treg suppression mechanisms diverged from a single pathway or converged from several sources. We investigated the evolutionary history of Treg suppression pathways using various phylogenetic analysis tools. To ensure the conservation of function for investigated proteins, we augmented our study using nonhomology-based methods to predict protein functions among various investigated species and mined the literature for experimental evidence of functional convergence. Our results indicate that a minority of Treg suppressor mechanisms could be homologs of ancient conserved pathways. For example, CD73, an enzymatic pathway known to play an essential role in invertebrates, is highly conserved between invertebrates and vertebrates, with no evidence of positive selection (w = 0.48, p-value < 0.00001). Our findings indicate that Tregs utilize homologs of proteins that diverged in early vertebrates. However, our findings do not exclude the possibility of a more evolutionary pattern following the duplication degeneration−complementation (DDC) model. Ancestral sequence reconstruction showed that Treg suppression mechanism proteins do not belong to one family; rather, their emergence seems to follow a convergent evolutionary pattern.
Collapse
|
7
|
Dai ZH, Ding S, Chen JY, Han R, Cao Y, Liu X, Tu S, Guan DX, Ma LQ. Selenate increased plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata via glutathione-enhanced arsenic reduction and translocation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127581. [PMID: 34736212 DOI: 10.1016/j.jhazmat.2021.127581] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The beneficial effects of selenium on As uptake and plant growth in As-hyperaccumulator Pteris vittata are known, but the associated mechanisms remain unclear. Here, we investigated the effects of selenate on arsenic accumulation by P. vittata under two arsenate levels. P. vittata plants were exposed to 13 (As13) or 133 µM (As133) arsenate and 5 µM selenate in 0.2-strength Hoagland solution. After 14 d of growth, plant biomass, Se and As content, As speciation, and malondialdehyde (MDA), glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione (GSH and GSSG) levels were determined. The results show that selenate promoted P. vittata growth and increased As concentrations in the roots and fronds by 256% from 97 to 346 mg kg-1 and 142% from 213 to 514 mg kg-1 under As13 treatment, and by 166% from 500 to 1332 mg kg-1 and 534% from 777 to 4928 mg kg-1 under As133 treatment. In addition, selenate increased the glutathione content in P. vittata roots and fronds by 75-86% under As13 treatment and 44-45% under As133 treatment. Selenate also increased the GPX activity by 161-173%, and GR activity by 72-79% in P. vittata under As13 and As133 treatments. The HPLC-ICP-MS analysis indicated that selenate increased both AsIII and AsV levels in P. vittata, with AsIII/AsV ratio being lower in the roots and higher in the fronds, i.e., more AsIII was being translocated to the fronds. Taken together, our results suggest that, via GPX-GR mediated enhancement of GSH-GSSG cycle, selenate effectively increases plant growth and As uptake in P. vittata by improving AsV reduction in the roots and AsIII translocation from the roots to the fronds.
Collapse
Affiliation(s)
- Zhi-Hua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yi Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ran Han
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Beamish CR, Love TM, Rand MD. Developmental Toxicology of Metal Mixtures in Drosophila: Unique Properties of Potency and Interactions of Mercury Isoforms. Int J Mol Sci 2021; 22:12131. [PMID: 34830013 PMCID: PMC8620836 DOI: 10.3390/ijms222212131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mercury ranks third on the U.S. Agency of Toxic Substances and Disease Registry priority list of hazardous substances, behind only arsenic and lead. We have undertaken uncovering the mechanisms underlying the developmental toxicity of methylmercury (MeHg), inorganic mercury (HgCl2), lead acetate (Pb), and sodium arsenite (As). To probe these differences, we used the Drosophila model, taking advantage of three developmental transitions-pupariation, metamorphosis, and eclosion-to differentiate potentially unique windows of toxicity. We elaborated dose response profiles for each individual metal administered in food and accounted for internal body burden, also extending analyses to evaluate combinatorial metal mixture effects. We observed all four metals producing larval lethality and delayed pupariation, with MeHg being most potent. Compared to other metals, MeHg's potency is caused by a higher body burden with respect to dose. MeHg uniquely caused dose-dependent failure in eclosion that was unexpectedly rescued by titrating in HgCl2. Our results highlight a unique developmental window and toxicokinetic properties where MeHg acts with specificity relative to HgCl2, Pb, and As. These findings will serve to refine future studies aimed at revealing tissue morphogenesis events and cell signaling pathways, potentially conserved in higher organisms, that selectively mediate MeHg toxicity and its antagonism by HgCl2.
Collapse
Affiliation(s)
- Catherine R. Beamish
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Tanzy M. Love
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Matthew D. Rand
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| |
Collapse
|
9
|
Sun Y, Tang Y, Xu X, Hu K, Zhang Z, Zhang Y, Yi Z, Zhu Q, Xu R, Zhang Y, Liu Z, Liu X. Lead exposure results in defective behavior as well as alteration of gut microbiota composition in flies and their offsprings. Int J Dev Neurosci 2020; 80:699-708. [PMID: 32966649 DOI: 10.1002/jdn.10067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lead (Pb) has become one of the most dangerous metals to human health, especially to the nervous system as its persistent accumulation and high toxicity. However, how the gut microbiota influence the Pb-related neurotoxicity remains unclear. The aim of our study was to explore the link among Pb exposure, behavior changes, and gut microbiota. METHODS Using Drosophila melanogaster as model, climbing assay, social avoidance, social space, and short-term memory analysis were preformed to study the behavioral changes in flies exposed to Pb and their offspring. 16S rRNA sequencing was used to explore the changes in the gut microbiota of the flies with/without Pb-exposure. RESULTS The crawling ability, memory, and social interactions of Pb-exposed parent flies decreased significantly. For the offspring, behaviors were more significantly affected in male offspring whose male parent was exposed to Pb. The alpha diversity and the beta diversity of gut microbiota were significantly different between the Pb-exposed flies and the controls, as well as between the male offspring and the controls. Two genera, Lactobacillus and Bifidobacterium were found significantly decreased in the Pb-exposed flies when compared to the controls and significantly correlated with the learning and memory. Four genera, Bilophila, Coprococcus, Desulfovibrio, and Ruminococcus were found depleted in the female offspring of the Pb-exposed flies. CONCLUSIONS Lead exposure resulted in defective behavior and alteration of gut microbiota composition in flies and their offspring, alteration in gut microbiota might be the link between behavioral changes induced by Pb-exposure.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xinwen Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Kehan Hu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zixiao Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Yi
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Qihui Zhu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Khullar S, Reddy MS. Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis. CHEMOSPHERE 2020; 240:124914. [PMID: 31557642 DOI: 10.1016/j.chemosphere.2019.124914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 05/27/2023]
Abstract
Arsenic (As) contamination is one of the most daunting environmental problem bothering the whole world. Exploring a suitable bioremediation technique is an urgent need of the hour. The present study focusses on scrutinizing the ectomycorrhizal (ECM) fungus for its potential role in As detoxification and understanding the molecular mechanisms responsible for its tolerance. When exposed to increasing concentrations of external As, the ECM fungus H. cylindrosporum accumulated the metalloid intracellularly, inducing the glutathione biosynthesis pathway. The genes coding for GSH biosynthesis enzymes, γ-glutamylcysteine synthetase (Hcγ-GCS) and glutathione synthetase (HcGS) were highly regulated by As stress. Arsenic coordinately upregulated the expression of both Hcγ-GCS and HcGS genes, thus resulting in increased Hcγ-GCS and HcGS protein expressions and enzyme activities, with substantial increase in intracellular GSH. Functional complementation of the two genes (Hcγ-GCS and HcGS) in their respective yeast mutants (gsh1Δ and gsh2Δ) further validated the role of both enzymes in mitigating As toxicity. These findings clearly highlight the potential importance of GSH antioxidant defense system in regulating the As induced responses and its detoxification in ECM fungus H. cylindrosporum.
Collapse
Affiliation(s)
- Shikha Khullar
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
11
|
Liang C, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Tao R, Tao Y, Xiang H, Hao J, Wang Q, Tong S, Tao F. Domain- and sex-specific effects of prenatal exposure to low levels of arsenic on children's development at 6 months of age: Findings from the Ma'anshan birth cohort study in China. ENVIRONMENT INTERNATIONAL 2020; 135:105112. [PMID: 31881426 DOI: 10.1016/j.envint.2019.105112] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The relationship between prenatal arsenic exposure at low levels and poor development in children, especially in regard to neurodevelopment, has aroused several concerns, but the conclusions have been inconsistent. It still remains unclear whether such adverse effect is associated with a specific profile of the developing brain in early life. To investigate the association between arsenic exposure in utero and children's development and behaviour, we performed a large prospective birth cohort study including 2315 mother-infant pairs in Anhui Province, China. The Ages and Stages Questionnaire of China (ASQ-C) was used to assess the status of children's development and behaviour at 6 months postpartum, and the levels of arsenic were determined in umbilical cord serum samples. Odds ratios for suspected developmental delay (SDD) in each domain of the ASQ-C clusters were estimated using logistic regression models. Compared with low arsenic levels group, medium and high arsenic levels were significantly associated with the increased risks of SDD in the personal-social domain among infants aged 6 months after adjustment for all potential confounders (OR = 1.33, 95% CI (1.01, 1.75) and OR = 1.47, 95% CI (1.08, 2.00), respectively). Sex stratification analysis demonstrated that this association was stronger in females. The sensitivity analyses also showed that high cord serum arsenic levels were associated with a 1.80-fold (95% CIs (1.12, 2.90)) higher risk of a more severe developmental delay in the personal-social domain among six-month-old females. Our results suggest that low-level arsenic exposure in utero could have an adverse domain-specific effect on children's development at 6 months of age, particularly among females. Further studies are warranted to support the findings and explore the mechanism of these domain-and sex-specific associations.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Weijun Pan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Jie Sheng
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Ruiwen Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Yiran Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Haiyun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Qunan Wang
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
12
|
Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun 2019; 10:4872. [PMID: 31653862 PMCID: PMC6814777 DOI: 10.1038/s41467-019-12884-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.
Collapse
|
13
|
Peterson EK, Long HE. Experimental Protocol for Using Drosophila As an Invertebrate Model System for Toxicity Testing in the Laboratory. J Vis Exp 2018:57450. [PMID: 30059035 PMCID: PMC6124635 DOI: 10.3791/57450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Emergent properties and external factors (population-level and ecosystem-level interactions, in particular) play important roles in mediating ecologically-important endpoints, though they are rarely considered in toxicological studies. D. melanogaster is emerging as a toxicology model for the behavioral, neurological, and genetic impacts of toxicants, to name a few. More importantly, species in the genus Drosophila can be utilized as a model system for an integrative framework approach to incorporate emergent properties and answer ecologically-relevant questions in toxicology research. The aim of this paper is to provide a protocol for exposing species in the genus Drosophila to pollutants to be used as a model system for a range of phenotypic outputs and ecologically-relevant questions. More specifically, this protocol can be used to 1) link multiple biological levels of organization and understand the impact of toxicants on both individual- and population-level fitness; 2) test the impact of toxicants at different stages of developmental exposure; 3) test multigenerational and evolutionary implications of pollutants; and 4) test multiple contaminants and stressors simultaneously.
Collapse
Affiliation(s)
- Elizabeth K Peterson
- Communities for Building Active STEM Engagement, Colorado State University-Pueblo; Department of Biology, Colorado State University-Pueblo;
| | - Hugh E Long
- Communities for Building Active STEM Engagement, Colorado State University-Pueblo; Department of Biology, Colorado State University-Pueblo
| |
Collapse
|
14
|
Bianchini MC, Portela JLR, Puntel RL, Ávila DS. Cellular Responses in Drosophila melanogaster Following Teratogen Exposure. Methods Mol Biol 2018; 1797:243-276. [PMID: 29896697 DOI: 10.1007/978-1-4939-7883-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies focusing on the teratogenicity of a series of new chemicals that are produced in a daily basis represent an important focus in toxicological/pharmaceutical research, particularly due to the risks arising from occupational exposure of the subjects. However, the complex mating procedures, scheduling of treatments, requirements for trained personnel, and elevated costs of traditional teratological assays with mammals hamper this type of assessments. Accordingly, the use of Drosophila melanogaster as a model for teratological studies has received considerable attention. Here some general protocols about Drosophila exposure-at different stages of their life cycle-to any chemical with putative teratological activity are presented. Importantly, some details about D. melanogaster embryonic, larval, pupal, or adult endpoints, that can be used to assess teratogenicity using flies as a model organism, are presented.
Collapse
|
15
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
16
|
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017; 18:E1456. [PMID: 28684721 PMCID: PMC5535947 DOI: 10.3390/ijms18071456] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.
Collapse
Affiliation(s)
- Pablo Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - Javier González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Noelia Sebastiá-Ortega
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| | - José Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
17
|
Nguyen AH, Altomare LE, McElwain MC. Decreased accumulation of cadmium in Drosophila selected for resistance suggests a mechanism independent of metallothionein. Biol Trace Elem Res 2014; 160:245-9. [PMID: 24929542 DOI: 10.1007/s12011-014-0037-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Heavy metals, including cadmium, are common contaminants in environments subject to human activity. Responses to exposure in the fruit fly, Drosophila melanogaster, are dosage-dependent and resistance is selectable. While metallothionein-mediated sequestration has been extensively studied as a mechanism of cadmium resistance, a link between selection for resistance and an increased accumulation of cadmium has yet to be demonstrated. To address this need, we have selected wild-type flies for cadmium resistance for 20 generations and tested metal content using mass spectrometry. Resistant flies were observed to contain lower levels of cadmium, arguing for a mechanism of cadmium resistance that is not mediated by increased sequestration. This, coupled with genetic evidence suggesting the involvement of factors located on the X chromosome, suggests a gene other than metallothionein may be involved in resistance in this line.
Collapse
Affiliation(s)
- Austin H Nguyen
- Department of Biology, Loyola Marymount University, 1 LMU Dr, Los Angeles, CA, 90045, USA
| | | | | |
Collapse
|
18
|
Mogren CL, Walton WE, Trumble JT. Tolerance to individual and joint effects of arsenic and Bacillus thuringiensis subsp. israelensis or Lysinibacillus sphaericus in Culex mosquitoes. INSECT SCIENCE 2014; 21:477-485. [PMID: 23956096 DOI: 10.1111/1744-7917.12046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2013] [Indexed: 06/02/2023]
Abstract
Arsenic contamination of global water supplies has come to the forefront in policy decisions in recent decades. However, the effects of arsenic on lower trophic levels of insects inhabiting contaminated ecosystems are not well understood. One approach to document both acute and sublethal effects of toxicants like arsenic is to assay them in combination with microbial pathogens to evaluate shifts in survival curves of the test organisms. Larvae of Culex quinquefasciatus and Culex tarsalis were reared in water containing 0 or 1 000 μg/L of arsenate or arsenite. Fourth instars were then exposed to a range of doses of Bacillus thuringiensis subsp. israelensis (Bti) or Lysinibacillus sphaericus (Ls), with shifts in lethal concentrations determined. Arsenic accumulation in 4th instars was also quantified, and a relative growth index (RGI) calculated for the treatments and compared to controls. Larvae of both species accumulated between 4 447 ± 169 ng As/g and 6 983 ± 367 ng As/g, though RGI values indicated accumulation did not affect growth and development. In all cases, the LC50 's and LC90 's of Cx. quinquefasciatus exposed jointly with arsenic and Bti/Ls were higher than Cx. tarsalis. Cx. tarsalis reared in arsenite showed a significant reduction in their Bti LC90 values compared to the control, indicating a sublethal effect of Bti. When exposed jointly with Ls, arsenite was more toxic than arsenate in Cx. tarsalis. Overall, these results indicate tolerance of these Culex species to arsenic exposures, and why this may occur is discussed.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | | | | |
Collapse
|
19
|
Tyler CR, Allan AM. The Effects of Arsenic Exposure on Neurological and Cognitive Dysfunction in Human and Rodent Studies: A Review. Curr Environ Health Rep 2014; 1:132-147. [PMID: 24860722 PMCID: PMC4026128 DOI: 10.1007/s40572-014-0012-1] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic toxicity is a worldwide health concern as several millions of people are exposed to this toxicant via drinking water, and exposure affects almost every organ system in the body including the brain. Recent studies have shown that even low concentrations of arsenic impair neurological function, particularly in children. This review will focus on the current epidemiological evidence of arsenic neurotoxicity in children and adults, with emphasis on cognitive dysfunction, including learning and memory deficits and mood disorders. We provide a cohesive synthesis of the animal studies that have focused on neural mechanisms of dysfunction after arsenic exposure including altered epigenetics; hippocampal function; glucocorticoid and hypothalamus-pituitary-adrenal axis (HPA) pathway signaling; glutamatergic, cholinergic and monoaminergic signaling; adult neurogenesis; and increased Alzheimer’s-associated pathologies. Finally, we briefly discuss new studies focusing on therapeutic strategies to combat arsenic toxicity including the use of selenium and zinc.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Andrea M Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM USA
| |
Collapse
|
20
|
Rand MD, Montgomery SL, Prince L, Vorojeikina D. Developmental toxicity assays using the Drosophila model. CURRENT PROTOCOLS IN TOXICOLOGY 2014; 59:1.12.1-20. [PMID: 24789363 PMCID: PMC4036625 DOI: 10.1002/0471140856.tx0112s59] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The fruit fly (Drosophila melanogaster) has long been a premier model for developmental biologists and geneticists. In toxicology studies, Drosophila has only recently gained broader recognition as a tool to elaborate molecular genetic mechanisms of toxic substances. In this article, two practical applications of Drosophila for developmental toxicity assays are described. The first assay takes advantage of newly developed methods to render the fly embryo accessible to small molecules, toxicants, and drugs. The second assay engages straightforward exposures to developing larvae and easy-to-score outcomes of adult development. With the extensive collections of flies that are publicly available and the ease of creating transgenic flies, these two assays have a unique power for identifying and characterizing molecular mechanisms and cellular pathways specific to the mode of action of a number of toxicants and drugs.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | |
Collapse
|
21
|
Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics 2014; 6:2010-4. [DOI: 10.1039/c4mt00249k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic-containing hydrocarbons cause developmental toxicity in Drosophila melanogaster.
Collapse
Affiliation(s)
- S. Meyer
- Graduate School of Chemistry
- University of Muenster
- 48149 Muenster, Germany
- Institute of Nutritional Science
- University of Potsdam
| | - J. Schulz
- Institute of Neuropathology
- University Hospital Muenster
- 48149 Muenster, Germany
| | - A. Jeibmann
- Institute of Neuropathology
- University Hospital Muenster
- 48149 Muenster, Germany
| | - M. S. Taleshi
- Institute of Chemistry – Analytical Chemistry
- University of Graz
- 8010 Graz, Austria
- Department of Marine Chemistry
- Faculty of Marine Science
| | - F. Ebert
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal, Germany
| | - K. A. Francesconi
- Institute of Chemistry – Analytical Chemistry
- University of Graz
- 8010 Graz, Austria
| | - T. Schwerdtle
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal, Germany
| |
Collapse
|
22
|
Mogren CL, Webb SM, Walton WE, Trumble JT. Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:78-83. [PMID: 23733012 DOI: 10.1016/j.envpol.2013.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/22/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
The distribution and speciation of arsenic (As) were analyzed in individuals of various life stages of a midge, Chironomus riparius, and the mosquito Culex tarsalis exposed to 1000 μg/l arsenate. X-ray absorption spectroscopy (XAS) revealed that C. riparius larvae accumulate As in their midgut, with inorganic arsenate [As(V)] being the predominant form, followed by arsenite [As(III)] and an As-thiol. Reduced concentrations of As in pupal and adult stages of C. riparius indicate excretion of As between the larval and pupal stages. In adults, As was limited to the thorax, and the predominant form was an As-thiol. In Cx. tarsalis, As was not found in high enough concentrations to determine As speciation, but the element was distributed throughout the larva. In adults, As was concentrated in the thorax and eyes of adults. These results have implications for understanding the biotransformation of As and its movement from aquatic to terrestrial environments.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
23
|
Mogren CL, Walton WE, Parker DR, Trumble JT. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators. PLoS One 2013; 8:e67817. [PMID: 23826344 PMCID: PMC3694899 DOI: 10.1371/journal.pone.0067817] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.
Collapse
Affiliation(s)
- Christina L. Mogren
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| | - William E. Walton
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - David R. Parker
- Department of Environmental Science, University of California Riverside, Riverside, California, United States of America
| | - John T. Trumble
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
24
|
Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena MD, Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A, Alonso-Moraga A. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies. PLoS One 2013; 8:e56986. [PMID: 23460824 PMCID: PMC3584109 DOI: 10.1371/journal.pone.0056986] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster. Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells.
Collapse
Affiliation(s)
- Inmaculada Tasset-Cuevas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigaciones Biomédicas de Córdoba (IMIBIC/Universidad de Córdoba), Córdoba, España.
| | | | | | | | | | | | | |
Collapse
|
25
|
Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol 2012; 87:969-79. [PMID: 22811022 DOI: 10.1007/s00204-012-0904-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAs(III)) is sequentially converted to monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic-glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, "being a non-anionic form" also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-0856, Japan
| | | |
Collapse
|
26
|
Tiwari AK, Pragya P, Ravi Ram K, Chowdhuri DK. Environmental chemical mediated male reproductive toxicity: Drosophila melanogaster as an alternate animal model. Theriogenology 2011; 76:197-216. [PMID: 21356551 DOI: 10.1016/j.theriogenology.2010.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/28/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
Abstract
Industrialization and indiscriminate use of agrochemicals have increased the human health risk. Recent epidemiological studies raised a concern for male reproduction given their observations of reduced sperm counts and altered semen quality. Interestingly, environmental factors that include various metals, pesticides and their metabolites have been causally linked to such adversities by their presence in the semen at levels that correlate to infertility. The epidemiological observations were further supported by studies in animal models involving various chemicals. Therefore, in this review, we focused on male reproductive toxicity and the adverse effects of different environmental chemicals on male reproduction. However, it is beyond the scope of this review to provide a detailed appraisal of all of the environmental chemicals that have been associated with reproductive toxicity in animals. Here, we provided the evidence for reproductive adversities of some commonly encountered chemicals (pesticides/metals) in the environment. In view of the recent thrust for an alternate to animal models in research, we subsequently discussed the contributions of Drosophila melanogaster as an alternate animal model for quick screening of toxicants for their reproductive toxicity potential. Finally, we emphasized the genetic and molecular tools offered by Drosophila for understanding the mechanisms underlying the male reproductive toxicity.
Collapse
Affiliation(s)
- A K Tiwari
- Embryotoxicology Division, Indian Institute of Toxicology Research, M.G. Marg, Lucknow-226001, India
| | | | | | | |
Collapse
|
27
|
Kim SJ, Jung HJ, Lim CJ. Disruption of redox homeostasis and induction of apoptosis by suppression of glutathione synthetase expression in a mammalian cell line. Free Radic Res 2011; 45:1040-51. [PMID: 21679055 DOI: 10.3109/10715762.2011.591392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The stable HepG2 transfectants anti-sensing expression of the glutathione synthetase (GS) gene exhibited delayed cell growth and increased reactive oxygen species (ROS) level. After the treatment with hydrogen peroxide, the intracellular ROS level was much higher in the stable transfectants than in the vector control cells. However, the GSH levels decreased more significantly in the stable transfectants than in the vector control cells, in the presence of hydrogen peroxide. Hydrogen peroxide-induced apoptosis of the stable transfectants was notably higher than that of the vector control cells. The GS anti-sense RNAs rendered the HepG2 cells more sensitive to growth arrest caused by glucose deprivation. They also sensitized the HepG2 cells to cadmium chloride (Cd) and nitric oxide (NO)-generating sodium nitroprusside (SNP). In brief, the results confirm that GS plays an important role in the defense of the human hepatoma cells against oxidative stress by reducing apoptosis and maintaining redox homeostasis.
Collapse
Affiliation(s)
- Su-Jung Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | | | | |
Collapse
|
28
|
Muñiz Ortiz JG, Shang J, Catron B, Landero J, Caruso JA, Cartwright IL. A transgenic Drosophila model for arsenic methylation suggests a metabolic rationale for differential dose-dependent toxicity endpoints. Toxicol Sci 2011; 121:303-11. [PMID: 21447609 DOI: 10.1093/toxsci/kfr074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms by which exposure to arsenic induces its myriad pathological effects are undoubtedly complex, while individual susceptibility to their type and severity is likely to be strongly influenced by genetic factors. Human metabolism of arsenic into methylated derivatives, once presumed to result in detoxification, may actually produce species with significantly greater pathological potential. We introduce a transgenic Drosophila model of arsenic methylation, allowing its consequences to be studied in a higher eukaryote exhibiting conservation of many genes and pathways with those of human cells while providing an important opportunity to uncover mechanistic details via the sophisticated genetic analysis for which the system is particularly well suited. The gene for the human enzyme, arsenic (+3 oxidation state) methyltransferase, was introduced into nonmethylating Drosophila under inducible control. Transgenic flies were characterized for enzyme inducibility, production of methylated arsenic species, and the dose-dependent consequences for chromosomal integrity and organismal longevity. Upon enzyme induction, transgenic flies processed arsenite into mono and dimethylated derivatives identical to those found in human urine. When induced flies were exposed to 9 ppm arsenite, chromosomal stability was clearly reduced, whereas at much higher doses, adult life span was significantly increased, a seemingly paradoxical pair of outcomes. Measurement of arsenic body burden in the presence or absence of methylation suggested that enhanced clearance of methylated species might explain this greater longevity under acutely toxic conditions. Our study clearly demonstrates both the hazards and the benefits of arsenic methylation in vivo and suggests a resolution based on evolutionary grounds.
Collapse
Affiliation(s)
- Jorge G Muñiz Ortiz
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
29
|
Murat C, Zampieri E, Vallino M, Daghino S, Perotto S, Bonfante P. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiol Lett 2011; 318:115-22. [DOI: 10.1111/j.1574-6968.2011.02248.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Stamatelos SK, Brinkerhoff CJ, Isukapalli SS, Georgopoulos PG. Mathematical model of uptake and metabolism of arsenic(III) in human hepatocytes - Incorporation of cellular antioxidant response and threshold-dependent behavior. BMC SYSTEMS BIOLOGY 2011; 5:16. [PMID: 21266075 PMCID: PMC3302683 DOI: 10.1186/1752-0509-5-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 01/25/2011] [Indexed: 03/10/2025]
Abstract
Background Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK) model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure. Results The cellular-level TK model applies mass action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in hepatocytes. The model simulates uptake of arsenite (iAsIII) via aquaporin isozymes 9 (AQP9s), glutathione (GSH) conjugation, methylation by arsenic methyltransferase (AS3MT), efflux through multidrug resistant proteins (MRPs) and the induced antioxidant response via thioredoxin reductase (TR) activity. The model was parameterized by optimization of model estimates for arsenite (iAsIII), monomethylated (MMA) and dimethylated (DMA) arsenicals concentrations with time-course experimental data in human hepatocytes for a time span of 48 hours, and dose-response data at 24 hours for a range of arsenite concentrations from 0.1 to 10 μM. Global sensitivity analysis of the model showed that at low doses the transport parameters had a dominant role, whereas at higher doses the biotransformation parameters were the most significant. A parametric comparison of the TK model with an analogous model developed for rat hepatocytes from the literature demonstrated that the biotransformation of arsenite (e.g. GSH conjugation) has a large role in explaining the variation in methylation between rats and humans. Conclusions The cellular-level TK model captures the temporal modes of arsenical accumulation in human hepatocytes. It highlighted the key biological processes that influence arsenic metabolism by explicitly modelling the metabolic network of GSH-adducts formation. The parametric comparison with the TK model developed for rats suggests that the variability in GSH conjugation could have an important role in inter-species variability of arsenical methylation. The TK model can be incorporated into larger-scale physiologically based toxicokinetic (PBTK) models of arsenic for improving the estimates of PBTK model parameters.
Collapse
Affiliation(s)
- Spyros K Stamatelos
- Environmental and Occupational Health Sciences Institute (EOHSI), a joint institute of UMDNJ-Robert Wood Johnson Medical School and Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
31
|
Mahapatra CT, Bond J, Rand DM, Rand MD. Identification of methylmercury tolerance gene candidates in Drosophila. Toxicol Sci 2010; 116:225-38. [PMID: 20375079 PMCID: PMC2902855 DOI: 10.1093/toxsci/kfq097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/19/2010] [Indexed: 11/14/2022] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant that preferentially targets the developing nervous system. Variable outcomes of prenatal MeHg exposure within a population point to a genetic component that regulates MeHg toxicity. We therefore sought to identify fundamental MeHg tolerance genes using the Drosophila model for genetic and molecular dissection of a MeHg tolerance trait. We observe autosomal dominance in a MeHg tolerance trait (development on MeHg food) in both wild-derived and laboratory-selected MeHg-tolerant strains of flies. We performed whole-genome transcript profiling of larval brains of tolerant (laboratory selected) and nontolerant (control) strains in the presence and absence of MeHg stress. Pairwise transcriptome comparisons of four conditions (+/-selection and +/-MeHg) identified a "down-down-up" expression signature, whereby MeHg alone and selection alone resulted in a greater number of downregulated transcripts, and the combination of selection + MeHg resulted in a greater number of upregulated transcripts. Functional annotation cluster analyses showed enrichment for monooxygenases/oxidoreductases, which include cytochrome P450 (CYP) family members. Among the 10 CYPs upregulated with selection + MeHg in tolerant strains, CYP6g1, previously identified as the dichlorodiphenyl trichloroethane resistance allele in flies, was the most highly expressed and responsive to MeHg. Among all the genes, Turandot A (TotA), an immune pathway-regulated humoral response gene, showed the greatest upregulation with selection + MeHg. Neural-specific transgenic overexpression of TotA enhanced MeHg tolerance during pupal development. Identification of TotA and CYP genes as MeHg tolerance genes is an inroad to investigating the conserved function of immune signaling and phase I metabolism pathways in MeHg toxicity and tolerance in higher organisms.
Collapse
Affiliation(s)
- Cecon T. Mahapatra
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont
| | - Jeffrey Bond
- Bioinformatics Core, Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - David M. Rand
- Department of Ecology & Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Matthew D. Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont
| |
Collapse
|
32
|
Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 2010; 32:74-83. [PMID: 19559084 PMCID: PMC2818018 DOI: 10.1016/j.ntt.2009.06.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 05/26/2009] [Accepted: 06/08/2009] [Indexed: 02/04/2023]
Abstract
Understanding neurotoxic mechanisms is a challenge of deciphering which genes and gene products in the developing or mature nervous system are targeted for disruption by chemicals we encounter in our environment. Our understanding of nervous system development and physiology is highly advanced due in large part to studies conducted in simple non-mammalian models. The paucity of toxicological data for the more than 80,000 chemicals in commercial use today, and the approximately 2000 new chemicals introduced each year, makes development of sensitive and rapid assays to screen for neurotoxicity paramount. In this article I advocate the use of Drosophila in the modern regimen of toxicological testing, emphasizing its unique attributes for assaying neurodevelopment and behavior. Features of the Drosophila model are reviewed and a generalized overall scheme for its use in toxicology is presented. Examples of where the fly has proven fruitful in evaluating common toxicants in our environment are also highlighted. Attention is drawn to three areas where development and application of the fly model might benefit toxicology the most: 1) optimizing sensitive endpoints for pathway-specific screening, 2) accommodating high throughput demands for analysis of chemical toxicant libraries, 3) optimizing genetic and molecular protocols for more rapid identification toxicant-by-gene interactions. While there are shortcomings in the Drosophila model, which exclude it from effective toxicological testing in certain arenas, conservation of fundamental cellular and developmental mechanisms between flies and man is extensive enough to warrant a central role for the Drosophila model in toxicological testing of today.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
33
|
Jo WJ, Loguinov A, Wintz H, Chang M, Smith AH, Kalman D, Zhang L, Smith MT, Vulpe CD. Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid (MMAIII) and arsenite (AsIII) in yeast. Toxicol Sci 2009; 111:424-36. [PMID: 19635755 DOI: 10.1093/toxsci/kfp162] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (As(III)) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMA(III)) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMA(III) and As(III) in the yeast Saccharomyces cerevisiae. Functional profiling using homozygous deletion mutants provided evidence of the requirement of highly conserved biological processes in the response against both arsenicals including tubulin folding, DNA double-strand break repair, and chromatin modification. At the equitoxic doses of 150 microM MMA(III) and 300 microM As(III), genes related to glutathione metabolism were essential only for resistance to the former, suggesting a higher potency of MMA(III) to disrupt glutathione metabolism than As(III). Treatments with MMA(III) induced a significant increase in glutathione levels in the wild-type strain, which correlated to the requirement of genes from the sulfur and methionine metabolic pathways and was consistent with the induction of oxidative stress. Based on the relative sensitivity of deletion strains deficient in GSH metabolism and tubulin folding processes, oxidative stress appeared to be the primary mechanism of MMA(III) toxicity whereas secondary to tubulin disruption in the case of As(III). Many of the identified yeast genes have orthologs in humans that could potentially modulate arsenic toxicity in a similar manner as their yeast counterparts.
Collapse
Affiliation(s)
- William J Jo
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|