1
|
Samuelsen JT, Dahl JE. Biological aspects of modern dental composites. Biomater Investig Dent 2023; 10:2223223. [PMID: 37347059 PMCID: PMC10281392 DOI: 10.1080/26415275.2023.2223223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Biological evaluation of resin-based dental composites has traditionally been based on in vitro endpoint tests with different methods to determine loss of cell viability and cell morphology changes after exposure to the material or monomer constituents. The data reveals a potential for biological effects, but clinical relevance of such data is limited. Positive allergy tests and allergic clinical reactions to dental monomers are observed in dental personnel and patients. The aim of this review is to address newer research on molecular events caused by exposure to resin-based composites to have a better understanding of the potential for clinical adverse effects. A more accurate understanding of the biological aspects of dental composite materials has been found after studying parameters like glutathione depletion, oxidative stress, genotoxicity, and immunomodulatory key effects in various cell culture models. Using omics-based approaches allow for a broader and non-specified search of changes caused by methacrylate exposure. Defense mechanisms and adaption are observed in cells exposed to monomer concentrations relevant to clinical exposure. The above-mentioned methods are the foundations for modified testing strategies. The clinical relevance of most available in vitro endpoint tests is of limited relevance for the patient. Research focusing on molecular mechanisms has given new insight into methacrylate toxicity in exposed cells. Using this knowledge from mechanistic studies to develop standardized in vitro biocompatibility tests will likely improve their clinical relevance.
Collapse
Affiliation(s)
| | - Jon E. Dahl
- NIOM - Nordic institute of dental materials, Oslo, Norway
| |
Collapse
|
2
|
Kaur K, Kanayama K, Wu QQ, Gumrukcu S, Nishimura I, Jewett A. Zoledronic acid mediated differential activation of NK cells in different organs of WT and Rag2 mice; stark differences between the bone marrow and gingivae. Cell Immunol 2022; 375:104526. [DOI: 10.1016/j.cellimm.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
|
3
|
Siemer K, Husari A, Vach K, Tomakidi P, Hellwig E, Schulz SD, Polydorou O. N-Acetylcysteine modulates the effects of composites on human gingival keratinocytes. Dent Mater 2021; 37:597-611. [PMID: 33551189 DOI: 10.1016/j.dental.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate, if antioxidants, like N-Acetylcysteine, can modulate effects of composite eluates on human gingival keratinocytes. METHODS Composite samples of ceram.x® universal, Filtek™ Supreme XTE, and Admira® Fusion were stored 72h in cell culture medium to prepare eluates, according to ISO 10993-12:2012. Human gingival keratinocytes were exposed to these eluates with or without 3mM N-Acetylcysteine. Following cell observation by iCELLigence®, exposure periods were determined at 1d and 4d. Cell morphological analysis combined with live/dead staining was performed. Tissue-specific biomarkers of terminal differentiation, Involucrin and Filaggrin, were analyzed by indirect immunofluorescence (IIF) and Western blot (WB). qPCR profiling was performed on genes encoding for: inflammation, apoptosis, turn-over of extracellular matrix, adhesion, proliferation and differentiation. For statistical analysis one-way Anova was used (p<0.05). RESULTS Cells exposed to N-Acetylcysteine exhibited morphological changes but no cell death. After adding 3mM N-Acetylcysteine to HGK cultures, increased fluorescence intensity and protein amounts of Involucrin and Filaggrin indicated enhanced differentiation (p<0.05). Gene expression was modulated by: (i) composition of the composite eluates, (ii) NAC and (iii) exposure time. Filtek™ Supreme XTE showed a significant increased gene expression in inflammatory genes (p<0.05), which was amplified by the addition of NAC at 1d. Concerning exposure time, modulated gene expression showed eluate dependency, substantiated by Filtek™ Supreme XTE modulation at day 1 and Admira® Fusion at day 4. SIGNIFICANCE N-Acetylcysteine-emerging effects on gingival keratinocytes were threefold: (i) increase of differentiation, (ii) modulation of composite-related effects and (iii) in parts counteraction of eluate-induced effects.
Collapse
Affiliation(s)
- K Siemer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - A Husari
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - K Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Germany Stefan-Meier-Straße 26, 79104, Freiburg, Germany
| | - P Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - S D Schulz
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - O Polydorou
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
4
|
Dental resin monomers induce early and potent oxidative damage on human odontoblast-like cells. Chem Biol Interact 2020; 333:109336. [PMID: 33248029 DOI: 10.1016/j.cbi.2020.109336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
Resin-based dental materials consist of filler particles and different monomers that are light cured in situ to re-establish dental function and aesthetics. Due to the degree of conversion of adhesive polymers, the monomers triethyleneglycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) are released in relatively high amounts and are susceptible to degradation, acting as bioactive compounds and affecting cell and tissues. This study aimed to assess the effect of HEMA and TEGDMA exposure on metabolic activity, membrane integrity, and cell survival of human odontoblast-like cell (hOLCs). Exposure to resin monomers for 24 h induced major changes in cell membrane integrity, metabolic activity, and survival, which were measured by the calcein method and lactate dehydrogenase release. Increased and early reactive oxygen species (ROS) production was observed leading to degradative oxidation of membrane lipids identified as malondialdehyde production. Severe alteration in mitochondria occurred due to transmembrane mitochondrial potential collapse, possibly inducing activation of apoptotic cell death. hOLCs exposure to resin monomers modified the cell redox potential, with consequences on membrane permeability and integrity, including mitochondrial function. Lipid peroxidation appears to be a key phenomenon for the membrane structures oxidation after HEMA and TEGDMA exposure, leading to cell death and cytotoxicity. hOLCs respond early by differential induction of adaptive mechanisms to maintain cell homeostasis. Modulation of oxidative stress-induced response involves the regulation of genes that encode for antioxidant proteins such as catalase and heme oxygenase-1; regulation that functions as a critical protection mechanism against oxidative cell damage induced by HEMA and TEGDMA. Ascorbic acid as an antioxidant substance mitigates the oxidative damage associated with exposure to monomers.
Collapse
|
5
|
Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med Hypotheses 2020; 143:109851. [PMID: 32534175 PMCID: PMC7242962 DOI: 10.1016/j.mehy.2020.109851] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Asymptomatic or minimally symptomatic infection with COVID-19 can result in silent transmission to large numbers of individuals, resulting in expansion of the pandemic with a global increase in morbidity and mortality. New ways of screening the general population for COVID-19 are urgently needed along with novel effective prevention and treatment strategies. HYPOTHESIS A hypothetical three-part prevention, diagnostic, and treatment approach based on an up-to-date scientific literature review for COVID-19 is proposed. Regarding diagnosis, a validated screening questionnaire and digital app for COVID-19 could help identify individuals who are at risk of transmitting the disease, as well as those at highest risk for poor clinical outcomes. Global implementation and online tracking of vital signs and scored questionnaires that are statistically validated would help health authorities properly allocate essential health care resources to test and isolate those at highest risk for transmission and poor outcomes. Second, regarding prevention, no validated protocols except for physical distancing, hand washing, and isolation exist, and recently ivermectin has been published to have anti-viral properties against COVID-19. A randomized trial of ivermectin, and/or nutraceuticals that have been published to support immune function including glutathione, vitamin C, zinc, and immunomodulatory supplements (3,6 Beta glucan) could be beneficial in preventing transmission or lessening symptomatology but requires statistical validation. Third, concerning treatment, COVID-19 induced inflammation and "cytokine storm syndrome" with hemophagocytic lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS) have resulted in extreme morbidity and mortality in those with certain comorbidities, secondary to "acute respiratory distress syndrome" (ARDS) and multiorgan dysfunction with disseminated intravascular coagulation (DIC). Deficiency in red blood cell, serum and alveolar glutathione has been published in the medical literature for ARDS, as well as viral and bacterial pneumonias, resulting from increased levels of free radical/oxidative stress. A randomized controlled trial of blocking NF-κB and cytokine formation using glutathione precursors (N-acetyl-cysteine [NAC] and alpha lipoic acid) and PO/IV glutathione with associated anti-viral effects should be performed, along with an evaluation of Nrf2 activators (curcumin, sulforaphane glucosinolate) which have been scientifically proven to lower inflammation. Since high mortality rates from sepsis induced DIC due to COVID-19 infection has also been associated with thrombotic events and elevated levels of D-dimer, randomized controlled trials of using anticoagulant therapy with heparin is urgently required. This is especially important in patients on ventilators who have met certain sepsis induced coagulopathy (SIC) criteria. The use of acetazolamide with or without sildenafil also needs to be explored with or without heparin, since increased oxygen delivery to vital organs through prevention of thrombosis/pulmonary emboli along with carbonic anhydrase inhibition may help increase oxygenation and prevent adverse clinical outcomes. CONCLUSION AND IMPLICATIONS A three-part prevention, diagnostic, and treatment plan is proposed for addressing the severe complications of COVID-19. Digital monitoring of symptoms to clinically diagnose early exposure and response to treatment; prevention with ivermectin as well as nutritional therapies that support a healthy immune response; treatment with anti-inflammatory therapies that block NF-κB and activate Nrf2 pathways, as well as novel therapies that address COVID-19 pneumonia and ARDS with DIC including anticoagulation and/or novel respiratory therapies with or without acetazolamide and sildenafil. These three broad-based interventions urgently need to be subjected to randomized, controlled trials.
Collapse
Affiliation(s)
- Richard I Horowitz
- HHS Babesia and Tickborne Pathogen Subcommittee, Washington, D.C. 20201, USA; Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY 12538, USA.
| | - Phyllis R Freeman
- Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY 12538, USA
| |
Collapse
|
6
|
Kaur K, Kozlowska AK, Topchyan P, Ko MW, Ohanian N, Chiang J, Cook J, Maung PO, Park SH, Cacalano N, Fang C, Jewett A. Probiotic-Treated Super-Charged NK Cells Efficiently Clear Poorly Differentiated Pancreatic Tumors in Hu-BLT Mice. Cancers (Basel) 2019; 12:cancers12010063. [PMID: 31878338 PMCID: PMC7017229 DOI: 10.3390/cancers12010063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Abstract: Background and Aims: We have previously demonstrated that the stage of differentiation of tumors has profound effect on the function of NK cells, and that stem-like/poorly differentiated tumors were preferentially targeted by the NK cells. Therefore, in this study we determined the role of super-charged NK cells in immune mobilization, lysis, and differentiation of stem-like/undifferentiated tumors implanted in the pancreas of humanized-BLT (hu-BLT) mice fed with or without AJ2 probiotics. The phenotype, growth rate and metastatic potential of pancreatic tumors differentiated by the NK cells (NK-differentiated) or patient derived differentiated or stem-like/undifferentiated pancreatic tumors were investigated. Methods: Pancreatic tumor implantation was performed in NSG and hu-BLT mice. Stage of differentiation of tumors was determined using our published criteria for well-differentiated tumors exhibiting higher surface expression of MHC- class I, CD54, and PD-L1 (B7H1) and lower expression of CD44 receptors. The inverse was seen for poorly-differentiated tumors. Results: Stem-like/undifferentiated pancreatic tumors grew rapidly and formed large tumors and exhibited lower expression of above-mentioned differentiation antigens in the pancreas of NSG and hu-BLT mice. Unlike stem-like/undifferentiated tumors, NK-differentiated MP2 (MiaPaCa-2) tumors or patient-derived differentiated tumors were not able to grow or grew smaller tumors, and were unable to metastasize in NSG or hu-BLT mice, and they were susceptible to chemotherapeutic drugs. Stem-like/undifferentiated pancreatic tumors implanted in the pancreas of hu-BLT mice and injected with super-charged NK cells formed much smaller tumors, proliferated less, and exhibited differentiated phenotype. When differentiation of stem-like tumors by the NK cells was prevented by the addition of antibodies to IFN-γ and TNF-α, tumors grew rapidly and metastasized, and they remained resistant to chemotherapeutic drugs. Greater numbers of immune cells infiltrated the tumors of NK-injected and AJ2-probiotic bacteria-fed mice. Moreover, increased IFN-γ secretion in the presence of decreased IL-6 was seen in tumors resected and cultured from NK-injected and AJ2 fed mice. Tumor-induced decreases in NK cytotoxicity and IFN-γ secretion were restored/increased within PBMCs, spleen, and bone marrow when mice received NK cells and were fed with AJ2. Conclusion: NK cells prevent growth of pancreatic tumors through lysis and differentiation, thereby curtailing the growth and metastatic potential of stem-like/undifferentiated-tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Anna Karolina Kozlowska
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
- Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paytsar Topchyan
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Nick Ohanian
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Jessica Chiang
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Jessica Cook
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Phyu Ou Maung
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - So-Hyun Park
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Nicholas Cacalano
- The Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA;
- Department of Radiation Oncology, Division of Molecular and Cellular Oncology, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
| | - Changge Fang
- BioPro Diagnostics, LLC, 4919 Brook Hills Drive, Annandale, VA 22003, USA;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
- The Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA;
- Correspondence: ; Tel.: +1-310-968-4994; Fax: +1-310-794-7109
| |
Collapse
|
7
|
Taso E, Stefanovic V, Gaudin A, Grujic J, Maldonado E, Petkovic-Curcin A, Vojvodic D, Sculean A, Rakic M. Effect of dental caries on periodontal inflammatory status: A split-mouth study. Arch Oral Biol 2019; 110:104620. [PMID: 31791000 DOI: 10.1016/j.archoralbio.2019.104620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This controlled split-mouth study aimed to estimate the effect of caries and related treatment on concentrations of interleukin (IL)-2, interferon (IFN)-γ, IL-12, IL-17A, IL-13, IL-10, IL-6, IL-5, IL-4, IL-22, tumor necrosis factor (TNF)-α, and IL1-β in gingival crevicular fluid (GCF) of caries affected teeth before (B), 7 (7D) and 30 (30D) days post-treatment and to compare them with concentrations from healthy teeth. DESIGN Study population included 81 systemically and periodontally healthy non-smokers exhibiting at least one shallow occlusal/ inter-proximal caries and one healthy tooth from the same morphologic group at the contralateral position. Following clinical exam, the GCF samples were collected baseline as well as 7D and 30D, while the biomarker measurement was performed using multiplex flowcytometry. RESULTS Caries affected teeth exhibited significantly higher levels of IFN-γ, IL-1β, IL-2, IL-4 and IL-6 when compared to healthy teeth. Post-treatment cytokines levels showed general trend of increase when compared to baseline, that was significant for IL-22 and IL-17 at 7D, while IFN-γ was significantly increased at 7D compared to the healthy teeth. At 30D, IFN-γ, TNF-α, IL-17 and IL-4 levels were significantly increased when compared to healthy teeth, while IL-2 levels were significantly higher than baseline levels. CONCLUSION Considering significantly increased periodontal levels of inflammatory markers in caries affected teeth and in response to performed treatment, it seems that dental caries and related restorative treatment might contribute to periodontal inflammation via additive effects already in early-stage caries.
Collapse
Affiliation(s)
- Ervin Taso
- Clinic for Stomatology, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| | - Vladimir Stefanovic
- Clinic for Stomatology, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| | - Alexis Gaudin
- Faculty of Dental Surgery, University of Nantes, Nantes, France; Inserm, U1229, Regenerative Medicine and Skeleton Research, RMeS, CHU Nantes, PHU 4 OTONN, 1 Place Alexis-Ricordeau, Nantes, France
| | - Jovan Grujic
- Faculty of Medicine, University of Belgrade, Dr. Subotica 8, Belgrade, Serbia
| | - Estela Maldonado
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, Faculty of Dentistry, University Complutense of Madrid, Pza. Ramón y Cajal, s/n, Madrid, Spain
| | - Aleksandra Petkovic-Curcin
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia; Medical Faculty, University of Defence, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia; Medical Faculty, University of Defence, Belgrade, Serbia
| | - Anton Sculean
- Faculty of Dental Medicine, University of Bern, Freiburgstrasse 7, Bern, Switzerland
| | - Mia Rakic
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, Faculty of Dentistry, University Complutense of Madrid, Pza. Ramón y Cajal, s/n, Madrid, Spain; Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
8
|
Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater 2019; 35:501-510. [DOI: 10.1016/j.dental.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
|
9
|
Juráňová J. Illuminating the cellular and molecular mechanism of the potential toxicity of methacrylate monomers used in biomaterials. Drug Chem Toxicol 2019; 43:266-278. [DOI: 10.1080/01480545.2018.1488860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jana Juráňová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Hněvotínská 5, Olomouc, Czech Republic
| |
Collapse
|
10
|
Yu JJ, Zhu LX, Zhang J, Liu S, Lv FY, Cheng X, Liu GJ, Peng B. From the Cover: Activation of NF-κB-Autophagy Axis by 2-Hydroxyethyl Methacrylate Commits Dental Mesenchymal Cells to Apoptosis. Toxicol Sci 2017; 157:100-111. [DOI: 10.1093/toxsci/kfx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
11
|
The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds. Regul Toxicol Pharmacol 2017; 84:77-93. [PMID: 28087335 DOI: 10.1016/j.yrtph.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.
Collapse
|
12
|
Grande R, Pacella S, Di Giulio M, Rapino M, Di Valerio V, Cellini L, Cataldi A. NF-kB mediated down-regulation of collagen synthesis upon HEMA (2-hydroxyethyl methacrylate) treatment of primary human gingival fibroblast/Streptococcus mutans co-cultured cells. Clin Oral Investig 2015; 19:841-9. [PMID: 25200938 PMCID: PMC4429030 DOI: 10.1007/s00784-014-1304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE In vitro studies have evidenced the cytotoxic effect of HEMA (2-hydroxyethyl methacrylate), the most common component of dental resin-based restorative material, which is released within the oral cavity, on eukaryotic cells such as gingival fibroblast and epithelial cells. However, since the presence of microorganisms within the oral cavity cannot be excluded and little is known about the interactions occurring between eukaryotic cells and the human oral microbiota, our attention has been addressed to investigate the effect of 3 mM HEMA on the molecular mechanisms driving the response of human gingival fibroblasts (HGFs) co-cultured with Streptococcus mutans. METHODOLOGY HGF/S. mutans co-culture has been set up in our lab, and upon HEMA treatment, S.mutans and HGF cells' viability and adhesion along with type I collagen gene and pro-collagen I, Bax, Bcl2, nuclear factor kB (NF-kB), IkBα, pIkBα protein expression by PCR, Western blotting and ELISA assays have been investigated. RESULTS HEMA treatment determines a significant decrease of type I collagen protein production, even in the presence of S. mutans, in parallel to a decrease of cell viability and adhesion, which seem to be regulated by NF-kB activation. In fact, when SN50, NF-kB-specific pharmacological inhibitor, is added to the culture, cell proliferation along with collagen synthesis is restored. CONCLUSION The modulation exerted by S. mutans on the cytotoxic effect of HEMA suggests that within the oral cavity, the eukaryotic/prokaryotic cell interactions, maintaining the balance of the environment, allow HEMA to perform its adhesive and bonding function and that the use of a co-culture system, which simulates the oral cavity organization, improves the knowledge concerning the biocompatibility of this dental material.
Collapse
Affiliation(s)
- R. Grande
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - S. Pacella
- Dipartimento di Medicina e Scienze dell’Invecchiamento, Università G. d’Annunzio, Chieti-Pescara, 66100, Chieti, Italy
| | - M. Di Giulio
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - M. Rapino
- Istituto di Genetica Molecolare del CNR, Unità di Chieti, Chieti, Italy
| | - V. Di Valerio
- Dipartimento di Medicina e Scienze dell’Invecchiamento, Università G. d’Annunzio, Chieti-Pescara, 66100, Chieti, Italy
| | - L. Cellini
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - A. Cataldi
- Dipartimento di Farmacia, Università G. d’Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
13
|
Nishimiya H, Yamada M, Ueda T, Sakurai K. N-acetyl cysteine alleviates inflammatory reaction of oral epithelial cells to poly (methyl methacrylate) extract. Acta Odontol Scand 2015; 73:616-25. [PMID: 25915728 DOI: 10.3109/00016357.2015.1021834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The purpose of this in vitro study was to determine whether the cytotoxicity of self-curing polymethyl methacrylate (PMMA) dental resin to oral epithelial cells was eliminated by mixing the antioxidant amino acid derivative, N-acetyl cysteine (NAC) with the material. MATERIALS AND METHODS Rat and human oral epithelial cells cultured on polystyrene were incubated in culture medium with or without extract from self-curing PMMA dental resin, with or without pre-mixing with NAC. On day 1, the cultures were evaluated for cellular damage, intracellular formaldehyde invasion, cellular redox status and pro-inflammatory cytokine production. Formaldehyde content and the amount of released NAC in the extract were evaluated. RESULTS Rat epithelial cells cultured with PMMA extract showed marked increases in lactate dehydrogenase (LDH) release, intracellular formaldehyde and lysosomal levels and reductions in attached cell number and the amount of E-cadherin compared with those in the culture without the extract; these adverse biological effects were alleviated or prevented by pre-mixing the resin with NAC. In human oral epithelial cells cultured with PMMA extract, the addition of NAC into the resin prevented the intracellular elevation of reactive oxygen species and the reduction in cellular glutathione levels. Human cell cultures with the extract produced higher levels of various pro-inflammatory cytokines than cultures without the extract; this was prevented by mixing the resin with NAC. The extract from PMMA pre-mixed with NAC contained a lower concentration of formaldehyde and a substantial amount of antioxidants. CONCLUSION The cytotoxicity of self-curing PMMA dental resin to oral epithelial cells was eliminated by mixing the resin with NAC.
Collapse
Affiliation(s)
- Hiroko Nishimiya
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College , Tokyo , Japan
| | | | | | | |
Collapse
|
14
|
Jiao Y, Ma S, Li J, Shan L, Yang Y, Li M, Chen J. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin. PeerJ 2015; 3:e868. [PMID: 25922788 PMCID: PMC4411485 DOI: 10.7717/peerj.868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 11/26/2022] Open
Abstract
Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University , Xi'an , PR China
| | - Sai Ma
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University , Xi'an , PR China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University , Xi'an , PR China
| | - Lequn Shan
- Department of Orthopaedic Surgery, Tangdu hospital, the Fourth Military Medical University , Xi'an , PR China
| | - Yanwei Yang
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University , Xi'an , PR China
| | - Meng Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University , Xi'an , PR China
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University , Xi'an , PR China
| |
Collapse
|
15
|
2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway. Biomaterials 2014; 35:2890-904. [DOI: 10.1016/j.biomaterials.2013.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
|
16
|
Gallorini M, Cataldi A, di Giacomo V. HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis. Int Endod J 2014; 47:813-8. [DOI: 10.1111/iej.12232] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/16/2013] [Indexed: 01/14/2023]
Affiliation(s)
- M. Gallorini
- Department of Pharmacy; University “G. d'Annunzio”; Chieti Italy
| | - A. Cataldi
- Department of Pharmacy; University “G. d'Annunzio”; Chieti Italy
| | - V. di Giacomo
- Department of Pharmacy; University “G. d'Annunzio”; Chieti Italy
| |
Collapse
|
17
|
Spagnuolo G, Desiderio C, Rivieccio V, Amato M, Rossetti DV, D’Antò V, Schweikl H, Lupi A, Rengo S, Nocca G. In vitro cellular detoxification of triethylene glycol dimethacrylate by adduct formation with N-acetylcysteine. Dent Mater 2013; 29:e153-60. [DOI: 10.1016/j.dental.2013.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/25/2013] [Accepted: 04/25/2013] [Indexed: 01/19/2023]
|
18
|
Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013; 34:4555-63. [DOI: 10.1016/j.biomaterials.2013.03.019] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/09/2013] [Indexed: 12/28/2022]
|
19
|
Abstract
Vital pulp therapy is performed to preserve the health status of the tooth and its ultimate position in the arch. These procedures are performed routinely in primary and permanent teeth. This review is divided into 2 parts: the first aims to illustrate the basic biology of the pulp and the effects on the pulp due to various procedures; the second focuses on the clinical aspects of treatment and the use of various dental materials during different vital pulp therapy procedures performed in the primary and permanent teeth.
Collapse
|
20
|
Cataldi A, Zara S, Rapino M, Patruno A, di Giacomo V. Human gingival fibroblasts stress response to HEMA: A role for protein kinase C α. J Biomed Mater Res A 2012; 101:378-84. [DOI: 10.1002/jbm.a.34337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 11/10/2022]
|
21
|
Krifka S, Hiller KA, Spagnuolo G, Jewett A, Schmalz G, Schweikl H. The influence of glutathione on redox regulation by antioxidant proteins and apoptosis in macrophages exposed to 2-hydroxyethyl methacrylate (HEMA). Biomaterials 2012; 33:5177-86. [DOI: 10.1016/j.biomaterials.2012.04.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/02/2012] [Indexed: 01/08/2023]
|
22
|
Lin PY, Liu HJ, Chang CD, Chang CI, Hsu JL, Liao MH, Lee JW, Shih WL. Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens. Arch Virol 2011; 156:1917-29. [PMID: 21779911 DOI: 10.1007/s00705-011-1063-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/30/2011] [Indexed: 12/22/2022]
Abstract
In this study, intracellular signaling in ARV S1133-mediated apoptosis was investigated. A microarray was used to examine the gene expression profiles of cells upon ARV S1133 infection and ARV-encoded pro-apoptotic protein σC overexpression. The analysis indicated that in the set of DNA-damage-responsive genes, DDIT-3 and GADD45α were both upregulated by viral infection and σC overexpression. Further investigation demonstrated that both treatments caused DNA breaks, which increased the expression and/or phosphorylation of DNA damage response proteins. ROS and lipid peroxidation levels were increased, and ARV S1133 and σC caused apoptosis mediated by DNA damage signaling. ROS scavenger NAC, caffeine and an ATM-specific inhibitor significantly reduced ARV S1133- and σC-induced DNA breaks, DDIT-3 and GADD45α expression, H2AX phosphorylation, and apoptosis. Overexpression of DDIT-3 and GADD45α enhanced the oxidative stress and apoptosis induced by ARV S1133 and σC. In conclusion, our results demonstrate the involvement of the DNA-damage-signaling pathway in ARV S1133- and σC-induced apoptosis.
Collapse
Affiliation(s)
- Ping-Yuan Lin
- Graduate Institute and Department of Life Science, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
D'Antò V, Spagnuolo G, Schweikl H, Rengo S, Ambrosio L, Martina R, Valletta R. Effect of N-acetyl cysteine on orthodontic primers cytotoxicity. Dent Mater 2011; 27:180-6. [PMID: 21081246 DOI: 10.1016/j.dental.2010.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/05/2010] [Accepted: 10/15/2010] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The aims of this study were to evaluate the cytotoxicity of four orthodontic primers, including two hydrophilic and two hydrophobic materials, and to investigate the role of the reactive oxygen species (ROS) in induced cell damage. Moreover, the effects of the anti-oxidant N-acetyl cysteine (NAC) on primers toxicity was analyzed. METHODS Human gingival fibroblasts (HGF) were exposed to different concentrations of primers (0-0.25 mg/ml) in the presence or absence of NAC, and the cytotoxicity was assessed by the MTT assay, while cell death was quantified by flow cytometry after propidium iodide staining. The increase in the induced ROS levels was detected by flow cytometry measuring the fluorescence of the oxidation-sensitive dye 2',7'-dichlorofluorescein diacetate (DCFH-DA). RESULTS All materials decreased cell viability in a dose-related manner after a 24 h exposure period. Cytotoxicity of orthodontic primers based on concentrations which caused a 50% decrease in cell viability (TC₅₀) in HGF was ranked as follows (median values): Eagle Fluorsure (0.078 mg/ml)>Transbond XT (0.081 mg/ml)>Transbond MIP (0.128 mg/ml)>Ortho solo (0.130 mg/ml). Moreover, in HGF cells, all materials induced a dose-dependent increase in ROS levels compared to untreated cells. Incubation of HGF with NAC significantly reduced ROS production and decreased the cell damage and cytotoxicity caused by all materials tested (p<0.001). SIGNIFICANCE Our results suggested that hydrophilic primers were less cytotoxic than hydrophobic materials. Moreover, we demonstrated a major role of ROS in the induction of cell death since the antioxidant N-acetyl cysteine was able to prevent cell damage induced by all materials tested.
Collapse
Affiliation(s)
- Vincenzo D'Antò
- Department of Oral and Maxillofacial Sciences, University of Naples Federico II, via S. Pansini 5, 80128 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Krifka S, Seidenader C, Hiller KA, Schmalz G, Schweikl H. Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig 2011; 16:215-24. [PMID: 21243381 DOI: 10.1007/s00784-010-0508-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/30/2010] [Indexed: 12/11/2022]
Abstract
Dental composites are a source of residual monomers that are released into the oral environment. Since monomers act on cultured cells through reactive oxygen species (ROS), we hypothesized that composites generate ROS associated with cytotoxicity. Human pulp-derived cells were exposed to extracts of methacrylate-based materials including triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate-free composites (Tetric Ceram, Tetric EvoCeram, els, els flow, Solitaire 2) and a silorane-based composite (Hermes III). The materials were polymerized in the presence and absence of a polyester film and then extracted in culture medium. The generation of ROS was measured by flow cytometry, and cytotoxicity was determined as well. Methacrylate-based composites reduced cell survival but varied in efficiency. Undiluted extracts of Solitaire 2 specimens prepared in the absence of a polyester film reduced cell survival to 26% compared with untreated cultures. Cytotoxicity was reduced when specimens were covered with a polyester film during preparation. Cytotoxicity of the composites was ranked as follows: Solitaire 2 >> els flow > Tetric Ceram = Tetric EvoCeram = els > Hermes III. The generation of ROS followed the same pattern as detected with cytotoxic effects. A positive correlation was found between ROS production and cell survival caused by extracts made from materials not covered with a polyester film. These findings suggest that components released from composites affect cellular signaling networks through ROS formation. Regenerative and reparative capacities of the dentine-pulp complex may be impaired by biologically active resin monomers released from composite restorations.
Collapse
Affiliation(s)
- Stephanie Krifka
- Department of Operative Dentistry and Periodontology, University of Regensburg Medical Centre, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Krifka S, Petzel C, Hiller KA, Frank EM, Bosl C, Spagnuolo G, Reichl FX, Schmalz G, Schweikl H. Resin monomer-induced differential activation of MAP kinases and apoptosis in mouse macrophages and human pulp cells. Biomaterials 2010; 31:2964-75. [DOI: 10.1016/j.biomaterials.2010.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/03/2010] [Indexed: 12/20/2022]
|
26
|
Jewett A, Arasteh A, Tseng HC, Behel A, Arasteh H, Yang W, Cacalano NA, Paranjpe A. Strategies to rescue mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity. PLoS One 2010; 5:e9874. [PMID: 20360990 PMCID: PMC2847602 DOI: 10.1371/journal.pone.0009874] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/25/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The aim of this paper is to study the function of allogeneic and autologous NK cells against Dental Pulp Stem Cells (DPSCs) and Mesenchymal Stem Cells (MSCs) and to determine the function of NK cells in a three way interaction with monocytes and stem cells. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate here that freshly isolated untreated or IL-2 treated NK cells are potent inducers of cell death in DPSCs and MSCs, and that anti-CD16 antibody which induces functional split anergy and apoptosis in NK cells inhibits NK cell mediated lysis of DPSCs and MSCs. Monocytes co-cultured with either DPSCs or MSCs decrease lysis of stem cells by untreated or IL-2 treated NK cells. Monocytes also prevent NK cell apoptosis thereby raising the overall survival and function of NK cells, DPSCs or MSCs. Both total population of monocytes and those depleted of CD16(+) subsets were able to prevent NK cell mediated lysis of MSCs and DPSCs, and to trigger an increased secretion of IFN-gamma by IL-2 treated NK cells. Protection of stem cells from NK cell mediated lysis was also seen when monocytes were sorted out from stem cells before they were added to NK cells. However, this effect was not specific to monocytes since the addition of T and B cells to stem cells also protected stem cells from NK cell mediated lysis. NK cells were found to lyse monocytes, as well as T and B cells. CONCLUSION/SIGNIFICANCE By increasing the release of IFN-gamma and decreasing the cytotoxic function of NK cells monocytes are able to shield stem cells from killing by the NK cells, resulting in an increased protection and differentiation of stem cells. More importantly studies reported in this paper indicate that anti-CD16 antibody can be used to prevent NK cell induced rejection of stem cells.
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nocca G, D'Antò V, Desiderio C, Rossetti DV, Valletta R, Baquala AM, Schweikl H, Lupi A, Rengo S, Spagnuolo G. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation. Biomaterials 2009; 31:2508-16. [PMID: 20022629 DOI: 10.1016/j.biomaterials.2009.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/03/2009] [Indexed: 12/27/2022]
Abstract
Cytotoxicity of the dental resin monomer 2-hydroxyethyl methacrylate (HEMA) and the protective effects of N-acetyl cysteine (NAC) on monomer-induced cell damage are well demonstrated. The aim of our study was to analyze the hypothesis that the protection of NAC from HEMA cytotoxicity might be due to direct NAC adduct formation. To this end, using HPLC we first measured the actual intracellular HEMA concentrations able to cause toxic effects on 3T3-fibroblasts and then determined the decrease in intracellular and extracellular HEMA levels in the presence of NAC. In addition, by capillary electrophoresis coupled with mass spectrometry analysis (CE-MS), we evaluated NAC-HEMA adduct formation. HEMA reduced 3T3 cell vitality in a dose- and time-dependent manner. The concentration of HEMA inside the cells was 15-20 times lower than that added to the culture medium for cell treatment (0-8 mmol/L). In the presence of 10 mmol/L NAC, both intracellular and extracellular HEMA concentrations greatly decreased in conjunction with cytotoxicity. NAC-HEMA adducts were detected both in the presence and absence of cells. Our findings suggest that the in vitro detoxification ability of NAC against HEMA-induced cell damage occurs through NAC adduct formation. Moreover, we provide evidence that the actual intracellular concentration of HEMA able to cause cytotoxic effects is at least one magnitude lower than that applied extracellularly.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|