1
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
2
|
Ahmed Taher H, Zalzala MH. Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0425. [PMID: 39924693 DOI: 10.1515/jcim-2024-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT). METHOD Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury. RESULTS ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis. CONCLUSIONS Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and ntcp and bsep expression with mitigating liver damage and inflammation.
Collapse
Affiliation(s)
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
4
|
Dong Q, Wang Z, Hu N, Tie F, Liu Z, Sun Y, Wang Y, Tan N, Wang H. Total Iridoid Glycosides from Swertia mussotii Franch. Alleviate Cholestasis Induced by α-Naphthyl Isothiocyanate through Activating the Farnesoid X Receptor and Inhibiting Oxidative Stress. Int J Mol Sci 2024; 25:10607. [PMID: 39408937 PMCID: PMC11476520 DOI: 10.3390/ijms251910607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cholestasis refers to a physiological and pathological process caused by bile acid (BA) overaccumulation inside the circulatory system and liver, leading to systemic and hepatocellular damage. Activating the farnesol X receptor (FXR) to restore BA homeostasis is a promising strategy for treating cholestasis. The objective of this research is to reveal solid evidence for the fact that the total iridoid glycosides from Swertia mussotii Franch. (IGSM) alleviate cholestasis. In this research, the whole plant of S. mussotii was extracted with 70% ethanol and separated by macroporous adsorption resin. A rat cholestasis model was established by the injection of α-naphthyl isothiocyanate (ANIT) at a dose of 75 mg/kg. Biochemical and oxidative stress indicators were determined using commercial assay kits. The mRNA abundance of FXR and target proteins was assessed using RT-qPCR. In addition, the effects of main compounds with FXR were evaluated by molecular docking after IGSM analysis using UPLC. The results indicated that IGSM alleviated ANIT-induced cholestasis through reducing serum ALT, AST, AKP, and TBA levels; increasing the mRNA levels of Fxr, Besp, Ntcp, and Mep2; and reducing oxidative stress. The proportion of iridoid compounds in IGSM exceeded 50%, which may be the active substance basis of IGSM. This study provides a theoretical reference for IGSM in the treatment of cholestasis, and future studies may delve more deeply into the FXR regulatory pathway.
Collapse
Affiliation(s)
- Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (Q.D.); (N.H.); (F.T.); (Z.L.)
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (Y.S.)
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (Q.D.); (N.H.); (F.T.); (Z.L.)
| | - Fangfang Tie
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (Q.D.); (N.H.); (F.T.); (Z.L.)
| | - Zenggen Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (Q.D.); (N.H.); (F.T.); (Z.L.)
| | - Ying Sun
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (Y.S.)
| | - Yue Wang
- Medical College, Qinghai University, Xining 810016, China; (Y.W.); (N.T.)
| | - Nixia Tan
- Medical College, Qinghai University, Xining 810016, China; (Y.W.); (N.T.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (Q.D.); (N.H.); (F.T.); (Z.L.)
| |
Collapse
|
5
|
Alaaeldin R, Eisa YA, El-Rehany MA, Fathy M. Vincamine alleviates intrahepatic cholestasis in rats through modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7981-7994. [PMID: 38761209 PMCID: PMC11449999 DOI: 10.1007/s00210-024-03119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The defect in the hepatobiliary transport system results in an impairment of bile flow, leading to accumulation of toxic compounds with subsequent liver disorders. Vincamine, a plant indole alkaloid that is utilized as a dietary supplement, has been known for its promising pharmacological activities. For the first time, the present study was planned to estimate, at the molecular level, the potentiality of vincamine against alfa-naphthyl isothiocyanate (ANIT)-induced hepatic cholestasis. Liver function tests were analyzed. Hepatic activity of SOD and levels of GSH and MDA were assessed. Hepatic contents of bax, bcl2, NF-kB, PPARγ, catalase, heme-oxygenase-1, NTCP, and BSEP were evaluated using ELISA. mRNA levels of NF-kB, IL-1β, IL-6, TNFα, PDGF, klf6, PPARγ, and P53 were examined using qRT-PCR. PI3K, Akt and cleaved caspase-3 proteins were assessed using western blotting. Histopathological analyses were performed using hematoxylin & eosin staining. ANIT-induced hepatic cholestasis elevated liver function tests, including AST, ALT, GGT, ALP, and total bilirubin. ANIT reduced the protein expression of NTCP and BSEP hepatic transporters. It induced the expression of the inflammatory genes, TNFα, IL-6, IL-1β, and PDGF, and the expression of NF-kB at the genetic and protein level and suppressed the anti-inflammatory genes, klf6 and PPARγ. Also, antioxidant markers were reduced during ANIT induction such as GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway, while MDA levels were elevated. Furthermore, the expression of P53 gene, bax and cleaved caspase 3 proteins were activated, while bcl2 was inhibited. Also, the histopathological analysis showed degeneration of hepatocytes and inflammatory cellular infiltrates. However, vincamine treatment modulated all these markers. It improved liver function tests. It inhibited the expression of NF-kB, TNFα, IL-6, IL-1β and PDGF and activated the expression of klf6 and PPARγ. Furthermore, vincamine reduced MDA levels and induced GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway. Additionally, it inhibited expression of P53 gene, bax and cleaved caspase 3 proteins. More interestingly, vincamine showed better outcomes on the hepatic histopathological analysis and improved the alterations induced by ANIT. Vincamine alleviated hepatic dysfunction during ANIT-induced intrahepatic cholestasis through its anti-inflammatory and antioxidant efficacies by the modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Yusra A Eisa
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Mahmoud A El-Rehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
6
|
Zhang D, Liu X, Sun L, Li D, Du J, Yang H, Yu D, Li C. Fine particulate matter disrupts bile acid homeostasis in hepatocytes via binding to and activating farnesoid X receptor. Toxicology 2024; 506:153850. [PMID: 38821196 DOI: 10.1016/j.tox.2024.153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fine particulate matter (PM2.5)-induced metabolic disorders have attracted increasing attention, however, the underlying molecular mechanism of PM2.5-induced hepatic bile acid disorder remains unclear. In this study, we investigated the effects of PM2.5 components on the disruption of bile acid in hepatocytes through farnesoid X receptor (FXR) pathway. The receptor binding assays showed that PM2.5 extracts bound to FXR directly, with half inhibitory concentration (IC50) value of 21.7 μg/mL. PM2.5 extracts significantly promoted FXR-mediated transcriptional activity at 12.5 μg/mL. In mouse primary hepatocytes, we found PM2.5 extracts (100 μg/mL) significantly decreased the total bile acid levels, inhibited the expression of bile acid synthesis gene (Cholesterol 7 alpha-hydroxylase, Cyp7a1), and increased the expression of bile acid transport genes (Multidrug resistance associated protein 2, Abcc2; and Bile salt export pump, Abcb11). Moreover, these alterations were significantly attenuated by knocking down FXR in hepatocytes. We further divided the organic components and water-soluble components from PM2.5, and found that two components bound to and activated FXR, and decreased the bile acid levels in hepatocytes. In addition, benzo[a]pyrene (B[a]P) and cadmium (Cd) were identified as two bioactive components in PM2.5-induced bile acid disorders through FXR signaling pathway. Overall, we found PM2.5 components could bind to and activate FXR, thereby disrupting bile acid synthesis and transport in hepatocytes. These new findings also provide new insights into PM2.5-induced toxicity through nuclear receptor pathways.
Collapse
Affiliation(s)
- Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanchao Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingyue Du
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huizi Yang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
7
|
Lim JJ, Goedken M, Jin Y, Gu H, Cui JY. Single-cell transcriptomics unveiled that early life BDE-99 exposure reprogrammed the gut-liver axis to promote a proinflammatory metabolic signature in male mice at late adulthood. Toxicol Sci 2024; 200:114-136. [PMID: 38648751 PMCID: PMC11199921 DOI: 10.1093/toxsci/kfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| |
Collapse
|
8
|
Du X, Liu M, Trevisi E, Ju L, Yang Y, Gao W, Song Y, Lei L, Zolzaya M, Li X, Fang Z, Liu G. Expression of hepatic genes involved in bile acid metabolism in dairy cows with fatty liver. J Dairy Sci 2024:S0022-0302(24)00833-6. [PMID: 38825110 DOI: 10.3168/jds.2023-24485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit β (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuting Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Majigsuren Zolzaya
- Institute of Veterinary Medicine, Mongolian Mongolian University of Life Sciences (MULS)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Lin ML, Wu SY, Chen JP, Lu YC, Jung SM, Wey SP, Wu T, Ma YH. Targeted Thrombolysis with Magnetic Nanotherapeutics: A Translational Assessment. Pharmaceutics 2024; 16:596. [PMID: 38794257 PMCID: PMC11124959 DOI: 10.3390/pharmaceutics16050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Plasminogen activators, such as recombinant tissue-type plasminogen activators (rtPAs), while effective in treating thromboembolic diseases, often induce hemorrhagic complications due to non-specific enzyme activities in the systemic circulation. This study evaluated the targeting efficiency, efficacy, biodistribution, and potential toxicity of a rtPA covalently attached to chitosan-coated magnetic nanoparticles (chitosan-MNP-rtPA). The thrombolytic activity of a chitosan-MNP-rtPA was preserved by protection from an endogenous plasminogen activator inhibitor-1 (PAI-1) in whole blood and after circulation in vivo, as examined by thromboelastometry. Single-photon emission computed tomography (SPECT) demonstrated real-time retention of a 99mTc-MNP-rtPA induced by magnet application in a rat embolic model; an 80% reduction in rtPA dosage for a chitosan-MNP-rtPA with magnetic guidance was shown to restore blood flow. After treatment, iron deposition was observed in the reticuloendothelial systems, with portal edema and neutrophil infiltration in the liver at a ten-fold higher dose but not the regular dose. Nevertheless, no liver or renal toxicity was observed at this higher dose. In conclusion, the liver may still be the major deposit site of rtPA nanocomposites after targeted delivery; chitosan-coated MNPs are potentially amenable to target therapeutics with parenteral administration.
Collapse
Affiliation(s)
- Ming-Lu Lin
- Department of Physiology & Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Siao-Yun Wu
- Department of Physiology & Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Yi-Ching Lu
- Department of Physiology & Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan 33305, Taiwan;
| | - Shiaw-Pyng Wey
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Guishan, Taoyuan 33302, Taiwan;
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan 33305, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology & Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
10
|
Sun X, Fang J, Fang N. Chishao ( Paeoniae Radix Rubra) alleviates intra-hepatic cholestasis by modulating NTCP in rats. Front Pharmacol 2024; 15:1341651. [PMID: 38362143 PMCID: PMC10867832 DOI: 10.3389/fphar.2024.1341651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Cholestasis is a common pathological manifestation dominated by accumulation of potentially toxic biliary compounds. Na+-taurocholate cotransporting polypeptide (NTCP) plays a critical role in protection from cholestasis and can be targeted therapeutically. Chishao (Paeoniae Radix Rubra) is a clinically efficacious agent for treating cholestasis, but the underlying mechanism has not been fully clarified. Objective: To evaluate the effects of Chishao on the expression of NTCP in rats with alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. Methods: Chishao extracts were obtained by water decoction. Cholestasis model induced by ANIT in rats were established. Thirty rats were divided into five groups: control group (C), ANIT model group (M), 10 g/kg Chishao group (LD), 20 g/kg Chishao group (MD) and 40 g/kg Chishao group (HD). The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), direct bilirubin (DB), alkaline phosphatase (ALP) and total bile acid (TBA) were detected. The mRNA and protein expression of NTCP, multidrug resistance associated protein 2 (MRP2) and bile salt export pump (BSEP) were detected by reverse transcription qPCR and Western blotting respectively. To assess the effects of Chishao on NTCP, MRP2 and BSEP localized at the membrane of hepatocytes, an in vitro experiment involving primary hepatocytes was conducted via the utilization of laser scanning confocal microscopy. Results: The extracts of Chishao significantly improved serum ALT, AST, ALP, TB, DB and TBA (p < 0.05), especially ALP in the HD group (p < 0.01). The histological pathological findings were also reversed in LD, MD and HD groups. The mRNA level of MRP2 was significantly downregulated after treatment with ANIT, whereas it was reversed in MD and HD groups (p < 0.05). The mRNA expression of NTCP was significantly downregulated after ANIT treatment, but dramatically upregulated in the HD group. The expressions of BSEP and MRP2 were similar, but that of NTCP decreased after ANIT treatment, which was reversed significantly by Chishao extracts in a dose-dependent manner. The expression of NTCP in hepatocytes from rats increased dose-dependently after Chishao treatment in vitro. Conclusion: Chishao extracts can improve the serum and histological performances of intra-hepatic cholestasis caused by ANIT, probably by working on transport proteins in liver cell membranes.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Special Police College, Nanjing Police University, Nanjing, China
| | - Jing Fang
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Nanyuan Fang
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Chinese internal Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100177. [PMID: 38322817 PMCID: PMC10844674 DOI: 10.1016/j.crphar.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Cholestasis is a hepatobiliary condition that manifests as acute or chronic and results from disruptions in the bile flow, formation, or secretion processes. The Farnesoid X receptor (FXR) is a vital target for the therapy of cholestasis since it regulates BA homeostasis. Despite the discovery of multiple active FXR agonists, there are still no effective treatments for cholestasis. Papaverine is identified as an FXR agonist.This study investigates papaverine's efficacy and probable mechanism in protecting against alpha naphthylisothiocyanate (ANIT) induced cholestasis. Thirty male albino rats were divided into three groups, each with ten rats. Group I (control) rats were administered 1 mL/kg corn oil 48 h before sacrifice; group II rats were orally administered 100 mg/kg ANIT. Group III received a 200 mg/kg dosage of papaverine over seven consecutive days. A single dose of ANIT at a concentration of 100 mg/kg was orally administered on the fifth day; group II and III animals were euthanized 48 h after inducing cholestasis, and serum concentrations of liver function tests and total bile acid (TBA) were measured. Besides measuring the inflammatory mediator's tumor necrosis factor-alpha (TNF-α) and interleukin 1 (IL-1β), antioxidant markers such as superoxide dismutase (SOD) and glutathione (GSH) were also assessed. The findings indicated the enhancement in the liver function test and total bile acids, as well as in liver histology; papaverine significantly lowered TNF-α and IL-1β while SOD and GSH significantly increased. Additionally, papaverine upregulates Fxr gene expression, bile salt export pump (Besp), small heterodimer partner (shp), hepatocyte nuclear factor 1α (Hnfα), nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase (Ho-1), NAD(P)H quinone oxidoreductase 1 (Nqo1). Furthermore, papaverine increased protein expressions of Sirtuin1. (SIRT 1), FXR, HO-1, and BSEP levels in the rats' livers. The protective effects of papaverine may be attributed to the activation of FXR signaling pathways. These findings revealed that papaverine protects against ANIT-induced Cholestasis.
Collapse
Affiliation(s)
- Doaa Adnan Atshan
- Ministry Of Health And Environment, Alnuman Teaching Hospital, Baghdad, Iraq
| | - Munaf Hashim Zalzala
- University of Baghdad, College of Pharmacy, Department of Pharmacology and Toxicology, Baghdad, Iraq
| |
Collapse
|
12
|
Yang Y, Hsiao YC, Liu CW, Lu K. The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice. TOXICS 2023; 11:833. [PMID: 37888683 PMCID: PMC10611046 DOI: 10.3390/toxics11100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins "rescued" from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Ayers M, Kosar K, Xue Y, Goel C, Carson M, Lee E, Liu S, Brooks E, Cornuet P, Oertel M, Bhushan B, Nejak-Bowen K. Inhibiting Wnt Signaling Reduces Cholestatic Injury by Disrupting the Inflammatory Axis. Cell Mol Gastroenterol Hepatol 2023; 16:895-921. [PMID: 37579970 PMCID: PMC10616556 DOI: 10.1016/j.jcmgh.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND & AIMS β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.
Collapse
Affiliation(s)
- Mary Ayers
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karis Kosar
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhua Xue
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chhavi Goel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Carson
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Lee
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Brooks
- Duquesne University, Pittsburgh, Pennsylvania
| | - Pamela Cornuet
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Shiragannavar VD, Sannappa Gowda NG, Puttahanumantharayappa LD, Karunakara SH, Bhat S, Prasad SK, Kumar DP, Santhekadur PK. The ameliorating effect of withaferin A on high-fat diet-induced non-alcoholic fatty liver disease by acting as an LXR/FXR dual receptor activator. Front Pharmacol 2023; 14:1135952. [PMID: 36909161 PMCID: PMC9995434 DOI: 10.3389/fphar.2023.1135952] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) incidence has been rapidly increasing, and it has emerged as one of the major diseases of the modern world. NAFLD constitutes a simple fatty liver to chronic non-alcoholic steatohepatitis (NASH), which often leads to liver fibrosis or cirrhosis, a serious health condition with limited treatment options. Many a time, NAFLD progresses to fatal hepatocellular carcinoma (HCC). Nuclear receptors (NRs), such as liver X receptor-α (LXR-α) and closely associated farnesoid X receptor (FXR), are ligand-inducible transcription factors that regulate various metabolism-associated gene expressions and repression and play a major role in controlling the pathophysiology of the human liver. Withaferin A is a multifaceted and potent natural dietary compound with huge beneficial properties and plays a vital role as an anti-inflammatory molecule. Methods: In vivo: Swill albino mice were fed with western diet and sugar water (WDSW) for 12, 16, and 20 weeks with suitable controls. Post necropsy, liver enzymes (AST, ALT, and ALP) and lipid profile were measured by commercially available kits using a semi-auto analyzer in serum samples. Liver histology was assessed using H&E and MTS stains to check the inflammation and fibrosis, respectively, using paraffin-embedded sections and mRNA expressions of these markers were measured using qRT-PCR method. TGF-β1 levels in serum samples were quantified by ELISA. In vitro: Steatosis was induced in HepG2 and Huh7 cells using free fatty acids [Sodium Palmitate (SP) and Oleate (OA)]. After induction, the cells were treated with Withaferin A in dose-dependent manner (1, 2.5, and 5 μM, respectively). In vitro steatosis was confirmed by Oil-Red-O staining. Molecular Docking: Studies were conducted using Auto Dock Vina software to check the binding affinity of Withaferin-A to LXR-α and FXR. Results: We explored the dual receptor-activating nature of Withaferin A using docking studies, which potently improves high-fat diet-induced NAFLD in mice and suppresses diet-induced hepatic inflammation and liver fibrosis via LXR/FXR. Our in vitro studies also indicated that Withaferin A inhibits lipid droplet accumulation in sodium palmitate and oleate-treated HepG2 and Huh7 cells, which may occur through LXR-α and FXR-mediated signaling pathways. Withaferin A is a known inhibitor of NF-κB-mediated inflammation. Intriguingly, both LXR-α and FXR activation inhibits inflammation and fibrosis by negatively regulating NF-κB. Additionally, Withaferin A treatment significantly inhibited TGF-β-induced gene expression, which contributes to reduced hepatic fibrosis. Discussion: Thus, the LXR/ FXR dual receptor activator Withaferin A improves both NAFLD-associated liver inflammation and fibrosis in mouse models and under in vitro conditions, which makes Withaferin A a possibly potent pharmacological and therapeutic agent for the treatment of diet-induced NAFLD.
Collapse
Affiliation(s)
- Varsha D Shiragannavar
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Nirmala G Sannappa Gowda
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Lakshana D Puttahanumantharayappa
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shreyas H Karunakara
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.,Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Divya P Kumar
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
15
|
Mechanism and Active Components of Qingre Lidan Tablets Alleviate Intrahepatic Cholestasis by Activating the Farnesoid X Receptor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1589388. [PMID: 36506808 PMCID: PMC9729052 DOI: 10.1155/2022/1589388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Background Qingre Lidan tablets (QLTs) are a compound preparation of Chinese medicine that have long been used clinically to treat poor bile circulation caused by the inflammation and obstruction of the gallbladder and bile duct and to relieve jaundice and other symptoms. However, its material basis and mechanism are still unclear. The purpose of this study was to investigate the mechanism and active components of QLTs for treating intrahepatic cholestasis (IHC) in rat models. Methods In vivo experiments verified the effect of QLTs on alpha-naphthyl isothiocyanate (ANIT)-induced IHC models in rats. The mRNA and protein expression levels of farnesoid X receptor (FXR), bile salt export pump (BSEP), and multidrug-associated protein 2 (MRP2) in the rat liver were detected. UPLC/Q-TOF-MS was used to separate and identify the monomers in QLTs, and a dual-luciferase reporter assay was used to select effective the monomers that stimulate FXR. Among the selected monomers, baicalein was used as a representative to verify the effect on rat IHC models. Results QLTs and baicalein significantly reduced the serum biochemical indicators reflecting the changes in liver function among IHC rats and remitted the ANIT-induced liver histopathological changes. The expression levels of FXR, BSEP, and MRP2 in the liver were significantly increased after QLT treatment in a dose-dependent manner. Moreover, six types of active components that activate FXR were selected in QLTs, namely baicalein, wogonin, baicalein II, emodin, dibutyl phthalate, and diisooctyl phthalate. Conclusions QLTs and the active component, baicalein, can alleviate IHC in model rats.
Collapse
|
16
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
17
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
18
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
19
|
El Kasmi KC, Ghosh S, Anderson AL, Devereaux MW, Balasubramaniyan N, D'Alessandro A, Orlicky DJ, Suchy FJ, Shearn CT, Sokol RJ. Pharmacologic activation of hepatic farnesoid X receptor prevents parenteral nutrition-associated cholestasis in mice. Hepatology 2022; 75:252-265. [PMID: 34387888 DOI: 10.1002/hep.32101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1β derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1β exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Animals
- Bile Acids and Salts/blood
- Cholestasis/etiology
- Cholestasis/prevention & control
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Hepatocytes/metabolism
- Interleukin-1beta/pharmacology
- Intestinal Diseases/chemically induced
- Intestinal Diseases/therapy
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Lipoproteins/genetics
- Liver Diseases/etiology
- Liver Diseases/pathology
- Liver Diseases/prevention & control
- Macrophage Activation/drug effects
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Multidrug Resistance-Associated Protein 2/genetics
- Multidrug Resistance-Associated Proteins/genetics
- Parenteral Nutrition/adverse effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Karim C El Kasmi
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
- Boehringer IngelheimIngelheim am RheinGermany
| | - Swati Ghosh
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Aimee L Anderson
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Michael W Devereaux
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Natarajan Balasubramaniyan
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - David J Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Frederick J Suchy
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Colin T Shearn
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Ronald J Sokol
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| |
Collapse
|
20
|
Wang M, Liu F, Yao Y, Zhang Q, Lu Z, Zhang R, Liu C, Lin C, Zhu C. Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113816. [PMID: 33444723 DOI: 10.1016/j.jep.2021.113816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The well-known Chinese prescription, Xiaoyan Lidan Formula (XYLDF), possesses efficiency of heat-clearing, dampness-eliminating and jaundice-removing. It has long been used clinically for the treatment of hepatobiliary diseases due to intrahepatic cholestasis (IHC). However, the mechanism of XYLDF for its therapeutic effects remains elusive. AIM OF THE STUDY The study aimed to explore the potential targets for liver protective mechanism of XYLDF based on network pharmacology and experimental assays in ANIT-induced cholestatic hepatic injury (CHI) in rats. MATERIALS AND METHODS On the basis of the 29 serum migrant compounds of XYLDF elucidated by UPLC-TOF-MS/MS, a network pharmacology approach was applied for the mechanism prediction. Systematic networks were constructed to identify potential molecular targets, biological processes, and signaling pathways. And the interactions between significantly potential targets and active compounds were simulated by molecular docking. For the mechanism validation, an ANIT-induced rat model was used to evaluate the effects of XYLDF on CHI according to serum biochemistry, bile flow rates, histopathological examination, and the gene and protein expression including enzymes related to synthesis, export, and import of bile acid in liver and ileum, and those of inflammatory cytokines, analyzed by RT-qPCR and WB. RESULTS The results of network pharmacology research indicated TNF (TNF-α), RELA (NF-κB), NR1H4 (FXR), and ICAM1 (ICAM-1) to be the important potential targets of XYLDF for cholestatic liver injury, which are related to bile metabolism and NF-κB-mediated inflammatory signaling. And the molecular docking had pre-validated the prediction of network pharmacology, as the core active compounds of XYLDF had shown strong simulation binding affinity with FXR, followed by NF-κB, TNF-α, and ICAM-1. Meanwhile, the effects of XYLDF after oral administration on ANIT-induced CHI in rats exhibited the decreased levels of transaminases (ALT and AST), TBA, and TBIL in serum, raised bile flow rates, and markedly improved hepatic histopathology. Furthermore, consistent to the above targets prediction and molecular docking, XYLDF significantly up-regulated the expression of FXR, SHP, BSEP, and MRP2, and down-regulated CYP7A1 and NTCP in liver, and promoted expression of IBABP and OSTα/β in ileum, suggesting the activation of FXR-mediated pathway referring to bile acid synthesis, transportation, and reabsorption. Moreover, the lower levels of TNF-α in plasma and liver, as well as the reduced hepatic gene and protein expression of NF-κB, TNF-α, and ICAM-1 after XYLDF treatment revealed the suppression of NF-κB-mediated inflammatory signaling pathway, as evidenced by the inhibition of nuclear translocation of NF-κB. CONCLUSIONS XYLDF exhibited an ameliorative liver protective effect on ANIT-induced cholestatic hepatic injury. The present study has confirmed its mechanism as activating the FXR-regulated bile acid pathway and inhibiting inflammation via the NF-κB signaling pathway.
Collapse
MESH Headings
- 1-Naphthylisothiocyanate/toxicity
- Animals
- Bile Acids and Salts/metabolism
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/drug therapy
- Chemical and Drug Induced Liver Injury/pathology
- Cholestasis, Intrahepatic/blood
- Cholestasis, Intrahepatic/chemically induced
- Cholestasis, Intrahepatic/drug therapy
- Cholestasis, Intrahepatic/pathology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Metabolic Networks and Pathways/drug effects
- Molecular Docking Simulation
- NF-kappa B/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Protein Interaction Maps/drug effects
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Rats
Collapse
Affiliation(s)
- Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qiuyu Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zenghui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Runjing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
21
|
López-Riera M, Conde I, Castell JV, Jover R. A Novel MicroRNA Signature for Cholestatic Drugs in Human Hepatocytes and Its Translation into Novel Circulating Biomarkers for Drug-Induced Liver Injury Patients. Toxicol Sci 2020; 173:229-243. [PMID: 31198949 DOI: 10.1093/toxsci/kfz138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) diagnosis and classification (hepatocellular, cholestatic, and mixed) relies on traditional clinical biomarkers (eg ALT and ALP), despite limitations such as extrahepatic interferences, narrow dynamic ranges, and low mechanistic value. microRNAs may be very useful for complementing traditional DILI biomarkers but most studies in this direction have considered only paracetamol poisoning. Thus the value of microRNAs (miRNAs) as biomarkers for idiosyncratic DILI has not yet been demonstrated. In this study, we first examined the effect of model cholestatic drugs on the human hepatocyte miRNome by RNAseq and RT-qPCR. Results demonstrated that chlorpromazine, cyclosporin A, and ANIT induced (miR-21-3p, -21-5p, -22-3p, -27a-5p, -1260b, -34a-5p, and -98-5p) and repressed (-122-5p, -192-5p, -30c-5p, -424-5p, and -16-5p) specific miRNAs in sandwich-cultured upcyte hepatocytes. However, no common signature was found for cholestatic drugs. Next we investigated the levels of these miRNA in human serum and found that most were also significantly altered in cholestatic/mixed DILI patients upon hospital/ambulatory admission. However, miR-122-5p, -192-5p, -34a-5p, and -22-3p demonstrated a much more significant induction in patients with hepatocellular DILI, thus revealing better specificity for hepatocellular damage. Time-course analyses demonstrated that -1260b and -146 had a very similar profile to ALP, but with wider dynamic ranges, while -16-5p and -451a showed a negative correlation. Conversely, -122-5p and -192-5p correlated with ALT but with wider dynamic ranges and faster recoveries. Finally, the 122/451a and 122/16 ratios showed excellent prediction performances in both the study [area under the receiver operating characteristic curve (AUROC) >0.93] and the validation cohort (AUROC > 0.82), and can, therefore, be postulated for the first time as circulating miRNA biomarkers for idiosyncratic DILI.
Collapse
Affiliation(s)
- Mireia López-Riera
- *Unidad Mixta en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain
| | - Isabel Conde
- *Unidad Mixta en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain.,Medicina Digestiva, Sección Hepatología, Hospital La Fe, 46026 Valencia, Spain
| | - José V Castell
- *Unidad Mixta en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Ramiro Jover
- *Unidad Mixta en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
22
|
Picroside II alleviates liver injury induced by alpha-naphthylisothiocyanate through AMPK-FXR pathway. Toxicol Appl Pharmacol 2020; 408:115248. [PMID: 32976922 DOI: 10.1016/j.taap.2020.115248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.
Collapse
|
23
|
Stofan M, Guo GL. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med (Lausanne) 2020; 7:544. [PMID: 33015098 PMCID: PMC7516013 DOI: 10.3389/fmed.2020.00544] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol and have been shown to be essential for lipid homeostasis. BAs regulate a variety of metabolic functions via modulating nuclear and membrane receptors. Farnesoid X receptor (FXR) is the most important nuclear receptor for maintaining BA homeostasis. FXR plays a tissue-specific role in suppressing BA synthesis and promoting BA enterohepatic circulation. Disruption of FXR in mice have been implicated in liver diseases commonly occurring in humans, including cholestasis, non-alcoholic fatty liver diseases, and hepatocellular carcinoma. Strategically targeting FXR activity has been rapidly used to develop novel therapies for the prevention and/or treatment of cholestasis and non-alcoholic steatohepatitis. This review provides an updated literature review on BA homeostasis and FXR modulator development.
Collapse
Affiliation(s)
- Mary Stofan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ, United States
| |
Collapse
|
24
|
Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C, Mi S, Liu C. Activation of Farnesoid X Receptor by Schaftoside Ameliorates Acetaminophen-Induced Hepatotoxicity by Modulating Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 33:87-116. [PMID: 32037847 DOI: 10.1089/ars.2019.7791] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Acetaminophen (APAP) overdose leads to acute liver injury by inducing hepatic mitochondrial oxidative stress and inflammation. However, the molecular mechanisms involved are still unclear. Farnesoid X receptor (FXR) serves as a therapeutic target for the treatment of liver disorders, whose activation has been proved to protect APAP-induced hepatotoxicity. In this study, we examined whether FXR activation by schaftoside (SS), a naturally occurring flavonoid from Desmodium styracifolium, could protect mice against APAP-induced hepatotoxicity via regulation of oxidative stress and inflammation. Results: We first found that SS exhibited potent protective effects against APAP-induced hepatotoxicity in mice. The study reveals that SS is a potential agonist of FXR, which protects mice from hepatotoxicity mostly via regulation of oxidative stress and inflammation. Mechanistically, the hepatoprotective SS is associated with the induction of the genes of phase II detoxifying enzymes (e.g., UGT1A1, GSTα1), phase III drug efflux transporters (e.g., bile salt export pump, organic solvent transporter protein β), and glutathione metabolism-related enzymes (e.g., glutamate-cysteine ligase modifier subunit [Gclm], glutamate-cysteine ligase catalytic subunit [Gclc]). More importantly, SS-mediated FXR activation could fine-tune the pro- and anti-inflammatory eicosanoids generation via altering eicosanoids metabolic pathway, thereby resulting in decrease of hepatic inflammation. In contrast, FXR deficiency can abrogate the above effects. Innovation and Conclusion: Our results provided the direct evidence that FXR activation by SS could attenuate APAP-induced hepatotoxicity via inhibition of nuclear factor kappa-B signaling and fine-tuning the generation of proinflammatory mediators' eicosanoids. Our findings indicate that strategies to activate FXR signaling in hepatocytes may provide a promising therapeutic approach to alleviate liver injury induced by APAP overdose.
Collapse
Affiliation(s)
- Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingan Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiqing Mi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Carino A, Biagioli M, Marchianò S, Fiorucci C, Bordoni M, Roselli R, Di Giorgio C, Baldoni M, Ricci P, Monti MC, Morretta E, Zampella A, Distrutti E, Fiorucci S. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158733. [PMID: 32371093 DOI: 10.1016/j.bbalip.2020.158733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The farnesoid-X-receptor (FXR) is validated target in the cholestatic disorders treatment. Obeticholic acid (OCA), the first in class of FXR agonist approved for clinical use, causes side effects including acute liver decompensation when administered to cirrhotic patients with primary biliary cholangitis at higher than recommended doses. The V-Maf avian-musculoaponeurotic-fibrosarcoma-oncogene-homolog-G (Mafg) and nuclear factor-erythroid-2-related-factor-2 (Nrf2) mediates some of the downstream effects of FXR. In the present study we have investigated the role of FXR/MafG/NRF2 pathway in the development of liver toxicity caused by OCA in rodent models of cholestasis. Cholestasis was induced by bile duct ligation (BDL) or administration of α-naphtyl-isothiocyanate (ANIT) to male Wistar rats and FXR-/- and FXR+/+ mice. Treating BDL and ANIT rats with OCA exacerbated the severity of cholestasis, hepatocytes injury and severely downregulated the expression of basolateral transporters. In mice, genetic ablation FXR or its pharmacological inhibition by 3-(naphthalen-2-yl)-5-(piperidin-4-yl)-1,2,4-oxadiazole rescued from negative regulation of MRP4 and protected against liver injury caused by ANIT. By RNAseq analysis we found that FXR antagonism effectively reversed the transcription of over 2100 genes modulated by OCA/ANIT treatment, including Mafg and Nrf2 and their target genes Cyp7a1, Cyp8b1, Mat1a, Mat2a, Gss. Genetic and pharmacological Mafg inhibition by liver delivery of siRNA antisense or S-adenosylmethionine effectively rescued from damage caused by ANIT/OCA. In contrast, Nrf2 induction by sulforaphane was protective. CONCLUSIONS: Liver injury caused by FXR agonism in cholestasis is FXR-dependent and is reversed by FXR and Mafg antagonism or Nrf2 induction.
Collapse
Affiliation(s)
- Adriana Carino
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Chiara Fiorucci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Martina Bordoni
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Dipartimento di Farmacia, Università di Napoli ' Federico II', Napoli, Italy
| | - Cristina Di Giorgio
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | | | - Elva Morretta
- Dipartimento di Farmacia, Università di Salerno, Salerno, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università di Napoli ' Federico II', Napoli, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy.
| |
Collapse
|
26
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
27
|
Li T, Xu L, Zheng R, Wang X, Li L, Ji H, Hu Q. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153153. [PMID: 32018210 DOI: 10.1016/j.phymed.2019.153153] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Cholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear. PURPOSE This study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro. METHODS The ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro. RESULTS Picroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II. CONCLUSION Our findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjie Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liwen Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
29
|
Abstract
The farnesoid X receptor (FXR, NR1H4) is a bile acid (BA)-activated transcription factor, which is essential for BA homeostasis. FXR and its hepatic and intestinal target genes, small heterodimer partner (SHP, NR0B2) and fibroblast growth factor 15/19 (Fgf15 in mice, FGF19 in humans), transcriptionally regulate BA synthesis, detoxification, secretion, and absorption in the enterohepatic circulation. Furthermore, FXR modulates a large variety of physiological processes, such as lipid and glucose homeostasis as well as the inflammatory response. Targeted deletion of FXR renders mice highly susceptible to cholic acid feeding resulting in cholestatic liver injury, weight loss, and increased mortality. Combined deletion of FXR and SHP spontaneously triggers early-onset intrahepatic cholestasis in mice resembling human progressive familial intrahepatic cholestasis (PFIC). Reduced expression levels and activity of FXR have been reported in human cholestatic conditions, such as PFIC type 1 and intrahepatic cholestasis of pregnancy. Recently, two pairs of siblings with homozygous FXR truncation or deletion variants were identified. All four children suffered from severe, early-onset PFIC and liver failure leading to death or need for liver transplantation before the age of 2. These findings underscore the central role of FXR as regulator of systemic and hepatic BA levels. Therefore, targeting FXR has been exploited in different animal models of both intrahepatic and obstructive cholestasis, and the first FXR agonist obeticholic acid (OCA) has been approved for the treatment of primary biliary cholangitis (PBC). Further FXR agonists as well as a FGF19 analogue are currently tested in clinical trials for different cholestatic liver diseases. This chapter will summarize the current knowledge on the role of FXR in cholestasis both in rodent models and in human diseases.
Collapse
|
30
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
31
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
32
|
Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EAG, Liguori MJ. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. Front Genet 2019; 9:636. [PMID: 30723492 PMCID: PMC6349826 DOI: 10.3389/fgene.2018.00636] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Gene expression profiling is a useful tool to predict and interrogate mechanisms of toxicity. RNA-Seq technology has emerged as an attractive alternative to traditional microarray platforms for conducting transcriptional profiling. The objective of this work was to compare both transcriptomic platforms to determine whether RNA-Seq offered significant advantages over microarrays for toxicogenomic studies. RNA samples from the livers of rats treated for 5 days with five tool hepatotoxicants (α-naphthylisothiocyanate/ANIT, carbon tetrachloride/CCl4, methylenedianiline/MDA, acetaminophen/APAP, and diclofenac/DCLF) were analyzed with both gene expression platforms (RNA-Seq and microarray). Data were compared to determine any potential added scientific (i.e., better biological or toxicological insight) value offered by RNA-Seq compared to microarrays. RNA-Seq identified more differentially expressed protein-coding genes and provided a wider quantitative range of expression level changes when compared to microarrays. Both platforms identified a larger number of differentially expressed genes (DEGs) in livers of rats treated with ANIT, MDA, and CCl4 compared to APAP and DCLF, in agreement with the severity of histopathological findings. Approximately 78% of DEGs identified with microarrays overlapped with RNA-Seq data, with a Spearman’s correlation of 0.7 to 0.83. Consistent with the mechanisms of toxicity of ANIT, APAP, MDA and CCl4, both platforms identified dysregulation of liver relevant pathways such as Nrf2, cholesterol biosynthesis, eiF2, hepatic cholestasis, glutathione and LPS/IL-1 mediated RXR inhibition. RNA-Seq data showed additional DEGs that not only significantly enriched these pathways, but also suggested modulation of additional liver relevant pathways. In addition, RNA-Seq enabled the identification of non-coding DEGs that offer a potential for improved mechanistic clarity. Overall, these results indicate that RNA-Seq is an acceptable alternative platform to microarrays for rat toxicogenomic studies with several advantages. Because of its wider dynamic range as well as its ability to identify a larger number of DEGs, RNA-Seq may generate more insight into mechanisms of toxicity. However, more extensive reference data will be necessary to fully leverage these additional RNA-Seq data, especially for non-coding sequences.
Collapse
Affiliation(s)
- Mohan S Rao
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Terry R Van Vleet
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Rita Ciurlionis
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Wayne R Buck
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Scott W Mittelstadt
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Eric A G Blomme
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| | - Michael J Liguori
- Investigative Toxicology and Pathology, Global Preclinical Safety, AbbVie, North Chicago, IL, United States
| |
Collapse
|
33
|
Wang J, Fu T, Dong R, Wang C, Liu K, Sun H, Huo X, Ma X, Yang X, Meng Q. Hepatoprotection of auraptene from the peels of citrus fruits against 17α-ethinylestradiol-induced cholestasis in mice by activating farnesoid X receptor. Food Funct 2019; 10:3839-3850. [DOI: 10.1039/c9fo00318e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auraptene protects against estrogen-induced cholestasis in mice.
Collapse
|
34
|
Li M, Hu X, Xu Y, Hu X, Zhang C, Pang S. A Possible Mechanism of Metformin in Improving Insulin Resistance in Diabetic Rat Models. Int J Endocrinol 2019; 2019:3248527. [PMID: 31737069 PMCID: PMC6815615 DOI: 10.1155/2019/3248527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/11/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes has become one of the most common diseases worldwide, causing a serious social burden. As a first-line treatment for diabetes, metformin can effectively improve insulin resistance. It has been reported that 12α-hydroxylated BA (mainly CA) is associated with insulin resistance. The purpose of this study was to analyze the changes in CA and possible signaling mechanisms in diabetic rats after metformin intervention. METHODS HepG2 cells were cultured after adding different concentrations of metformin. The cell viability was measured using CCK8 kit, and the expression of FXR, MAFG, and CYP8B1 in cells was detected by WB. The rat models of type 2 diabetes were induced by low-dose streptozotocin by feeding a high-fat diet, and the control rats (CON) were fed on normal food; the diabetic rats (DM) were given a high-fat diet without supplementation with metformin, while the metformin-treated diabetic rats (DM + MET) were given a high-fat diet and supplemented with metformin. Biochemical parameters were detected at the end of the test. Expression levels of FXR, CYP8B1, and MAFG were assessed by WB. Serum CA were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS In HepG2 cells, metformin dose-dependently enhanced the transcriptional activity of FXR and MAFG and inhibited the expression of CYP8B1. Metformin-treated DM rats showed improved glucose and bile acid metabolism. In addition, significantly increased FXR and MAFG and decreased CYP8B1 were observed in DM + MET rats. At the same time, the CA content of metformin-treated rats was lower than that of diabetic rats. CONCLUSION Changes in CA synthesis after metformin treatment may be associated with inhibition of CYP8B1. These results may play an important role in improving insulin sensitivity after metformin treatment.
Collapse
Affiliation(s)
- Mengsiyu Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaowen Hu
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yeqiu Xu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaolin Hu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxue Zhang
- Department of Radiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuguang Pang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
35
|
18β-Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacol Sin 2018; 39:1865-1873. [PMID: 30061734 DOI: 10.1038/s41401-018-0110-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023]
Abstract
Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18β-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.
Collapse
|
36
|
Takitani K, Kishi K, Miyazaki H, Koh M, Tamaki H, Inoue A, Tamai H. Altered Expression of Retinol Metabolism-Related Genes in an ANIT-Induced Cholestasis Rat Model. Int J Mol Sci 2018; 19:ijms19113337. [PMID: 30373117 PMCID: PMC6274878 DOI: 10.3390/ijms19113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
Cholestasis is defined as a reduction of bile secretion caused by a dysfunction of bile formation. Insufficient bile secretion into the intestine undermines the formation of micelles, which may result in the reduced absorption of lipids and fat-soluble vitamins. Here, we investigated the retinol homeostasis and the alterations of retinol metabolism-related genes, including β-carotene 15,15′ monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), cytochrome P450 26A1 (CYP26A1), and retinoic acid receptors (RAR) β, in a α-naphthyl isothiocyanate (ANIT)-induced cholestasis rat model. Moreover, we examined the expression of the farnesoid X receptor (FXR) target genes. Our results showed that plasma retinol levels were decreased in ANIT rats compared to control rats. On the contrary, hepatic retinol levels were not different between the two groups. The expression of FXR target genes in the liver and intestine of cholestasis model rats was repressed. The BCMO expression was decreased in the liver and increased in the intestine of ANIT rats compared to control rats. Finally, the hepatic expression of LRAT, RARβ, and ALDH1A1 in cholestatic rats was decreased compared to the control rats, while the CYP26A1 expression of the liver was not altered. The increased expression of intestinal BCMO in cholestasis model rats might compensate for decreased circulatory retinol levels. The BCMO expression might be regulated in a tissue-specific manner to maintain the homeostasis of retinol.
Collapse
Affiliation(s)
- Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Kanta Kishi
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Miyazaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Pediatrics, Osaka Rosai Hospital, Osaka 591-8025, Japan.
| | - Maki Koh
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hirofumi Tamaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Medicine, Shinseikai Daiichi Hospital, Aichi 468-0031, Japan.
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| |
Collapse
|
37
|
Yi YX, Ding Y, Zhang Y, Ma NH, Shi F, Kang P, Cai ZZ, Zhang T. Yinchenhao Decoction Ameliorates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis in Rats by Regulating Phase II Metabolic Enzymes and Transporters. Front Pharmacol 2018; 9:510. [PMID: 29867509 PMCID: PMC5962729 DOI: 10.3389/fphar.2018.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
Yinchenhao Decoction (YCHD), a famous traditional Chinese formula, has been used for treating cholestasis for 1000s of years. The cholagogic effect of YCHD has been widely reported, but its pharmacodynamic material and underlying therapeutic mechanism remain unclear. By using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry, 11 original active components and eight phase II metabolites were detected in rats after oral administration of YCHD, including three new phase II metabolites. And it indicated that phase II metabolism was one of the major metabolic pathway for most active components in YCHD, which was similar to the metabolism process of bilirubin. It arouses our curiosity that whether the metabolism process of YCHD has any relationship with its cholagogic effects. So, a new method for simultaneous quantitation of eight active components and four phase II metabolites of rhein, emodin, genipin, and capillarisin has been developed and applied for their pharmacokinetic study in both normal and alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis rats. The results indicated the pharmacokinetic behaviors of most components of YCHD were inhibited, which was hypothesized to be related to different levels of metabolic enzymes and transporters in rat liver. So dynamic changes of intrahepatic enzyme expression in cholestasis and YCHD treated rats have been monitored by an UHPLC-tandem mass spectrometry method. The results showed expression levels of UDP-glucuronosyltransferase 1-1 (UGT1A1), organic anion-transporting polypeptide 1A4 (OATP1A4), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1, sodium-dependent taurocholate cotransporter, and organic anion-transporting polypeptide 1A2 were significantly inhibited in cholestasis rats, which would account for reducing the drug absorption and the metabolic process of YCHD in cholestatic rats. A high dose (12 g/kg) of YCHD remarkably increased the expression of UGT1A1, bile salt export pump, MRP2, OATP1A4 in cholestasis rats presented it exhibited the greatest ameliorative effect on cholestasis, also particularly in histopathological examination and reducing levels of alanine transaminase, aspartate transaminase, total bilirubin, direct bilirubin, and total bile acid. Considering the metabolic process of bilirubin in vivo, the choleretic effect of YCHD is proven to be related to its regulatory action on expression of metabolic enzymes and transporters in cholestatic liver.
Collapse
Affiliation(s)
- Ya-Xiong Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning-Hui Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Shi
- Pharmaceutical Preparation Section, Guangming Chinese Medicine Hospital of Pudong New Area, Shanghai, China
| | - Ping Kang
- Headmaster's Office, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Cai
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Huo XK, Liu J, Yu ZL, Wang YF, Wang C, Tian XG, Ning J, Feng L, Sun CP, Zhang BJ, Ma XC. Alisma orientale extract exerts the reversing cholestasis effect by activation of farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:34-42. [PMID: 29655695 DOI: 10.1016/j.phymed.2018.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/10/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cholestasis is a clinical syndrome of liver damage that is caused by accumulation of bile acids in the liver and systemic circulation. Farnesoid X receptor (FXR) can regulate synthesis, metabolism, and excretion of bile acids. The rhizomes of Alisma orientale is a well-known traditional Chinese medicine to treat edema, obesity, gonorrhea, leukorrhea, diarrhea, hyperlipidemia, and diabetes in China. HYPOTHESIS/PURPOSE We hypothesized Alisma orientale extract (AOE) to exert hepatoprotective effect against α-naphthylisothiocyanate (ANIT) induced cholestasis in rat. We aimed to investigate the mechanism of AOE. STUDY DESIGN Male Sprague Dawley rats with intrahepatic cholestasis induced by ANIT were treated with AOE (150, 300, or 600 mg/kg). Rats receiving vehicle (0.5% CMC-Na) served as control. METHODS 48 h after ANIT administration, rats were sacrificed. Blood was collected to obtain serum and livers were removed for histopathology and protein preparation. Biochemical indicators in serum were determined using commercial kits and triterpenoids were determined by liquid chromatography tandem Qtrap mass spectrometry. Proteomics was analyzed by liquid chromatography tandem ion-trap mass spectrometry. The differently expressed proteins were analyzed via the network database and verified by western blotting. The interaction between triterpenoids and FXR were evaluated by luciferase assay and molecular docking. RESULTS AOE treatment significantly decreased the serum AST, ALT, TBIL, and intrahepatic TBA and improved the liver pathologic change induced by ANIT. Proteomics analysis indicated that AOE regulated proteins related to bile acid homeostasis via activating farnesoid X receptor (FXR) signaling pathway. Luciferase assay and molecular docking results indicated that triterpenoids could activate FXR, which resulting in ameliorative accumulation of bile acids in the liver by increase of metabolism and transportation for bile acids, and decrease of synthesis for bile acids. CONCLUSION AOE protected against rat liver injury and cholestasis induced by ANIT by activation of farnesoid X receptor, suggesting that A. orientale could be regarded as a potential hepatoprotective drug.
Collapse
Affiliation(s)
- Xiao-Kui Huo
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jing Liu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Zhen-Long Yu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Yi-Fei Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Xiang-Ge Tian
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jing Ning
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Lei Feng
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China.
| | - Bao-Jing Zhang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Xiao-Chi Ma
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Basic Medical College, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China.
| |
Collapse
|
39
|
Kong Y, Gao X, Wang C, Ning C, Liu K, Liu Z, Sun H, Ma X, Sun P, Meng Q. Protective effects of yangonin from an edible botanical Kava against lithocholic acid-induced cholestasis and hepatotoxicity. Eur J Pharmacol 2018; 824:64-71. [PMID: 29427579 DOI: 10.1016/j.ejphar.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
Accumulation of toxic bile acids in liver could cause cholestasis and liver injury. The purpose of the current study is to evaluate the hepatoprotective effect of yangonin, a product isolated from an edible botanical Kava against lithocholic acid (LCA)-induced cholestasis, and further to elucidate the involvement of farnesoid X receptor (FXR) in the anticholestatic effect using in vivo and in vitro experiments. The cholestatic liver injury model was established by intraperitoneal injections of LCA in C57BL/6 mice. Serum biomarkers and H&E staining were used to identify the amelioration of cholestasis after yangonin treatment. Mice hepatocytes culture, gene silencing experiment, real-time PCR and Western blot assay were used to elucidate the mechanisms underlying yangonin hepatoprotection. The results indicated that yangonin promoted bile acid efflux and reduced hepatic uptake via an induction in FXR-target genes Bsep, Mrp2 expression and an inhibition in Ntcp, all of which are responsible for bile acid transport. Furthermore, yangonin reduced bile acid synthesis through repressing FXR-target genes Cyp7a1 and Cyp8b1, and increased bile acid metabolism through an induction in gene expression of Sult2a1, which are involved in bile acid synthesis and metabolism. In addition, yangonin suppressed liver inflammation through repressing inflammation-related gene NF-κB, TNF-α and IL-1β. In vitro evidences showed that the changes in transporters and enzymes induced by yangonin were abrogated when FXR was silenced. In conclusions, yangonin produces protective effect against LCA-induced hepatotoxity and cholestasis due to FXR-mediated regulation. Yangonin may be an effective approach for the prevention against cholestatic liver diseases.
Collapse
Affiliation(s)
- Yulong Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaoguang Gao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Chenqing Ning
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
40
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
41
|
Xu L, Sheng T, Liu X, Zhang T, Wang Z, Han H. Analyzing the hepatoprotective effect of the Swertia cincta Burkillextract against ANIT-induced cholestasis in rats by modulating the expression of transporters and metabolic enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:91-99. [PMID: 28734962 DOI: 10.1016/j.jep.2017.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia cincta Burkill was traditionally used for treating jaundice and various types of chronic and acute hepatitis in Yunnan and Tibet in China for hundreds of years. This study aims to investigate the protective effect of S. cincta Burkill (ESC) extract on alpha-naphthylisothiocyanate (ANIT)-induced hepatotoxicity and cholestasis in rats. MATERIALS AND METHODS Crude extracts were prepared using 90% ethanol and by vacuum drying. We utilized an ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS) system to conduct a phytochemical analysis of the active components of ESC. Liver function was evaluated by measuring the serum levels of enzymes and components and by analyzing the liver histology. We also measured the expression of bile metabolism-related transporters and metabolic enzymes at both protein and mRNA levels to elucidate the underlying mechanisms. RESULTS ESC analysis using an UHPLC/Q-TOF-MS revealed eight compounds. Oral administration of ESC to ANIT-treated rats can significantly reduce the increases in serum levels of ALT, AST, ALP, TBIL, and TBA. It can also improve liver pathology and bile flow. Western blot and qRT-PCR analyses showed that ESC upregulated the protein and mRNA expression of Fxr, Ntcp, Bsep, Cyp7a1, Mrp2, and Mdr2. CONCLUSION ESC could alleviate liver injury by reducing enzyme activities of serums, improving liver pathology and bile flow. The protective mechanism was associated with regulation of the expression of hepatic transporters and metabolic enzymes.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Tingting Sheng
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Xiaolong Liu
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Zhengtao Wang
- Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
42
|
Takahashi S, Tanaka N, Golla S, Fukami T, Krausz KW, Polunas MA, Weig BC, Masuo Y, Xie C, Jiang C, Gonzalez FJ. Editor's Highlight: Farnesoid X Receptor Protects Against Low-Dose Carbon Tetrachloride-Induced Liver Injury Through the Taurocholate-JNK Pathway. Toxicol Sci 2017; 158:334-346. [PMID: 28505368 PMCID: PMC5837376 DOI: 10.1093/toxsci/kfx094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatotoxicity is of major concern for humans exposed to industrial chemicals and drugs. Disruption of farnesoid X receptor (FXR), a master regulator of bile acid (BA) metabolism, enhanced the sensitivity to liver injury in mice after toxicant exposure, but the precise mechanism remains unclear. In this study, the interconnection between BA metabolism, FXR, and chemically induced hepatotoxicity was investigated using metabolomics, Fxr-null mice (Fxr-/-) and hepatocytes, and recombinant adenoviruses. A single low-dose intraperitoneal injection of carbon tetrachloride (CCl4), an inducer of acute hepatitis in mice, resulted in more severe hepatocyte damage and higher induction of pro-inflammatory mediators, such as chemokine (C-C motif) ligand 2 (Ccl2), in Fxr-/-. Serum metabolomics analysis revealed marked increases in circulating taurocholate (TCA) and tauro-β-muricholate (T-β-MCA) in these mice, and forced expression of bile salt export protein (BSEP) by recombinant adenovirus in Fxr-/- ameliorated CCl4-induced liver damage. Treatment of Fxr-null hepatocytes with TCA, but not T-β-MCA, significantly increased c-Jun-N-terminal kinase (JNK) activation and Ccl2 mRNA levels, and up-regulation of Ccl2 mRNA was attenuated by co-treatment with a JNK inhibitor SP600125, indicating that TCA directly amplifies hepatocyte inflammatory signaling mainly mediated by JNK under FXR-deficiency. Additionally, pretreatment with SP600125 or restoration of FXR expression in liver by use of recombinant adenovirus, attenuated CCl4-induced liver injury. Collectively, these results suggest that the TCA-JNK axis is likely associated with increased susceptibility to CCl4-induced acute liver injury in Fxr-/-, and provide clues to the mechanism by which FXR and its downstream gene targets, such as BSEP, protects against chemically induced hepatotoxicity.
Collapse
Affiliation(s)
- Shogo Takahashi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Srujana Golla
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tatsuki Fukami
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Blair C. Weig
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Yusuke Masuo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Cen Xie
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Changtao Jiang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
43
|
Wang H, Fang ZZ, Meng R, Cao YF, Tanaka N, Krausz KW, Gonzalez FJ. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption. Toxicology 2017; 386:133-142. [PMID: 28549656 PMCID: PMC5594256 DOI: 10.1016/j.tox.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/04/2023]
Abstract
Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans.
Collapse
Affiliation(s)
- Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Toxicology, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, PR China; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, PR China
| | - Ran Meng
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yun-Feng Cao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, PR China
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
44
|
Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: The importance of data curation. Toxicology 2017; 389:139-145. [PMID: 28652195 PMCID: PMC6422282 DOI: 10.1016/j.tox.2017.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated with Random Forest and 2D molecular descriptors on a dataset of 966 compounds. In addition, predicted transporter inhibition profiles were also included into the models. The initially compiled dataset of 1773 compounds was reduced via a 2-step approach to 966 compounds, resulting in a significant increase (p-value < 0.05) in model performance. The models have been validated via 10-fold cross-validation and against three external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy of 64% (AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values for two test sets (AUC 59%, 71% and 66%, respectively). In the study we also examined whether the predictions of our in-house transporter inhibition models for BSEP, BCRP, P-glycoprotein, and OATP1B1 and 1B3 contributed in improvement of the DILI mode. Finally, the model was implemented with open-source 2D RDKit descriptors in order to be provided to the community as a Python script.
Collapse
Affiliation(s)
- Eleni Kotsampasakou
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Floriane Montanari
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
45
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease in Western populations. Non-alcoholic steatohepatitis (NASH) is a more debilitating form of NAFLD characterized by hepatocellular injury and inflammation, which significantly increase the risk of end-stage liver and cardiovascular diseases. Unfortunately, there are no available drug therapies for NASH. Bile acids are physiological detergent molecules that are synthesized from cholesterol exclusively in the hepatocytes. Bile acids circulate between the liver and intestine, where they are required for cholesterol solubilization in the bile and dietary fat emulsification in the gut. Bile acids also act as signaling molecules that regulate metabolic homeostasis and inflammatory processes. Many of these effects are mediated by the bile acid-activated nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. Nutrient signaling regulates hepatic bile acid synthesis and circulating plasma bile acid concentrations, which in turn control metabolic homeostasis. The FXR agonist obeticholic acid has had beneficial effects on NASH in recent clinical trials. Preclinical studies have suggested that the TGR5 agonist and the FXR/TGR5 dual agonist are also potential therapies for metabolic liver diseases. Extensive studies in the past few decades have significantly improved our understanding of the metabolic regulatory function of bile acids, which has provided the molecular basis for developing promising bile acid-based therapeutic agents for NASH treatment.
Collapse
Affiliation(s)
| | - Tiangang Li
- Corresponding author: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA,
| |
Collapse
|
46
|
Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, Sun L, Zhang L, Jiang Z. SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model. Front Pharmacol 2017; 8:256. [PMID: 28553227 PMCID: PMC5425580 DOI: 10.3389/fphar.2017.00256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis is a kind of clinical syndrome along with hepatotoxicity which caused by intrahepatic and systemic accumulations of bile acid. There are several crucial generating factors of the pathogenesis of cholestasis, such as inflammation, dysregulation of bile acid transporters and oxidative stress. SIRT1 is regarded as a class III histone deacetylase (HDAC). According to a set of researches, SIRT1 is one of the most important factors which can regulate the hepatic bile acid metabolism. SRT1720 is a kind of activator of SIRT1 which is 1000 times more potent than resveratrol, and this paper is aimed to study its protective influence on hepatotoxicity and cholestasis induced by alpha-naphthylisothiocyanate (ANIT) in mice. The findings revealed that SRT1720 treatment increased FXR and Nrf2 gene expressions to shield against hepatotoxicity and cholestasis induced by ANIT. The mRNA levels of hepatic bile acid transporters were also altered by SRT1720. Furthermore, SRT1720 enhanced the antioxidative system by increasing Nrf2, SOD, GCLc, GCLm, Nqo1, and HO-1 gene expressions. In conclusion, a protective influence could be provided by SRT1720 to cure ANIT-induced hepatotoxicity and cholestasis, which was partly through FXR and Nrf2 activations. These results indicated that SIRT1 could be regarded as a therapeutic target to cure the cholestasis.
Collapse
Affiliation(s)
- Linxi Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaoxin Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hang Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhengzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University - Ministry of EducationNanjing, China
| |
Collapse
|
47
|
Fang ZZ, Tanaka N, Lu D, Jiang CT, Zhang WH, Zhang C, Du Z, Fu ZW, Gao P, Cao YF, Sun HZ, Zhu ZT, Cai Y, Krausz KW, Yao Z, Gonzalez FJ. Role of the lipid-regulated NF-κB/IL-6/STAT3 axis in alpha-naphthyl isothiocyanate-induced liver injury. Arch Toxicol 2017; 91:2235-2244. [PMID: 27853831 PMCID: PMC6331015 DOI: 10.1007/s00204-016-1877-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
Abstract
Alpha-naphthyl isothiocyanate (ANIT)-induced liver damage is regarded as a useful model to study drug-induced cholestatic hepatitis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based metabolomics revealed clues to the mechanism of ANIT-induced liver injury, which facilitates the elucidation of drug-induced liver toxicity. 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:0) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:1) were significantly increased in serum from ANIT-treated mice, and this increase resulted from altered expression of genes encoding the lipid metabolism enzymes Chka and Scd1. ANIT also increased NF-κB/IL-6/STAT3 signaling, and in vitro luciferase reporter gene assays revealed that LPC 18:0 and LPC 18:1 can activate NF-κB in a concentration-dependent manner. Activation of PPARα through feeding mice a Wy-14,643-containing diet (0.1%) reduced ANIT-induced liver injury, as indicated by lowered ALT and AST levels, and liver histology. In conclusion, the present study demonstrated a role for the lipid-regulated NF-κB/IL-6/STAT3 axis in ANIT-induced hepatotoxicity, and that PPARα may be a potential therapeutic target for the prevention of drug-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 30070, China
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, No. 457, Zhongshan Road, Dalian, 116023, China
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Dan Lu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 30070, China
| | - Chang-Tao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Wei-Hua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Zhi-Wei Fu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Peng Gao
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
- Clinical Laboratory, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, No. 457, Zhongshan Road, Dalian, 116023, China
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Hong-Zhi Sun
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, No. 457, Zhongshan Road, Dalian, 116023, China
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Zhi-Tu Zhu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and The First Affiliated Hospital of Liaoning Medical University, No. 457, Zhongshan Road, Dalian, 116023, China
- Key Laborotary of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Yan Cai
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, 30070, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA.
| |
Collapse
|
48
|
Zhou HQ, Liu W, Wang J, Huang YQ, Li PY, Zhu Y, Wang JB, Ma X, Li RS, Wei SZ, Li K, Li HT, Li JY, Xiao XH, Zhao YL. Paeoniflorin attenuates ANIT-induced cholestasis by inhibiting apoptosis in vivo via mitochondria-dependent pathway. Biomed Pharmacother 2017; 89:696-704. [DOI: 10.1016/j.biopha.2017.02.084] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
|
49
|
Kang L, Si L, Rao J, Li D, Wu Y, Wu S, Wu M, He S, Zhu W, Wu Y, Xu J, Li G, Huang J. Polygoni Multiflori Radix derived anthraquinones alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicol In Vitro 2017; 40:313-323. [PMID: 28161596 DOI: 10.1016/j.tiv.2017.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
Abstract
Hepatic adverse reaction associated with Polygoni Multiflori Radix (PMR) has been frequently reported in recent years. Highly-enriched anthraquinones (AQs) in PMR, such as emodin, chrysophanol and physcion, have been found to be hepatotoxic. In the present study, sandwich-cultured rat hepatocytes (SCRHs) were employed to investigate the effect of individual and combined AQs on the disposition of endogenous bile acids (BAs) and exogenous probe substrates including deuterium-labeled taurocholate (d5-TCA), glycochenodeoxycholic acid (d4-GCDCA) and 5 (and 6)-carboxy-2',7'-dichlorofluorescein (CDF). Emodin and chrysophanol significantly inhibited bile salt export pump and multidrug resistance-associated protein 2 (Mrp2), respectively, as evidenced by decreased biliary excretion index (BEI) of d5-TCA and CDF. Moreover, basolateral efflux transporters were inhibited by all individual and combined AQs. As a result, cellular accumulation of total and specific endogenous BAs were significantly elevated by individual AQs, alone or combined. In addition, down-regulation of Mrps in both gene and protein levels by AQs served as another critical contributing factor for BA accumulation in SCRHs. To be noted, subsequent adaptive gene regulation, including reduced Ntcp expression, upregulated Bsep levels, and downregulated Cyp8b1, alleviated, to a certain extent, but not prevented from toxic BA accumulation. In summary, all three AQs of interest are likely to alter BA disposition through direct inhibition of BA transporters as well as regulated expression of BA transporters and enzymes.
Collapse
Affiliation(s)
- Li Kang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Rao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghui Wu
- Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Sijie He
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenwen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
50
|
Yao H, Xu Y, Yin L, Tao X, Xu L, Qi Y, Han X, Sun P, Liu K, Peng J. Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress. Front Pharmacol 2017; 8:116. [PMID: 28337145 PMCID: PMC5340742 DOI: 10.3389/fphar.2017.00116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis, a clinical syndrome, is caused by excessive accumulation of bile acids in body and liver. Proper regulation of bile acids in liver cells is critical for liver injury. We previously reported the effects of dioscin against α-naphthylisothio- cyanate (ANIT)-induced cholestasis in rats. However, the pharmacological and mechanism data are limited. In our work, the animals of rats and mice, and Sandwich-cultured hepatocytes (SCHs) were caused by ANIT, and dioscin was used for the treatment. The results showed that dioscin markedly altered relative liver weights, restored ALT, AST, ALP, TBIL, GSH, GSH-Px, MDA, SOD levels, and rehabilitated ROS level and cell apoptosis. In mechanism study, dioscin not only significantly regulated the protein levels of Ntcp, OAT1, OCT1, Bsep and Mrp2 to accelerate bile acids excretion, but also regulated the expression levels of Bak, Bcl-xl, Bcl-2, Bax, Caspase 3 and Caspase 9 in vivo and in vitro to improve apoptosis. In addition, dioscin markedly inhibited PI3K/Akt pathway and up-regulated the levels of Nrf2, GCLc, GCLm, NQO1 and HO-1 against oxidative stress (OS) caused by bile acids. These results were further validated by inhibition of PI3K and Akt using the inhibitors of wortmannin and perifosine in SCHs. Our data showed that dioscin had good action against ANIT-caused intrahepatic cholestasis through regulating transporters, apoptosis and OS. This natural product can be considered as one active compound to treat intrahepatic cholestasis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinyong Peng
- College of Pharmacy, Dalian Medical UniversityDalian, China
| |
Collapse
|