1
|
Cajachagua-Torres KN, Salvi NB, Seok E, Wang Y, Liu M, Kannan K, Kahn LG, Trasande L, Ghassabian A. Prenatal phthalate exposure and anogenital distance in infants at 12 months. ENVIRONMENT INTERNATIONAL 2025; 199:109472. [PMID: 40262489 DOI: 10.1016/j.envint.2025.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Anogenital distance (AGD) is a postnatal marker of in utero exposure to androgens and anti-androgens, and a predictor of reproductive health. We examined the association between gestational exposure to phthalates and AGD in male and female infants. METHODS In 506 mother-infant pairs (276 males, 230 females), we measured urinary concentrations of phthalate metabolites at < 18 and 18-25 weeks of gestation and AGD at child age 12.9 months (95 % range 11.4-21.1). Phthalate metabolite concentrations were adjusted for urinary dilution, averaged, and natural log-transformed. We measured anus-clitoris distance (AGDac) and anus-fourchette distance (AGDaf) in females, and anus-scrotum distance, anus-penis distance, and penile width in males. We used linear regression and partial-linear single-index (PLSI) models to examine associations between phthalates and AGD as single pollutants and in mixture. RESULTS Fifty-eight percent of mothers were Hispanic, followed by 27 % non-Hispanic White. Higher exposures to ∑di-isononyl(phthalate) (∑DiNP) was associated with longer AGDaf [1.28 mm (95 % confidence interval [CI]: 0.52, 2.03) and 0.97 mm (95 %CI: 0.25, 1.69), respectively]. Higher exposures to ∑di(2-ethylhexyl)phthalate (∑DEHP) was associated with longer AGDac [2.80 mm (95 %CI: 1.17, 4.44), and 1.90 mm (95 %CI: 0.76, 3.04), respectively]. No association was observed between phthalate metabolites and AGD in males after multiple testing correction. In mixture analyses, ∑DiNP and ∑DEHP were the main contributors to longer AGD in females. We also detected an interaction between ∑DiNP and ∑DEHP in association with AGD in females. CONCLUSION Early pregnancy phthalate exposure was associated with longer AGD in female infants. Biological mechanisms underlying these associations should be further investigated.
Collapse
Affiliation(s)
| | - Nicole B Salvi
- Department of Pediatrics, New York University Grossman School of Medicine, NY, USA
| | - Eunsil Seok
- Department of Population Health, New York University Grossman School of Medicine, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, NY, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, NY, USA; Department of Population Health, New York University Grossman School of Medicine, NY, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, NY, USA; Department of Population Health, New York University Grossman School of Medicine, NY, USA; New York University School of Global Public Health, New York, New York, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, NY, USA; Department of Population Health, New York University Grossman School of Medicine, NY, USA
| |
Collapse
|
2
|
Whiley PAF, Luu MCM, O’Donnell L, Handelsman DJ, Loveland KL. Testis exposure to unopposed/elevated activin A in utero affects somatic and germ cells and alters steroid levels mimicking phthalate exposure. Front Endocrinol (Lausanne) 2023; 14:1234712. [PMID: 37727456 PMCID: PMC10505732 DOI: 10.3389/fendo.2023.1234712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Correct fetal testis development underpins adult male fertility, and TGFβ superfamily ligands control key aspects of this process. Transcripts encoding one such ligand, activin A, are upregulated in testes after sex determination and remain high until after birth. Testis development requires activin signalling; mice lacking activin A (Inhba KO) display altered somatic and germ cell proliferation, disrupted cord elongation and altered steroid synthesis. In human pregnancies with pre-eclampsia, the foetus is inappropriately exposed to elevated activin A. To learn how this affects testis development, we examined mice lacking the potent activin inhibitor, inhibin, (Inha KO) at E13.5, E15.5 and PND0. At E13.5, testes appeared similar in WT and KO littermates, however E15.5 Inha KO testes displayed two germline phenotypes: (1) multinucleated germ cells within cords, and (2) germ cells outside of cords, both of which are documented following in utero exposure to endocrine disrupting phthalates in rodents. Quantitation of Sertoli and germ cells in Inha KO (modelling elevated activin A) and Inhba KO (low activin A) testes using immunofluorescence demonstrated activin A bioactivity determines the Sertoli/germ cell ratio. The 50% reduction in gonocytes in Inha KO testes at birth indicates unopposed activin A has a profound impact on embryonic germ cells. Whole testis RNAseq on Inha KO mice revealed most transcripts affected at E13.5 were present in Leydig cells and associated with steroid biosynthesis/metabolism. In agreement, androstenedione (A4), testosterone (T), and the A4:T ratio were reduced in Inha KO testes at E17.5, confirming unopposed activin A disrupts testicular steroid production. E15.5 testes cultured with either activin A and/or mono-2-ethylhexyl phthalate (MEHP) generated common histological and transcriptional outcomes affecting germline and Leydig cells, recapitulating the phenotype observed in Inha KO testes. Cultures with activin A and MEHP together provided evidence of common targets. Lastly, this study extends previous work focussed on the Inhba KO model to produce a signature of activin A bioactivity in the fetal testis. These outcomes show the potential for elevated activin A signalling to replicate some aspects of fetal phthalate exposure prior to the masculinization programming window, influencing fetal testis growth and increasing the risk of testicular dysgenesis.
Collapse
Affiliation(s)
- Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Michael C. M. Luu
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Liza O’Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, Pang MG. Environmentally relevant doses of endocrine disrupting chemicals affect male fertility by interfering with sertoli cell glucose metabolism in mice. CHEMOSPHERE 2023; 337:139277. [PMID: 37364641 DOI: 10.1016/j.chemosphere.2023.139277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The growing global deterioration in several aspects of human health has been partly attributed to hazardous effects of endocrine-disrupting chemicals (EDCs) exposure. Therefore, experts and government regulatory agencies have consistently advocated for studies on the combined effects of EDCs that model human exposure to multiple environmental chemicals in real life. Here, we investigated how low concentrations of bisphenol A (BPA), and phthalates compounds affect the Sertoli cell glucose uptake/lactate production in the testis and male fertility. An EDC mixture containing a detected amount of each chemical compound in humans, called daily exposure (DE), and DE increased in magnitude by 25 (DE25), 250 (DE250), and 2500 (DE2500), and corn oil (control) were administered for six weeks to male mice. We found that DE activated estrogen receptor beta (Erβ) and glucose-regulated protein 78 (Grp 78) and disrupted the estradiol (E2) balance. In addition, DE25, DE250, and DE2500 doses of the EDC mixture via binding with Sertoli cells' estrogen receptors (ERs) inhibited the glucose uptake and lactate production processes by downregulating glucose transporters (GLUTs) and glycolytic enzymes. As a result, endoplasmic reticulum stress (ERS), marked by unfolded protein response (UPR) activation, was induced. The accompanying upregulation of activating transcription factor 4 (ATF4), inositol requiring enzyme-1 (IRE1), C/EBP homologous protein (CHOP), and mitogen-activated protein kinase (MAPK) signaling promoted antioxidant depletion, testicular cell apoptosis, abnormal regulation of the blood-testis barrier, and decreased sperm count. Therefore, these findings suggest that human and wildlife exposure to multiple environmental chemicals can produce a wide range of reproductive health complications in male mammals.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Mung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
4
|
Tardif S, Rwigemera A, Letourneau N, Robaire B, Delbes G. Reproductive toxicity of emerging plasticizers, flame retardants, and bisphenols, using culture of the rat fetal testis†. Biol Reprod 2023; 108:837-848. [PMID: 36780129 PMCID: PMC10183361 DOI: 10.1093/biolre/ioad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023] Open
Abstract
The use of bis (2-ethylhexyl) phthalate (DEHP), 2,2'4,4'-tetrabromodiphenyl ether (BDE47), and bisphenol A (BPA), as plasticizers, flame retardants, and epoxy resins, respectively, has been regulated due to their endocrine disrupting activities. Replacements for these chemicals are found in human matrices, yet the endocrine disrupting potential of these emerging contaminants is poorly characterized. We compared the effects of legacy chemicals with those of their replacements using fetal rat testis organ culture. Fetal testes sampled at gestation day 15 were grown ex vivo, and the impact was evaluated after a 3-day exposure to 10 μM of each legacy chemical; two BPA analogs (bisphenol M and bisphenol TMC); three replacements for DEHP/MEHP (2,2,4-trimethyl-1,3-pentanediol diisobutyrate, diisononyl-phthalate, and diisodecyl adipate); or two replacements for BDE47 (tributoxyethyl phosphate and isopropylated triphenyl phosphate). We showed that only BPA and MEHP significantly decrease testosterone secretions after 24 h, while BPM and BPTMC have the opposite effect. Luteinizing hormone-stimulated testosterone was reduced by BPA and MEHP but was increased by BPTMC. After exposure, testes were used for immunofluorescent staining of germ cells, Sertoli cells, and Leydig cells. Interestingly, exposures to BPM or BPTMC induced a significant increase in the Leydig cell density and surface area. A decrease in germ cell density was observed only after treatment with MEHP or BDE47. MEHP also significantly decreased Sertoli cell proliferation. These studies show that some replacement chemicals can affect testicular function, while others appear to show little toxicity in this model. These findings provide essential information regarding the need for their regulation.
Collapse
Affiliation(s)
- Sarah Tardif
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Arlette Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Natasha Letourneau
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutic, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| |
Collapse
|
5
|
Nguyen AV, Van Vu T, Pham CLT, Nguyen VN, Ta NT, Hoang AQ, Minh TB, Tran TM. Widespread distribution of phthalic acid esters in indoor and ambient air samples collected from Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63175-63184. [PMID: 36959402 DOI: 10.1007/s11356-023-26558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
In the present study, distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 90 air samples collected from the urban areas in Hanoi, Vietnam from May to August 2022. The total concentrations of PAEs in indoor and ambient air samples were in the range of 320-4770 ng/m3 and 35.9-133 ng/m3, respectively. Total concentrations of PAEs in indoor air were about one order of magnitude higher than those in ambient air. Among PAEs studied, di-(2-ethyl)hexyl phthalate (DEHP) was measured at the highest levels in all air samples, followed by di-n-octyl phthalate (DnOP) and di-n-butyl phthalate (DnBP). The PAEs concentrations in air samples collected from laboratories at nighttime were significantly higher than those during daytime (p < 0.05). Meanwhile, the distributions of PAEs in various micro-environments in the same house are no statistically significant difference. The median exposure doses of PAEs through inhalation for adults and children were 248 and 725 ng/kg-bw/d, respectively. These exposure levels were still lower than the respective reference doses (RfD) proposed by the US EPA for selected compounds such as diethyl phthalate (DEP), DnBP, and DEHP.
Collapse
Affiliation(s)
- Anh Viet Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Tu Van Vu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Chi Linh Thi Pham
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Viet Ngoc Nguyen
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tu Binh Minh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tri Manh Tran
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
6
|
Ge ZJ, Gioia Klinger F, Taketo T. Editorial: Intra- and extra-environment and reproduction. Front Cell Dev Biol 2022; 10:1020470. [DOI: 10.3389/fcell.2022.1020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
|
7
|
Alhasnani MA, Loeb S, Hall SJ, Caruolo Z, Simmonds F, Solano AE, Spade DJ. Interaction between mono-(2-ethylhexyl) phthalate and retinoic acid alters Sertoli cell development during fetal mouse testis cord morphogenesis. Curr Res Toxicol 2022; 3:100087. [PMID: 36189433 PMCID: PMC9520016 DOI: 10.1016/j.crtox.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Phthalic acid esters (phthalates) are a class of industrial chemicals that cause developmental and reproductive toxicity, but there are significant gaps in knowledge of phthalate toxicity mechanisms. There is evidence that phthalates disrupt retinoic acid signaling in the fetal testis, potentially disrupting control of spatial and temporal patterns of testis development. Our goal was to determine how a phthalate would interact with retinoic acid signaling during fetal mouse testis development. We hypothesized that mono-(2-ethylhexyl) phthalate (MEHP) would exacerbate the adverse effect of all-trans retinoic acid (ATRA) on seminiferous cord development in the mouse fetal testis. To test this hypothesis, gestational day (GD) 14 C57BL/6 mouse testes were isolated and cultured on media containing MEHP, ATRA, or a combination of both compounds. Cultured testes were collected for global transcriptome analysis after one day in culture and for histology and immunofluorescent analysis of Sertoli cell differentiation after three days in culture. ATRA disrupted seminiferous cord morphogenesis and induced aberrant FOXL2 expression. MEHP alone had no significant effect on cord development, but combined exposure to MEHP and ATRA increased the number of FOXL2-positive cells, reduced seminiferous cord number, and increased testosterone levels, beyond the effect of ATRA alone. In RNA-seq analysis, ATRA treatment and MEHP treatment resulted in differential expression of genes 510 and 134 genes, respectively, including 70 common differentially expressed genes (DEGs) between the two treatments, including genes with known roles in fetal testis development. MEHP DEGs included RAR target genes, genes involved in angiogenesis, and developmental patterning genes, including members of the homeobox superfamily. These results support the hypothesis that MEHP modulates retinoic acid signaling in the mouse fetal testis and provide insight into potential mechanisms by which phthalates disrupt seminiferous cord morphogenesis.
Collapse
Key Words
- ATRA, All-trans retinoic acid. CAS # 302-79-4
- DMSO, dimethyl sulfoxide
- Fetal testis development
- GD, gestational day
- GO, Gene Ontology
- IPA, Ingenuity Pathway Analysis
- ITCN, Image-based Tool for Counting Nuclei
- MEHP, mono-(2-ethylheyxl) phthalate. CAS # 4376-20-9
- MNGs, multinucleated germ cells
- PVC, polyvinyl chloride
- Phthalate toxicity
- Retinoic acid
- Sertoli cell
- TDS, testicular dysgenesis syndrome
Collapse
Affiliation(s)
- Maha A. Alhasnani
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Skylar Loeb
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Zachary Caruolo
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Faith Simmonds
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Amanda E. Solano
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912, USA
| |
Collapse
|
8
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine 2021; 72:358-374. [PMID: 32757113 PMCID: PMC8128728 DOI: 10.1007/s12020-020-02436-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Endocrine disruptors (EDs) are exogenous substances able to impair endocrine system; consequently, they may cause numerous adverse effects. Over the last years, particular focus has been given to their harmful effects on reproductive system, but very little is known, especially in males. The aim of this review is to discuss the detrimental effects of EDs exposure on fetal testis development, male puberty, and transition age. METHODS A search for the existing literature focusing on the impact of EDs on fetal testis development, male puberty, andrological parameters (anogenital distance, penile length, and testicular volume), and testicular cancer with particular regard to pubertal age provided the most current information available for this review. Human evidence-based reports were given priority over animal and in vitro experimental results. Given the paucity of available articles on this subject, all resources were given careful consideration. RESULTS Information about the consequences associated with EDs exposure in the current literature is limited and often conflicting, due to the scarcity of human studies and their heterogeneity. CONCLUSIONS We conclude that current evidence does not clarify the impact of EDs on human male reproductive health, although severe harmful effects had been reported in animals. Despite controversial results, overall conclusion points toward a positive association between exposure to EDs and reproductive system damage. Further long-term studies performed on wide number of subjects are necessary in order to identify damaging compounds and remove them from the environment.
Collapse
Affiliation(s)
- Francesco Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Iva Sabovic
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
10
|
Dostalova P, Zatecka E, Ded L, Elzeinova F, Valaskova E, Kubatova A, Korenkova V, Langerova L, Komrskova K, Peknicova J. Gestational and pubertal exposure to low dose of di-(2-ethylhexyl) phthalate impairs sperm quality in adult mice. Reprod Toxicol 2020; 96:175-184. [PMID: 32619501 DOI: 10.1016/j.reprotox.2020.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP) is a compound widely used as a plasticizer, which can leach from plastics into the environment and thus influence human health. The aim of this study was to analyze whether exposure to an environmentally relevant dose of DEHP during mice fetal development or puberty can cause long-lasting changes detectable month/s after the last exposure. We used a DEHP concentration relevant to a daily human intake of 2.4-3 μg/kg of body weight/day. CD1 outbred mice were treated either in utero or postnatally during puberty and analyzed in adulthood. Analyzing fertility parameters using morphometric, histologic, genomic and proteomic methods we showed that DEHP exposure leads to decreased sperm concentration and quality, in both experimental groups. Moreover, the changes in anogenital distance, seminal vesicle weight, and testicular gene expression suggest a disturbance of androgen signaling in exposed animals. In conclusion, we hereby present, that the prenatal and pubertal exposure to a low dose of DEHP negatively influenced reproductive endpoints in male mice, and some of the effects were persistent until adulthood.
Collapse
Affiliation(s)
- Pavla Dostalova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Eva Zatecka
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Fatima Elzeinova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alena Kubatova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vlasta Korenkova
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Lucie Langerova
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
11
|
Kilcoyne KR, Mitchell RT. Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum Reprod Update 2020; 25:397-421. [PMID: 30869130 PMCID: PMC6601394 DOI: 10.1093/humupd/dmz004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Overall, the incidence of male reproductive disorders has increased in recent decades. Testicular development during fetal life is crucial for subsequent male reproductive function. Non-genomic factors such as environmental chemicals, pharmaceuticals and lifestyle have been proposed to impact on human fetal testicular development resulting in subsequent effects on male reproductive health. Whilst experimental studies using animal models have provided support for this hypothesis, more recently a number of experimental studies using human tissues and cells have begun to translate these findings to determine direct human relevance. OBJECTIVE AND RATIONALE The objective of this systematic review was to provide a comprehensive description of the evidence for effects of prenatal exposure(s) on human fetal testis development and function. We present the effects of environmental, pharmaceutical and lifestyle factors in experimental systems involving exposure of human fetal testis tissues and cells. Comparison is made with existing epidemiological data primarily derived from a recent meta-analysis. SEARCH METHODS For identification of experimental studies, PubMed and EMBASE were searched for articles published in English between 01/01/1966 and 13/07/2018 using search terms including ‘endocrine disruptor’, ‘human’, ‘fetal’, ‘testis’, ‘germ cells’, ‘testosterone’ and related search terms. Abstracts were screened for selection of full-text articles for further interrogation. Epidemiological studies involving exposure to the same agents were extracted from a recent systematic review and meta-analysis. Additional studies were identified through screening of bibliographies of full-texts of articles identified through the initial searches. OUTCOMES A total of 25 experimental studies and 44 epidemiological studies were included. Consistent effects of analgesic and phthalate exposure on human fetal germ cell development are demonstrated in experimental models, correlating with evidence from epidemiological studies and animal models. Furthermore, analgesic-induced reduction in fetal testosterone production, which predisposes to the development of male reproductive disorders, has been reported in studies involving human tissues, which also supports data from animal and epidemiological studies. However, whilst reduced testosterone production has been demonstrated in animal studies following exposure(s) to a variety of environmental chemicals including phthalates and bisphenol A, these effects are not reproduced in experimental approaches using human fetal testis tissues. WIDER IMPLICATIONS Direct experimental evidence for effects of prenatal exposure(s) on human fetal testis development and function exists. However, for many exposures the data is limited. The increasing use of human-relevant models systems in which to determine the effects of environmental exposure(s) (including mixed exposures) on development and function of human tissues should form an important part of the process for assessment of such exposures by regulatory bodies to take account of animal–human differences in susceptibility.
Collapse
Affiliation(s)
- Karen R Kilcoyne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK.,Royal Hospital for Sick Children, Edinburgh, UK
| |
Collapse
|
12
|
Arzuaga X, Walker T, Yost EE, Radke EG, Hotchkiss AK. Use of the Adverse Outcome Pathway (AOP) framework to evaluate species concordance and human relevance of Dibutyl phthalate (DBP)-induced male reproductive toxicity. Reprod Toxicol 2019; 96:445-458. [PMID: 31260805 PMCID: PMC10067323 DOI: 10.1016/j.reprotox.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
Dibutyl phthalate (DBP) is a phthalate ester used as a plasticizer, and solvent. Studies using rats consistently report that DBP exposure disrupts normal development of the male reproductive system in part via inhibition of androgen synthesis. However, studies using xenograft models report that in human fetal testis DBP exposure is unlikely to impair testosterone synthesis. These results question the validity of the rat model for assessment of male reproductive effects caused by DBP. The Adverse Outcome Pathway (AOP) framework was used to evaluate the available evidence for DBP-induced toxicity to the male reproductive system. Three relevant biological elements were identified: 1) fetal rats are more sensitive than other rodents and human fetal xenografts to DBP-induced anti-androgenic effects, 2) DBP-induced androgen-independent adverse outcomes are conserved amongst different mammalian models and human fetal testis xenografts, and 3) DBP-induced anti-androgenic effects are conserved in different mammalian species when exposure occurs during postnatal life stages.
Collapse
Affiliation(s)
- Xabier Arzuaga
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America.
| | - Teneille Walker
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Erin E Yost
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| | - Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Andrew K Hotchkiss
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| |
Collapse
|
13
|
Repouskou A, Panagiotidou E, Panagopoulou L, Bisting PL, Tuck AR, Sjödin MOD, Lindberg J, Bozas E, Rüegg J, Gennings C, Bornehag CG, Damdimopoulou P, Stamatakis A, Kitraki E. Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Sci Rep 2019; 9:6424. [PMID: 31015488 PMCID: PMC6478857 DOI: 10.1038/s41598-019-42377-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 11/17/2022] Open
Abstract
The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1st trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant in vitro model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emily Panagiotidou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Lydia Panagopoulou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Astrud R Tuck
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Marcus O D Sjödin
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Johan Lindberg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Evangelos Bozas
- Pediatric Research laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- IMM -Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Karlstad University, Karlstad, Sweden
| | - Pauliina Damdimopoulou
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Efthymia Kitraki
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
14
|
Negrin AC, de Jesus MM, Christante CM, da Silva DGH, Taboga SR, Pinto-Fochi ME, Góes RM. Maternal supplementation with corn oil associated or not with di-n-butyl phthalate increases circulating estradiol levels of gerbil offspring and impairs sperm reserve. Reprod Toxicol 2018; 81:168-179. [PMID: 30103012 DOI: 10.1016/j.reprotox.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
This study evaluated the consequences of gestational exposure to di-n-butyl phthalate (DBP) for testicular steroidogenesis and sperm parameters of the adult gerbil and the interference of corn oil (co), a vehicle widely used for administration of liposoluble agents, on DBP effects. Pregnant gerbils received no treatment or were treated from gestational day 8 to 23 via gavage with 0.1 mL/day of co only or containing DBP (100 mg/kg/day). Maternal co intake enhanced serum estradiol levels and testicular content of ERα, and reduced sperm reserve of adult offspring. Gestational DBP exposure caused dyslipidemia, increased serum and intratesticular estradiol levels and reduced sperm reserve and motility. Thus, maternal co supplementation alters circulating estradiol and impairs sperm quantity and quality of offspring. Gestational DBP exposure alters lipid metabolism and testicular steroidogenesis and worsens the negative effects of co on the sperm reserve and motility of gerbil. Therefore, co interferes with the reproductive response to DBP.
Collapse
Affiliation(s)
- Ana Carolina Negrin
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Mariana Marcielo de Jesus
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Caroline Maria Christante
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Danilo Grünig Humberto da Silva
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| | - Sebastião Roberto Taboga
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil; Faculdade de Medicina, União das Faculdades dos Grandes Lagos - UNILAGO, São José do Rio Preto, SP, Brazil.
| | - Rejane Maira Góes
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
15
|
Svechnikov K, Savchuk I, Morvan ML, Antignac JP, Le Bizec B, Söder O. Phthalates Exert Multiple Effects on Leydig Cell Steroidogenesis. Horm Res Paediatr 2018; 86:253-263. [PMID: 26559938 DOI: 10.1159/000440619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Humans are significantly exposed to phthalates via food packaging, cosmetics and medical devices such as tubings and catheters. Testicular Leydig cells (LCs) are suggested to be among the main targets of phthalate toxicity in the body. However, their sensitivity to phthalates is species-dependent. This paper describes the response of the LCs from different species (mouse, rat and human) to phthalate exposure in different experimental paradigms (in vivo, ex vivo and in vitro), with particular focus on mechanisms of phthalate action on LC steroidogenesis. A comprehensive analysis of the impact of phthalate diesters and phthalate monoesters on LCs in different stages of their development is presented and possible mechanisms of phthalates action are discussed. Finally novel, not yet fully elucidated sites of action of phthalate monoesters on the backdoor pathway of 5α-dihydrotestosterone biosynthesis in immature mouse LCs and their effects on steroidogenesis and redox state in adult mouse LCs are reported.
Collapse
Affiliation(s)
- Konstantin Svechnikov
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Karolinska Institute and University Hospital, Q2:08, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Arendrup FS, Mazaud-Guittot S, Jégou B, Kristensen DM. EDC IMPACT: Is exposure during pregnancy to acetaminophen/paracetamol disrupting female reproductive development? Endocr Connect 2018; 7:149-158. [PMID: 29305399 PMCID: PMC5776669 DOI: 10.1530/ec-17-0298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Concern has been raised over chemical-induced disruption of ovary development during fetal life resulting in long-lasting consequences only manifesting themselves much later during adulthood. A growing body of evidence suggests that prenatal exposure to the mild analgesic acetaminophen/paracetamol can cause such a scenario. Therefore, in this review, we discuss three recent reports that collectively indicate that prenatal exposure in a period of 13.5 days post coitum in both rats and mouse can result in reduced female reproductive health. The combined data show that the exposure results in the reduction of primordial follicles, irregular menstrual cycle, premature absence of corpus luteum, as well as reduced fertility, resembling premature ovarian insufficiency syndrome in humans that is linked to premature menopause. This could especially affect the Western parts of the world, where the age for childbirth is continuously being increased and acetaminophen is recommended during pregnancy for pain and fever. We therefore highlight an urgent need for more studies to verify these data including both experimental and epidemiological approaches.
Collapse
Affiliation(s)
| | - Severine Mazaud-Guittot
- Inserm (Institut National de la Santé et de la Recherche Médicale)Irset - Inserm, UMR 1085, Rennes, France
| | - Bernard Jégou
- Inserm (Institut National de la Santé et de la Recherche Médicale)Irset - Inserm, UMR 1085, Rennes, France
- EHESP-School of Public HealthRennes, France
| | - David Møbjerg Kristensen
- Department of NeurologyDanish Headache Center, Rigshospitalet, University of Copenhagen, Denmark
- Inserm (Institut National de la Santé et de la Recherche Médicale)Irset - Inserm, UMR 1085, Rennes, France
| |
Collapse
|
17
|
Christante CM, Pinto-Fochi ME, Negrin AC, Taboga SR, Góes RM. Effects of gestational exposure to di-n-butyl phthalate and mineral oil on testis development of the Mongolian gerbil. Reprod Fertil Dev 2018; 30:1604-1615. [DOI: 10.1071/rd17482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/01/2018] [Indexed: 11/23/2022] Open
Abstract
Phthalate esters are endocrine disrupters that can affect the development of the testis in a species-specific manner. However, their interference in the male gonads of the Mongolian gerbil is unknown. The aim of the present study was to evaluate whether gestational exposure to di-n-butyl phthalate (DBP) interferes with the development of the gerbil testis during the first six weeks of life. Males were evaluated at 1, 7, 14, 28, 35 and 42 days of age in an untreated (control) group or groups exposed from 8 to 23 days gestation to DBP (100 mg kg−1 day−1 in mineral oil) or vehicle by maternal gavage. DBP exposure impaired cell proliferation within the seminiferous cords at birth, but increased proliferation at the end of the first week, when higher testosterone concentrations were observed. The vehicle (mineral oil) reduced the total number of gonocytes and attenuated the decrease in testosterone concentrations at 7 days. The vehicle also altered gonocyte relocation at 14 days and increased oestrogen concentrations at 28 days by approximately 112%. In summary, both DBP and oil interfered in gonadal development and testosterone plasma concentrations in the first week of postnatal life. However, the changes observed at the beginning of puberty were not seen after exposure to DBP, indicating a more harmful effect of mineral oil in this period.
Collapse
|
18
|
Protective Effects of Genistein against Mono-(2-ethylhexyl) Phthalate-Induced Oxidative Damage in Prepubertal Sertoli Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2032697. [PMID: 29259978 PMCID: PMC5702931 DOI: 10.1155/2017/2032697] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) and genistein are two of the most prevalent endocrine-disrupting chemicals (EDCs) that present in the environment and food. However, how these two EDCs would affect prepubertal Sertoli cells development was rarely studied. In this study, primary prepubertal Sertoli cells were isolated from 22-day-old Sprague Dawley rats and exposed to MEHP at 1 μmol/L, 10 μmol/L, and 100 μmol/L (M1, M10, and M100), genistein at 10 μmol/L (G), and their combination (G + M1, G + M10, and G + M100). Cell proliferation inhibition rate, apoptosis and necrosis rate, and cellular redox state were evaluated. Our results revealed that MEHP could significantly increase cell proliferation inhibition rate, apoptosis rate, necrosis rate, and intracellular reactive oxidative species level. However, coadministration of genistein could partially alleviate MEHP-induced prepubertal Sertoli cells oxidative injuries via enhancement of testicular antioxidative enzymes activities and upregulation of Nrf2 and HO-1, indicating that genistein could partially attenuate MEHP-induced prepubertal Sertoli cells damage through antioxidative action and may have promising future on its curative role for attenuating other EDCs-induced reproductive disorders.
Collapse
|
19
|
Wu X, Jiang L, Sun X, Yao X, Bai Y, Liu X, Liu N, Zhai X, Wang S, Yang G. Mono(2-ethylhexyl) phthalate induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis in human endothelial cells. Food Chem Toxicol 2017; 106:273-282. [DOI: 10.1016/j.fct.2017.05.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023]
|
20
|
Kolesnikova LI, Kurashova NA, Bairova TA, Dolgikh MI, Ershova OA, Natyaganova LV, Dashiev BG, Gutnik IN, Koroleva NV. Features of Lipoperoxidation, Antioxidant Defense, and Thiol/Disulfide System in the Pathogenesis of Infertility in Males, Carriers of Nonfunctional Variants of GSTT1 and GSTM1 Gene Polymorphisms. Bull Exp Biol Med 2017; 163:378-380. [DOI: 10.1007/s10517-017-3808-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 10/19/2022]
|
21
|
Wang H, Wang J, Zhang J, Jin S, Li H. Role of PI3K/AKT/mTOR signaling pathway in DBP-induced apoptosis of testicular sertoli cells in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:145-150. [PMID: 28578144 DOI: 10.1016/j.etap.2017.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/30/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Dibutyl phthalate (DBP) has significant male reproductive toxicity, and the Sertoli cells are the target cells of DBP. This study was to investigate the injury effect induced by DBP on rat testicular Sertoli cells in vitro. MTT results showed that DBP can significantly reduce the survival rate of Sertoli cells; Hoechst staining results showed that the Sertoli cells treated with DBP emerged with typical morphological characteristics of apoptosis, nuclear condensation and chromatin condensation; flow cytometry results showed that DBP significantly increased the apoptotic rate of Sertoli cells, and dose-dependent; Western blotting showed that the expression of PTEN protein in Sertoli cells was significantly higher than that in the control group after treated with different concentrations of DBP for 24h, while the expression of p-PI3K1, p-AKT, p70S6K and 4E-BP1 protein in the PI3K/AKT/mTOR signal pathway were significantly decreased. It is speculated that PTEN/PI3K/AKT/mTOR signaling pathway plays an important role in DBP-induced apoptosis of testicular Sertoli cells in rats.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Environmental Hygiene, School of Public Health, Beihua University, Jilin 132013, China
| | - Jun Wang
- Department of Radiotherapy, The Second People's Hospital of Jilin City, Jilin 132002, China, China
| | - Jing Zhang
- Department of Environmental Hygiene, School of Public Health, Beihua University, Jilin 132013, China
| | - Shuguang Jin
- Department of Environmental Hygiene, School of Public Health, Beihua University, Jilin 132013, China
| | - Huan Li
- Department of Environmental Hygiene, School of Public Health, Beihua University, Jilin 132013, China.
| |
Collapse
|
22
|
Dong BW, Jin XH, Yan CY, Yang T, Cai GQ, Lu J. Synergistic upregulation of NONO and PSPC1 regulates Sertoli cell response to MEHPviamodulation of ALDH1A1 signaling. FEBS Lett 2017; 591:914-923. [PMID: 28117896 DOI: 10.1002/1873-3468.12568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Bing-wei Dong
- Department of Pathology; Xian Yang Central Hospital; China
| | - Xiao-hang Jin
- Department of Histology and Embryology; Fourth Military Medical University; Xi'an China
| | | | - Tian Yang
- Department of Histology and Embryology; Fourth Military Medical University; Xi'an China
| | - Guo-qing Cai
- Department of Gynaecology and Obstetrics; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Jian Lu
- Department of Pharmacy; Xian Yang Central Hospital; China
| |
Collapse
|
23
|
Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L, Huang X, Li Y. Daidzein impairs Leydig cell testosterone production and Sertoli cell function in neonatal mouse testes: An in vitro study. Mol Med Rep 2016; 14:5325-5333. [PMID: 27840926 DOI: 10.3892/mmr.2016.5896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/26/2016] [Indexed: 11/06/2022] Open
Abstract
Isoflavone is a type of phytoestrogen that exists in soy‑based products. Previous studies have reported that certain foods containing isoflavones, particularly infant formula, may have potential adverse effects on male reproductive function. However, few studies have focused on the effects of isoflavones on testosterone biosynthesis and Sertoli cell function during the neonatal period. The aim of the present study was to investigate the influence of daidzein, a common isoflavone, on testosterone secretion and Sertoli cell function during the neonatal period. The organ culture method was used to assess the effects of daidzein on neonatal mouse testes. Cultured testes were treated with daidzein (0, 0.03, 0.3, 3 or 30 µmol/l) for 72 h. To verify the mechanism of action of daidzein on androgen production, Leydig cells were also treated with daidzein for 24 h. As anticipated, testosterone secretions were suppressed by daidzein (30 µmol/l) in cultured testes and Leydig cells. Further analysis demonstrated that the expression levels of steroidogenic acute regulatory protein (StAR), cholesterol side‑chain cleavage enzyme (P450scc) and 3β‑hydroxysteroid dehydrogenase (3β‑HSD), which are transport proteins and key enzymes in androgen biosynthesis, were suppressed in cultured neonatal mouse testes. In addition, the expression levels of StAR, P450scc, 3β‑HSD and 17α‑hydroxylase/20‑lyase were decreased in Leydig cells. Notably, proliferation of Sertoli cells was also inhibited by daidzein (30 µmol/l). Furthermore, the expression levels of vimentin were significantly suppressed in the testes following treatment with daidzein, whereas inhibin B expression exhibited no change. In conclusion, daidzein may suppress steroidogenic capability and impair Sertoli cell function in the neonatal period in vitro.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hua Xu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Li
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Zhibin Gao
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Huang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linxi Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoming Huang
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Yun Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Yang D, Wang L, Lin P, Jiang T, Wang N, Zhao F, Chen H, Tang K, Zhou D, Wang A, Jin Y. An immortalized steroidogenic goat granulosa cell line as a model system to study the effect of the endoplasmic reticulum (ER)-stress response on steroidogenesis. J Reprod Dev 2016; 63:27-36. [PMID: 27746409 PMCID: PMC5320427 DOI: 10.1262/jrd.2016-111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4-6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells.
Collapse
Affiliation(s)
- Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Liu W, Yang Q, Yu M, Zhang Z. Di (2-ethylhexyl) phthalate exposure during pregnancy disturbs temporal sex determination regulation in mice offspring. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Spade DJ, Hall SJ, Wilson S, Boekelheide K. Di-n-Butyl Phthalate Induces Multinucleated Germ Cells in the Rat Fetal Testis Through a Nonproliferative Mechanism. Biol Reprod 2015; 93:110. [PMID: 26400400 DOI: 10.1095/biolreprod.115.131615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/18/2015] [Indexed: 01/12/2023] Open
Abstract
In utero exposure to some phthalate esters adversely affects the development of the rat seminiferous cord, causing germ cell loss and increasing the number of multinucleated germ cells (MNGs). To understand the timing of MNG formation and determine whether it requires nuclear division, timed pregnant Sprague Dawley rats were exposed to 500 mg/kg di-n-butyl phthalate (DBP) or corn oil vehicle by oral gavage on Gestational Day (GD) 17 or 18 (0 h) and euthanized after 2, 4, 6, or 24 h or given a second dose at 24 h and euthanized 48 h after the initial dose. Dams were simultaneously exposed to 0.3 M 5-bromo-2'-deoxycitidine (BrdC; converted to 5-bromo-2'-deoxyuridylate [BrdU] in vivo) through a subcutaneous micro-osmotic pump implanted at -2 h. In the testes of male fetuses, DBP induced MNGs significantly beginning at 4-6 h and dramatically by 24 h when exposure began on GD 18 but not GD 17. Seminiferous cord diameter was significantly elevated in testes of rats treated with DBP at 24 and 48 h, and cell death, measured by TUNEL assay, was significantly elevated by DBP only at 48 h, when treatment began on GD 18. TUNEL-labeled MNGs were rare. Overall BrdU labeling rate in the testis was unaffected by DBP. Only one of 606 MNGs in BrdU-labeled sections had a strongly positive nucleus, confirming a nonproliferative mechanism of MNG formation, which is a degenerative process with the potential to adversely affect testis development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Shelby Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
27
|
Lioy PJ, Hauser R, Gennings C, Koch HM, Mirkes PE, Schwetz BA, Kortenkamp A. Assessment of phthalates/phthalate alternatives in children's toys and childcare articles: Review of the report including conclusions and recommendation of the Chronic Hazard Advisory Panel of the Consumer Product Safety Commission. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:343-53. [PMID: 25944701 DOI: 10.1038/jes.2015.33] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 05/25/2023]
Abstract
The Consumer Product Safety Commission (CPSC) convened a Chronic Hazard Advisory Panel (CHAP) on Phthalates found in children's toys, and childcare products, and in products used by women of childbearing age. The CHAP conducted a risk assessment on phthalates and phthalate substitutes, and made recommendations to either ban, impose an interim ban, or allow the continued use of phthalates and phthalate substitutes in the above products. After a review of the literature, the evaluation included toxic end points of primary concern, biomonitoring results, extant exposure reconstruction, and epidemiological results. The health end points chosen were associated with the rat phthalate syndrome, which is characterized by malformations of the epididymis, vas deferens, seminal vesicles, prostate, external genitalia (hypospadias), and by cryptorchidism (undescended testes), retention of nipples/areolae, and demasculinization (~incomplete masculinization) of the perineum, resulting in reduced anogenital distance. Risk assessment demonstrated that some phthalates should be permanently banned, removed from the banned list, or remain interim banned. Biomonitoring and toxicology data provided the strongest basis for a mixture risk assessment. In contrast, external exposure data were the weakest and need to be upgraded for epidemiological studies and risk assessments. Such studies would focus on routes and sources. The review presents recommendations and uncertainties.
Collapse
Affiliation(s)
- Paul J Lioy
- Rutgers Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey, USA
| | - Russ Hauser
- Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Philip E Mirkes
- University of Washington (retired), Seattle, Washington, USA
| | - Bernard A Schwetz
- US Department of Health and Human Services (retired), Washington, District of Columbia, USA
| | | |
Collapse
|
28
|
de Jesus MM, Negrin AC, Taboga SR, Pinto-Fochi ME, Góes RM. Histopathological alterations in the prostates of Mongolian gerbils exposed to a high-fat diet and di-n-butyl phthalate individually or in combination. Reprod Toxicol 2015; 52:26-39. [DOI: 10.1016/j.reprotox.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 11/11/2014] [Accepted: 02/06/2015] [Indexed: 01/01/2023]
|
29
|
van den Driesche S, McKinnell C, Calarrão A, Kennedy L, Hutchison GR, Hrabalkova L, Jobling MS, Macpherson S, Anderson RA, Sharpe RM, Mitchell RT. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat and in human fetal testis xenografts. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:223-30. [PMID: 25514601 PMCID: PMC4348744 DOI: 10.1289/ehp.1408248] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 12/12/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored. OBJECTIVES We sought to identify the effects of phthalate exposure on human fetal germ cells in a dynamic model and to establish whether the rat is an appropriate model for investigating such effects. METHODS We used immunohistochemistry, immunofluorescence, and quantitative real-time polymerase chain reaction to examine Sertoli and germ cell markers on rat testes and human fetal testis xenografts after exposure to vehicle or di(n-butyl) phthalate (DBP). Our study included analysis of germ cell differentiation markers, proliferation markers, and cell adhesion proteins. RESULTS In both rat and human fetal testes, DBP exposure induced similar germ cell effects, namely, germ cell loss (predominantly undifferentiated), induction of multinucleated gonocytes (MNGs), and aggregation of differentiated germ cells, although the latter occurred rarely in the human testes. The mechanism for germ cell aggregation and MNG induction appears to be loss of Sertoli cell-germ cell membrane adhesion, probably due to Sertoli cell microfilament redistribution. CONCLUSIONS Our findings provide the first comparison of DBP effects on germ cell number, differentiation, and aggregation in human testis xenografts and in vivo in rats. We observed comparable effects on germ cells in both species, but the effects in the human were muted compared with those in the rat. Nevertheless, phthalate effects on germ cells have potential implications for the next generation, which merits further study. Our results indicate that the rat is a human-relevant model in which to explore the mechanisms for germ cell effects.
Collapse
Affiliation(s)
- Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rouiller-Fabre V, Guerquin MJ, N’Tumba-Byn T, Muczynski V, Moison D, Tourpin S, Messiaen S, Habert R, Livera G. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape. Front Endocrinol (Lausanne) 2015; 6:58. [PMID: 25999913 PMCID: PMC4423451 DOI: 10.3389/fendo.2015.00058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022] Open
Abstract
During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways.
Collapse
Affiliation(s)
- Virginie Rouiller-Fabre
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
- *Correspondence: Virginie Rouiller-Fabre, Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, CEA, DSV, iRCM, SCSR, LDG, BP6, Fontenay aux Roses F-92265, France,
| | - Marie Justine Guerquin
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Thierry N’Tumba-Byn
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Vincent Muczynski
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Delphine Moison
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Sophie Tourpin
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Sébastien Messiaen
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Gabriel Livera
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| |
Collapse
|
31
|
Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K. Xenotransplantation models to study the effects of toxicants on human fetal tissues. ACTA ACUST UNITED AC 2014; 101:410-22. [PMID: 25477288 DOI: 10.1002/bdrb.21131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Eladak S, Grisin T, Moison D, Guerquin MJ, N'Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R. A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 2014; 103:11-21. [PMID: 25475787 DOI: 10.1016/j.fertnstert.2014.11.005] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents.
Collapse
Affiliation(s)
- Soria Eladak
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Tiphany Grisin
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Delphine Moison
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Thierry N'Tumba-Byn
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Stéphanie Pozzi-Gaudin
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Hôpital A. Béclère, Université Paris Sud, Clamart, France
| | - Gabriel Livera
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - Virginie Rouiller-Fabre
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France
| | - René Habert
- Unit of Genetic Stability, Stem Cells, and Radiation, Laboratory of Development of the Gonads, Université Paris Diderot, Sorbonne Paris Cité, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France; Institut National de la Santé et de la Recherche Médicale, Unité 967, Fontenay-aux-Roses, France.
| |
Collapse
|
33
|
Habert R, Livera G, Rouiller-Fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl 2014; 24:14. [PMID: 25780587 PMCID: PMC4349750 DOI: 10.1186/2051-4190-24-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.
Collapse
Affiliation(s)
- René Habert
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France ; Stem Cells and Radiation Unit, LDG / SCSR / iRCM / DSV, Centre CEA, BP6, F-92265 Fontenay aux Roses, France
| | - Gabriel Livera
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, University Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France ; CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France ; INSERM, Unité 967, F-92265 Fontenay aux Roses, France
| |
Collapse
|
34
|
Effects of endocrine disruptors on the human fetal testis. ANNALES D'ENDOCRINOLOGIE 2014; 75:54-7. [PMID: 24793993 DOI: 10.1016/j.ando.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 12/27/2022]
Abstract
The modern societies are exposing us to a huge variety of potentially harmful pollutants. Among these endocrine disruptors (EDs) have been especially scrutinized as several were proven to display reprotoxic effects in rodent models. In the context of high and growing concerns about the reprotoxicity of EDs, it is crucial to carry out studies in order to assess their impact on the human reproductive function. However, such evidence remains scarce. The fetal period is critical for the proper development of the testis and is known as a period of high sensitivity to many EDs. Our team has shown in 2009 that a phthalate, mono-(2-ethylhexyl) phthalate (MEHP), has a potential deleterious effect on the development of human male germ cells. This result was the first direct experimental proof of the toxic effect of an ED in human testis. More recently, we also reported that bisphenol A (BPA) impaired testosterone production in the human fetal testis. Here, we will summarize the known effects of EDs on the various cell types composing the human developing testis and discuss their relevancy to propose future directions.
Collapse
|
35
|
Veeramachaneni DNR, Klinefelter GR. Phthalate-induced pathology in the foetal testis involves more than decreased testosterone production. Reproduction 2014; 147:435-42. [DOI: 10.1530/rep-13-0441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Foetal exposure to phthalates is known to adversely impact male reproductive development and function. Developmental anomalies of reproductive tract have been attributed to impaired testosterone synthesis. However, species differences in the ability to produce testosterone have been noted; e.g., following foetal exposure, abnormal clustering of Leydig cells or decreased production of testosterone that is manifested in rats does not occur in mice or humans. Nonetheless, other facets of testicular dysgenesis occur in both rats and mice as well as in some other species tested. We recently published a comprehensive evaluation of the foetal rat testis proteome, following in utero exposure to diethylhexyl phthalate (DEHP), which revealed changes in individual proteins that are known to be factors in cellular differentiation and migration or related to the capacity of the foetal Leydig cell to produce testosterone and fit a pathway network in which each is regulated directly or indirectly by oestradiol. Plasma oestradiol indeed was found to be elevated approximately twofold in 19-day-old DEHP-exposed foetal male rats. In this brief review, we discuss our new findings vis-à-vis ‘oestrogen hypothesis’ as a cause for testicular dysgenesis syndrome.
Collapse
|
36
|
Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Int J Mol Sci 2014; 15:5011-31. [PMID: 24658443 PMCID: PMC3975437 DOI: 10.3390/ijms15035011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
Although the androgen receptor (AR) has been implicated in the promotion of apoptosis in testicular cells (TSCs), the molecular pathway underlying AR-mediated apoptosis and its sensitivity to environmental hormones in TSCs and induced pluripotent stem cells (iPSCs) remain unclear. We generated the iPSCs from bovine TSCs via the electroporation of OCT4. The established iPSCs were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4 to maintain and stabilize the expression of stemness genes and their pluripotency. Apoptosis signaling was assessed after exposure to mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate. Here, we report that iPSCs were more resistant to MEHP-induced apoptosis than were original TSCs. MEHP also repressed the expression of AR and inactivated WNT signaling, and then led to the commitment of cells to apoptosis via the cyclin dependent kinase inhibitor p21CIP1. The loss of the frizzed receptor 7 and the gain of p21CIP were responsible for the stimulatory effect of MEHP on AR-mediated apoptosis. Our results suggest that testicular iPSCs can be used to study the signaling pathways involved in the response to environmental disruptors, and to assess the toxicity of environmental endocrine disruptors in terms of the maintenance of stemness and pluripotency.
Collapse
|
37
|
Habert R, Muczynski V, Grisin T, Moison D, Messiaen S, Frydman R, Benachi A, Delbes G, Lambrot R, Lehraiki A, N'tumba-Byn T, Guerquin MJ, Levacher C, Rouiller-Fabre V, Livera G. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors. Reproduction 2014; 147:R119-29. [PMID: 24497529 PMCID: PMC3959776 DOI: 10.1530/rep-13-0497] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.
Collapse
Affiliation(s)
- René Habert
- Unit of Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, BP 6, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Auger J, Eustache F, Rouiller-Fabre V, Canivenc-Lavier MC, Livera G. Integrative rodent models for assessing male reproductive toxicity of environmental endocrine active substances. Asian J Androl 2014; 16:60-70. [PMID: 24369134 PMCID: PMC3901883 DOI: 10.4103/1008-682x.122366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 12/29/2022] Open
Abstract
In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS) exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA) of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach) for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction.
Collapse
Affiliation(s)
- Jacques Auger
- Service d’Histologie-Embryologie, Biologie de la Reproduction/CECOS, Site Port-Royal - Cochin/Broca/Hôtel Dieu, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Florence Eustache
- Département de Génétique et Développement, INSERM U 567 and Institut Cochin, Université Paris Descartes, Paris and Service d’Histologie-Embryologie-Cytogénétique, Biologie de la Reproduction/CECOS, Hôpital Jean Verdier, Bondy, France
| | - Virginie Rouiller-Fabre
- Laboratoire de Développement des Gonades, UMR 967 INSERM; CEA DSV IRCM SCSR; Université Paris Diderot, Sorbonne Paris Cité; Université Paris Sud, Fontenay-aux-Roses, France
| | | | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMR 967 INSERM; CEA DSV IRCM SCSR; Université Paris Diderot, Sorbonne Paris Cité; Université Paris Sud, Fontenay-aux-Roses, France
| |
Collapse
|
39
|
Albert O, Jégou B. A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum Reprod Update 2013; 20:231-49. [DOI: 10.1093/humupd/dmt050] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 2013; 88:112. [PMID: 23536373 DOI: 10.1095/biolreprod.112.106104] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evidence has linked human phthalate exposure to abnormal reproductive and hormonal effects. Phthalates are plasticizers that confer flexibility and transparency to plastics, but they readily contaminate the body and the environment. In this study, timed pregnant CD1 outbred mice were treated with di-(2-ethylhexyl) phthalate (DEHP) from Embryonic Day 7 (E7) to E14. The subsequent generation (F1) offspring were then bred to produce the F2, F3, and F4 offspring, without any further DEHP treatment. This exposure scheme disrupted testicular germ cell association and decreased sperm count and motility in F1 to F4 offspring. By spermatogonial transplantation techniques, the exposure scheme also disrupted spermatogonial stem cell (SSC) function of F3 offspring. The W/W(V) recipient testes transplanted with F3 offspring germ cells from the DEHP-treated group had a dramatically lower percentage of donor germ cell-derived spermatogenic recovery in seminiferous tubules when compared to the recipient testes transplanted with CD1 control germ cells. Further characterization showed that the major block of donor germ cell-derived spermatogenesis was before the appearance of undifferentiated spermatogonia. Interestingly, the testes transplanted with the F3 offspring germ cells from the DEHP-treated group, when regenerated, replicated testis morphology similar to that observed in the testes from the F1 to F3 offspring of the DEHP-treated group, suggesting that the germ cell disorganization phenotype originates from the stem cells of F3 offspring. In conclusion, embryonic exposure to DEHP was found to disrupt testicular germ cell organization and SSC function in a transgenerational manner.
Collapse
Affiliation(s)
- Timothy J Doyle
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
41
|
Guibert E, Prieur B, Cariou R, Courant F, Antignac JP, Pain B, Brillard JP, Froment P. Effects of mono-(2-ethylhexyl) phthalate (MEHP) on chicken germ cells cultured in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2771-83. [PMID: 23354615 DOI: 10.1007/s11356-013-1487-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/09/2013] [Indexed: 05/23/2023]
Abstract
In recent decades, many toxicological tests based on in vivo or in vitro models, mainly from mammalian (rat-mouse) and fish species, were used to assess the risks raised by contact or ingestion of molecules of pharmaceutical, agricultural, or natural origin. But no, or few, in vitro tests using other non-mammalian models such as bird have been explored despite their advantages: the embryonic gonads of birds have a high plasticity of development sensitive to estrogen, and sperm production is nearly two times faster than in rodents. Hence, we have established an in vitro culture of germ cells and somatic cells from chicken post-natal testis, and we have evaluated the sensitivity against the endocrine disruptor compound mono-(2-ethylhexyl) phthalate (MEHP) in comparison to previous studies using rodent and human models. After 96 h of exposure in presence of 10 μM MEHP, chicken seminiferous tubules cultures present a structural alteration, a reduction in cell proliferation and in germ cells population. Apoptosis of germ and somatic cells increases in presence of 1 μM MEHP. Furthermore, MEHP does not affect inhibin B and lactate production by Sertoli cells. These results are in accordance with previous studies using rat, mice, or human culture of testicular cells and in similar range of exposures or even better sensitivity for some "end-points" (biological parameters). In conclusion, the establishment of this postnatal testicular cells culture could be considered as an alternative method to in vivo experiments frequently used for evaluating the impact on the terrestrial wildlife species. This method could be also complementary to mammal model due to the limiting number of animals used and its elevated sensitivity.
Collapse
Affiliation(s)
- Edith Guibert
- UMR 6175 INRA CNRS Université de Tours Haras Nationaux Physiologie de Reproduction et des Comportements, 37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets 2013; 17:839-55. [PMID: 23600530 DOI: 10.1517/14728222.2013.791679] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) has recently been linked to declining fertility in men in both developed and developing countries. Since many EDCs possess intrinsic estrogenic or androgenic activities, thus, the gonad is one of the major targets of EDCs. AREAS COVERED For the past 2 decades, studies found in the literature regarding the disruptive effects of these EDCs on reproductive function in human males and also rodents were mostly focused on oxidative stress-induced germ cell apoptosis, disruption of steroidogenesis, abnormal sperm production and disruption of spermatogenesis in particular cell adhesion function and the blood-testis-barrier (BTB) function. Herein, we highlight recent findings in the field illustrating testis-specific proteins are also targets of EDCs. EXPERT OPINION This information should be helpful in developing better therapeutic approach to manage ECD-induced reproductive toxicity. This information is also helpful to identify potential targets for male contraceptive development.
Collapse
Affiliation(s)
- H T Wan
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This review describes the most recent data about the effects of endocrine disrupting compounds (EDCs) on infant and early childhood growth and reproductive tract development as well as controversies in the field. RECENT FINDINGS EDCs are present in pregnant women, young children and adolescents. Whether the level of exposure contributes to disease is an ongoing debate. Epidemiological studies suggest associations between prenatal EDC exposure and disease outcome, but animal studies using controlled EDC exposure have varying results with underlying mechanisms largely unknown. SUMMARY Human exposure to EDCs is widespread; bisphenol A, phthalates and persistent organic pollutants are detectable in all age groups and geographical locations in the USA. Epidemiological and animal studies suggest that phthalates and bisphenol A have adverse effects on birth weight, promote development of childhood obesity and adversely affect male reproductive tract development. Differences in the interpretation of available studies underlie the disparate conclusions of scientific and regulatory body's panels on potential toxicological effects of EDCs at current levels of human exposure.
Collapse
Affiliation(s)
- Sara A DiVall
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
44
|
N'Tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud'homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS One 2012; 7:e51579. [PMID: 23284716 PMCID: PMC3524173 DOI: 10.1371/journal.pone.0051579] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/01/2012] [Indexed: 01/23/2023] Open
Abstract
Endocrine disruptors (ED) have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA) is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12) to 10(-5) M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW) or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc) for rat and 12.5 dpc for mouse) were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8) M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5) M BPA were required. Similarly, 10(-8) M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5) and 10(-6) M diethylstilbestrol (DES), a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα). In conclusion, these results evidenced i) a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8) M upwards, ii) species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii) a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.
Collapse
Affiliation(s)
- Thierry N'Tumba-Byn
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Springer C, Dere E, Hall SJ, McDonnell EV, Roberts SC, Butt CM, Stapleton HM, Watkins DJ, McClean MD, Webster TF, Schlezinger JJ, Boekelheide K. Rodent thyroid, liver, and fetal testis toxicity of the monoester metabolite of bis-(2-ethylhexyl) tetrabromophthalate (tbph), a novel brominated flame retardant present in indoor dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1711-9. [PMID: 23014847 PMCID: PMC3548273 DOI: 10.1289/ehp.1204932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/26/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a replacement for polybrominated diphenyl ethers (PBDEs) in commercial flame retardant mixtures such as Firemaster 550. It is also used in a commercial mixture called DP 45. Mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) is a potentially toxic metabolite. OBJECTIVES We used in vitro and rodent in vivo models to evaluate human exposure and the potential metabolism and toxicity of TBPH. METHODS Dust collected from homes, offices, and cars was measured for TBPH by gas chromatography followed by mass spectrometry. Pregnant rats were gavaged with TBMEHP (200 or 500 mg/kg) or corn oil on gestational days 18 and 19, and dams and fetuses were evaluated histologically for toxicity. We also assessed TBMEHP for deiodinase inhibition using rat liver microsomes and for peroxisome proliferator-activated receptor (PPAR) α and γ activation using murine FAO cells and NIH 3T3 L1 cells. RESULTS TBPH concentrations in dust from office buildings (median, 410 ng/g) were higher than in main living areas in homes (median, 150 ng/g). TBPH was metabolized by purified porcine esterases to TBMEHP. Two days of TBMEHP exposure in the rat produced maternal hypothyroidism with markedly decreased serum T3 (3,3´,5-triiodo-l-thyronine), maternal hepatotoxicity, and increased multinucleated germ cells (MNGs) in fetal testes without antiandrogenic effects. In vitro, TBMEHP inhibited deiodinase activity, induced adipocyte differentiation in NIH 3T3 L1 cells, and activated PPARα- and PPARγ-mediated gene transcription in NIH 3T3 L1 cells and FAO cells, respectively. CONCLUSIONS TBPH a) is present in dust from indoor environments (implying human exposure) and b) can be metabolized by porcine esterases to TBMEHP, which c) elicited maternal thyrotoxic and hepatotoxic effects and d) induced MNGs in the fetal testes in a rat model. In mouse NIH 3T3 L1 preadipocyte cells, TBMEHP inhibited rat hepatic microsome deiodinase activity and was an agonist for PPARs in murine FAO and NIH 3T3 L1 cells.
Collapse
Affiliation(s)
- Cecilia Springer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Muczynski V, Lecureuil C, Messiaen S, Guerquin MJ, N’Tumba-Byn T, Moison D, Hodroj W, Benjelloun H, Baijer J, Livera G, Frydman R, Benachi A, Habert R, Rouiller-Fabre V. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary. PLoS One 2012; 7:e48266. [PMID: 23118965 PMCID: PMC3484128 DOI: 10.1371/journal.pone.0048266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/21/2012] [Indexed: 01/26/2023] Open
Abstract
Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. Conclusions/Significance We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.
Collapse
Affiliation(s)
- Vincent Muczynski
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Charlotte Lecureuil
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Sébastien Messiaen
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Marie-Justine Guerquin
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Thierry N’Tumba-Byn
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Delphine Moison
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Wassim Hodroj
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Hinde Benjelloun
- Flow Cytometry Facility, CEA – DSV/iRCM/SCSR, F-92265 Fontenay aux Roses, France
| | - Jan Baijer
- Flow Cytometry Facility, CEA – DSV/iRCM/SCSR, F-92265 Fontenay aux Roses, France
| | - Gabriel Livera
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - René Frydman
- Service de Gynécologie-Obstétrique, Hôpital A. Béclère,- Université Paris Sud, F-92141 Clamart, France
| | - Alexandra Benachi
- Service de Gynécologie-Obstétrique, Hôpital A. Béclère,- Université Paris Sud, F-92141 Clamart, France
| | - René Habert
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, 92265 Fontenay-aux-Roses, France
- INSERM, Unité 967, F-92265, Fontenay aux Roses, France
- * E-mail:
| |
Collapse
|
47
|
Klinefelter GR, Laskey JW, Winnik WM, Suarez JD, Roberts NL, Strader LF, Riffle BW, Veeramachaneni DNR. Novel molecular targets associated with testicular dysgenesis induced by gestational exposure to diethylhexyl phthalate in the rat: a role for estradiol. Reproduction 2012; 144:747-61. [PMID: 23041508 DOI: 10.1530/rep-12-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Significant research has been focused on phthalate-induced alterations in male reproductive development. Studies on rodents have prompted the notion that a syndrome exists in the human male which includes phenotypic alterations such as hypospadias, cryptorchidism, poor semen quality, and even testicular cancer. Each phenotype in this 'testicular dysgenesis syndrome' is predicated on reduction in testosterone production by the fetal Leydig cell. We sought to examine the relationship between dysgenesis and steroidogenic capacity in the fetal rat testis more stringently by incorporating lower exposures than those typically used, conducting a comprehensive, non-targeted quantitative evaluation of the fetal testis proteome, and relating alterations in individual proteins to the capacity of the fetal Leydig cell to produce testosterone, and histopathology of the fetal testis. Pregnant dams were dosed orally from gestation day (GD) 13-19 with 0, 10, or 100 mg diethylhexyl phthalate (DEHP)/kg body weight per day. Each endpoint was represented by 16l. Clustering of Leydig cells occurred before any significant decrease in the capacity of the GD19 Leydig cell to produce testosterone. At 100 mg DEHP/kg, testosterone production was reduced significantly, Leydig cell clusters became quite large, and additional dysgenetic changes were observed in the fetal testis. Of 23 proteins whose expression was altered significantly at both DEHP exposure levels, seven were found to be correlated with and predictive of the quantified endpoints. None of these proteins have been previously implicated with DEHP exposure. Notably, pathway analysis revealed that these seven proteins fit a pathway network in which each is regulated directly or indirectly by estradiol.
Collapse
Affiliation(s)
- Gary R Klinefelter
- United States Environmental Protection Agency, Office of Research and Development, Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Branch, MD#72, Reproductive Toxicology Facility, Durham, North Carolina 27713, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K. Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1137-43. [PMID: 22511013 PMCID: PMC3440087 DOI: 10.1289/ehp.1104711] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/17/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. OBJECTIVES In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. METHODS Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. RESULTS Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. CONCLUSIONS Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis.
Collapse
Affiliation(s)
- Nicholas E Heger
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tartarin P, Moison D, Guibert E, Dupont J, Habert R, Rouiller-fabre V, Frydman N, Pozzi S, Frydman R, Lecureuil C, Froment P. Metformin exposure affects human and mouse fetal testicular cells. Hum Reprod 2012; 27:3304-14. [DOI: 10.1093/humrep/des264] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci 2012; 129:235-48. [PMID: 22700540 DOI: 10.1093/toxsci/kfs206] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For over 15 years, reproductive toxicologists have explored the physiological outcomes and mechanism of fetal phthalate exposure to determine the risk posed to human male reproductive health. This review examines the fetal male reproductive system response to phthalate exposure across species including rat, mouse, and human, with emphasis on the testis. In the rat, in utero phthalate exposure causes male reproductive tract malformations, in large part, by targeting the testis and inhibiting fetal Leydig cell hormone production. Despite mouse phthalate pharmacokinetics being similar to the rat, inhibition of fetal Leydig cell hormone synthesis is not observed in the mouse. The species-specific differences in testicular response following in utero phthalate exposure and the discordant reaction of the rodent fetal testis when exposed to phthalates ex vivo versus in vivo have made determining risk to humans difficult, yet critically important. The recent use of fetal testis xenotransplants to study phthalate toxicity suggests that the human fetal testis responds like the mouse fetal testis; it appears refractory to phthalate-induced inhibition of testosterone production. Although this result is unfulfilling from the perspective of identifying environmental contributions to human reproductive maldevelopment, it has important implications for phthalate risk assessment.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|