1
|
Casas-Rodríguez A, López-Vázquez CM, Guzmán-Guillén R, Ayala N, Cameán AM, Jos A, Chicano-Gálvez E. A MALDI-MSI-based approach to characterize the spatial distribution of cylindrospermopsin and lipid alterations in rat intestinal tissue. Chem Biol Interact 2025; 412:111479. [PMID: 40088997 DOI: 10.1016/j.cbi.2025.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Global warming and eutrophication of water bodies are driving the increase in cyanobacterial blooms, which produce toxins such as cylindrospermopsin (CYN). This compound has multiple toxic effects, and following CYN exposure, its distribution in the body varies, particularly in organs such as the liver and kidneys, suggesting its potential for bioaccumulation in key tissues. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) enables visualization of the spatial distribution of a wide range of molecules. In this study, using MALDI-MSI, a new method was developed and optimized for the detection of CYN, and its quantitative spatiotemporal distribution was analyzed for the first time in intestinal samples from rats orally exposed to this toxin (500 μg/kg body weight) and sacrificed 0, 2, 4, 6 and 24 h after exposure. Furthermore, the impact of CYN on the intestinal lipid profile was evaluated. The method was validated in terms of linearity, sensitivity, and precision, measuring CYN in mimetic tissue sections at different concentrations (1-100 ppm), allowing its successful application to visualize CYN distribution in rat intestines. The results revealed alterations in different lipid families involved in the inflammatory response, increased oxidative stress, and progressive damage to the integrity of the cell membrane.
Collapse
Affiliation(s)
| | - Cristina María López-Vázquez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| | | | - Nahúm Ayala
- Department of Comparative Anatomical and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Eduardo Chicano-Gálvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| |
Collapse
|
2
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Zelleroth S, Stam F, Nylander E, Kjellgren E, Gising J, Larhed M, Grönbladh A, Hallberg M. The decanoate esters of nandrolone, testosterone, and trenbolone induce steroid specific memory impairment and somatic effects in the male rat. Horm Behav 2024; 161:105501. [PMID: 38368844 DOI: 10.1016/j.yhbeh.2024.105501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
4
|
Oummadi A, Menuet A, Méresse S, Laugeray A, Guillemin G, Mortaud S. The herbicides glyphosate and glufosinate and the cyanotoxin β-N-methylamino-l-alanine induce long-term motor disorders following postnatal exposure: the importance of prior asymptomatic maternal inflammatory sensitization. Front Neurosci 2023; 17:1172693. [PMID: 37360165 PMCID: PMC10288190 DOI: 10.3389/fnins.2023.1172693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background Prenatal maternal immune activation (MIA) and/or perinatal exposure to various xenobiotics have been identified as risk factors for neurological disorders, including neurodegenerative diseases. Epidemiological data suggest an association between early multi-exposures to various insults and neuropathologies. The "multiple-hit hypothesis" assumes that prenatal inflammation makes the brain more susceptible to subsequent exposure to several kinds of neurotoxins. To explore this hypothesis and its pathological consequences, a behavioral longitudinal procedure was performed after prenatal sensitization and postnatal exposure to low doses of pollutants. Methods Maternal exposure to an acute immune challenge (first hit) was induced by an asymptomatic lipopolysaccharide (LPS) dose (0.008 mg/kg) in mice. This sensitization was followed by exposing the offspring to environmental chemicals (second hit) postnatally, by the oral route. The chemicals used were low doses of the cyanotoxin β-N-methylamino-l-alanine (BMAA; 50 mg/kg), the herbicide glufosinate ammonium (GLA; 0.2 mg/kg) or the pesticide glyphosate (GLY; 5 mg/kg). After assessing maternal parameters, a longitudinal behavioral assessment was carried out on the offspring in order to evaluate motor and emotional abilities in adolescence and adulthood. Results We showed that the low LPS immune challenge was an asymptomatic MIA. Even though a significant increase in systemic pro-inflammatory cytokines was detected in the dams, no maternal behavioral defects were observed. In addition, as shown by rotarod assays and open field tests, this prenatal LPS administration alone did not show any behavioral disruption in offspring. Interestingly, our data showed that offspring subjected to both MIA and post-natal BMAA or GLA exposure displayed motor and anxiety behavioral impairments during adolescence and adulthood. However, this synergistic effect was not observed in the GLY-exposed offspring. Conclusion These data demonstrated that prenatal and asymptomatic immune sensitization represents a priming effect to subsequent exposure to low doses of pollutants. These double hits act in synergy to induce motor neuron disease-related phenotypes in offspring. Thus, our data strongly emphasize that multiple exposures for developmental neurotoxicity regulatory assessment must be considered. This work paves the way for future studies aiming at deciphering cellular pathways involved in these sensitization processes.
Collapse
Affiliation(s)
- Asma Oummadi
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Sarah Méresse
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Anthony Laugeray
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Gilles Guillemin
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Stéphane Mortaud
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| |
Collapse
|
5
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
6
|
Whitaker MRL, Gilliéron F, Skirgaila C, Mescher MC, De Moraes CM. Experimental evidence challenges the presumed defensive function of a "slow toxin" in cycads. Sci Rep 2022; 12:6013. [PMID: 35397634 PMCID: PMC8994766 DOI: 10.1038/s41598-022-09298-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
[Formula: see text]-methylamino-L-alanine (BMAA) is a neurotoxic non-protein amino acid found in the tissues of cycad plants. The demonstrated toxicity of BMAA to diverse organisms, including humans, is widely assumed to imply a defensive function of BMAA against herbivores; however, this hypothesis has not previously been tested in an ecologically relevant system. We investigated the effects of dietary BMAA, across a range of dosages matching and exceeding levels typically present in cycad leaves, on the feeding preferences and performance of a generalist lepidopteran herbivore (Spodoptera littoralis).We observed no effects of dietary BMAA on the survival or development of S. littoralis larvae, nor any larval preference between BMAA-laced and control diets. These findings suggest that BMAA in cycad tissues does not deter feeding by insect herbivores, raising questions about other potential physiological or ecological functions of this compound.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland
| | - Florence Gilliéron
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland
| | - Christina Skirgaila
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, 8092, Zurich, Switzerland.
| |
Collapse
|
7
|
Vossen LE, Brunberg R, Rådén P, Winberg S, Roman E. The zebrafish Multivariate Concentric Square Field: A Standardized Test for Behavioral Profiling of Zebrafish ( Danio rerio). Front Behav Neurosci 2022; 16:744533. [PMID: 35368300 PMCID: PMC8968638 DOI: 10.3389/fnbeh.2022.744533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is an important model organism in the study of the neurobiological basis of human mental disorders. Yet the utility of this species is limited by the quality of the phenotypical characterization tools available. Here, we present a complex testing environment for the quantification of explorative behavior in adult zebrafish, the zebrafish Multivariate Concentric Square Field™ (zMCSF), adapted from the rodent equivalent that has been used in > 40 studies. The apparatus consists of a central open area which is surrounded by a dark corner with a roof (DCR), corridors, and an inclined ramp. These areas differ in illumination, water depth, and are sheltered or exposed to different degrees. We quantified behavior of male and female wild-caught and AB strain zebrafish in the zMCSF (day 1) and cross-validated these results using the novel tank diving test (NTDT) (day 2). To assess the effect of repeated testing, AB zebrafish we tested a second time in both tests 1 week later (on days 7 and 8). We detected strong differences between the strains, with wild zebrafish swimming faster and spending more time in the corridors and on the ramp, while they avoided the open area in the center. AB zebrafish were less hesitant to enter the center but avoided the ramp, and often left one or more zones unexplored. No major sex differences in exploratory behavior were detected in either strain, except for a slightly higher velocity of AB males which has been reported before. Importantly, the zMCSF was largely resilient to repeated testing. The diving test revealed only one difference confined to one sex; wild females paid more visits to the top third than AB females. In isolation, this finding could lead to the conclusion that wild zebrafish are more risk-taking, which is incorrect given this strain's avoidance of open areas. To conclude, our results suggest that the zMCSF presents a sophisticated behavioral tool that can distinguish between different magnitudes and types of risk, allowing the user to create an intricate behavioral profile of individual adult zebrafish.
Collapse
Affiliation(s)
- Laura E. Vossen
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronja Brunberg
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pontus Rådén
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Svante Winberg
- Behavioral Neuroendocrinology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Behavioral Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Gois AM, Bispo JM, Lins LC, Medeiros KA, Souza MF, Santos ER, Santos JF, Ribeiro AM, Silva RH, Paixão MO, Leopoldino JF, Marchioro M, Santos JR, Mendonça DM. Motor behavioral abnormalities and histopathological findings in middle aged male Wistar rats inoculated with cerebrospinal fluid from patients with Amyotrophic Lateral Sclerosis. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
10
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Pierozan P, Cattani D, Karlsson O. Hippocampal neural stem cells are more susceptible to the neurotoxin BMAA than primary neurons: effects on apoptosis, cellular differentiation, neurite outgrowth, and DNA methylation. Cell Death Dis 2020; 11:910. [PMID: 33099583 PMCID: PMC7585576 DOI: 10.1038/s41419-020-03093-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Developmental exposure to the environmental neurotoxin β-N-methylamino-L-alanine (BMAA), a proposed risk factor for neurodegenerative disease, can induce long-term cognitive impairments and neurodegeneration in rats. While rodent studies have demonstrated a low transfer of BMAA to the adult brain, this toxin is capable to cross the placental barrier and accumulate in the fetal brain. Here, we investigated the differential susceptibility of primary neuronal cells and neural stem cells from fetal rat hippocampus to BMAA toxicity. Exposure to 250 µM BMAA induced cell death in neural stem cells through caspase-independent apoptosis, while the proliferation of primary neurons was reduced only at 3 mM BMAA. At the lowest concentrations tested (50 and 100 µM), BMAA disrupted neural stem cell differentiation and impaired neurite development in neural stem cell-derived neurons (e.g., reduced neurite length, the number of processes and branches per cell). BMAA induced no alterations of the neurite outgrowth in primary neurons. This demonstrates that neural stem cells are more susceptible to BMAA exposure than primary neurons. Importantly, the changes induced by BMAA in neural stem cells were mitotically inherited to daughter cells. The persistent nature of the BMAA-induced effects may be related to epigenetic alterations that interfere with the neural stem cell programming, as BMAA exposure reduced the global DNA methylation in the cells. These findings provide mechanistic understanding of how early-life exposure to BMAA may lead to adverse long-term consequences, and potentially predispose for neurodevelopmental disorders or neurodegenerative disease later in life.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Daiane Cattani
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden.
| |
Collapse
|
12
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
13
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
14
|
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region. Arch Toxicol 2020; 94:2799-2808. [PMID: 32435914 PMCID: PMC7395073 DOI: 10.1007/s00204-020-02775-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood–brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron–glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.
Collapse
|
15
|
Lundberg S, Nylander I, Roman E. Behavioral Profiling in Early Adolescence and Early Adulthood of Male Wistar Rats After Short and Prolonged Maternal Separation. Front Behav Neurosci 2020; 14:37. [PMID: 32265671 PMCID: PMC7096550 DOI: 10.3389/fnbeh.2020.00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Early-life stress and its possible correlations to genes, environment, and later health outcomes can only be studied retrospectively in humans. Animal models enable the exploration of such connections with prospective, well-controlled study designs. However, with the recent awareness of replicability issues in preclinical research, the reproducibility of results from animal models has been highlighted. The present study aims to reproduce the behavioral effects of maternal separation (MS) previously observed in the multivariate concentric square fieldTM (MCSF) test. A second objective was to replicate the adolescent behavioral profiles previously described in the MCSF test. Male rats, subjected to short or prolonged MS or standard rearing, were subjected to behavioral testing in early adolescence and early adulthood. As seen in previous studies, the behavioral effects of MS in the MCSF were small at both tested time points. When tested in early adolescence, the animals exhibited a similar behavioral profile as previously seen, and the finding of adolescent behavioral types was also reproduced. The distribution of animals into the behavioral types was different than in the initial study, but in a manner consistent with developmental theories, as the current cohort was younger than the previous. Notably, the Shelter seeker behavioral type persisted through development, while the Explorer type did not. The lack of basal behavioral effect after MS is in line with the literature on this MS paradigm; the working hypothesis is that the prolonged MS gives rise to a phenotype predisposed to negative health outcomes but which is not apparent without additional provocation.
Collapse
Affiliation(s)
- Stina Lundberg
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Research Group Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Angiopoietin-1 and ανβ3 integrin peptide promote the therapeutic effects of L-serine in an amyotrophic lateral sclerosis/Parkinsonism dementia complex model. Aging (Albany NY) 2019; 10:3507-3527. [PMID: 30476904 PMCID: PMC6286852 DOI: 10.18632/aging.101661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult disorder of neurodegeneration that manifests as the destruction of upper and lower motor neurons. Beta-N-methylamino-L-alanine (L-BMAA), an amino acid not present in proteins, was found to cause intraneuronal protein misfolding and to induce ALS/Parkinsonism dementia complex (PDC), which presents symptoms analogous to those of Alzheimer’s-like dementia and Parkinsonism. L-serine suppresses the erroneous incorporation of L-BMAA into proteins in the human nervous system. In this study, angiopoietin-1, an endothelial growth factor crucial for vascular development and angiogenesis, and the integrin αvβ3 binding peptide C16, which inhibits inflammatory cell infiltration, were utilized to improve the local microenvironment within the central nervous system of an ALS/PDC rodent model by minimizing inflammation. Our results revealed that L-serine application yielded better effects than C16+ angiopoietin-1 treatment alone for alleviating apoptotic and autophagic changes and improving cognition and electrophysiological dysfunction, but not for improving the inflammatory micro-environment in the central nerve system, while further advances in attenuating the functional disability and pathological impairment induced by L-BMAA could be achieved by co-treatment with C16 and angiopoietin-1 in addition to L-serine. Therefore, C16+ angiopoietin-1 could be beneficial as a supplement to promote the effects of L-serine treatment.
Collapse
|
17
|
Borbély É, Payrits M, Hunyady Á, Mező G, Pintér E. Important regulatory function of transient receptor potential ankyrin 1 receptors in age-related learning and memory alterations of mice. GeroScience 2019; 41:643-654. [PMID: 31327098 PMCID: PMC6885083 DOI: 10.1007/s11357-019-00083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Gréta Mező
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary.
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary.
| |
Collapse
|
18
|
Wu X, Wu H, Gu X, Zhang R, Ye J, Sheng Q. Biomagnification characteristics and health risk assessment of the neurotoxin BMAA in freshwater aquaculture products of Taihu Lake Basin, China. CHEMOSPHERE 2019; 229:332-340. [PMID: 31078890 DOI: 10.1016/j.chemosphere.2019.04.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
In freshwater aquaculture ecosystems with high-frequency occurrences of cyanobacteria blooms, a chronic neurotoxic cyanobacteria toxin, β-N-methylamino-l-alanine (BMAA), is a new pollutant that affects the normal growth, development, and reproduction of aquaculture organisms. BMAA poses a great threat to the food quality and food safety of aquatic products. In this paper, high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was used to detect the contents of BMAA in the edible portions of six representative freshwater aquaculture products (Corbicula fluminea, Anodonta arcaeformis, Macrobrachium nipponense, Eriocheir sinensis, Ctenopharyngodon idella, and Mylopharyngodon piceus) from Taihu Lake Basin in China. Noncarcinogenic health risks were assessed with reference to the model recommended by the International Environmental Modelling and Software Society and based on the biomagnification characteristics of BMAA in the various aquaculture products investigated by the stable nitrogen isotope technique. The average BMAA concentrations in the edible portions of the six freshwater culture products were from 2.05 ± 1.40 to 4.21 ± 1.26 μg g-1 dry weight (DW), and the difference was significant (p < 0.05), such a difference increased with the increase in the trophic level in the aquaculture products. Although a biomagnification indication was observed, the trophic magnification factor (TMF) was only 1.20 which exhibited a relatively low biomagnification efficiency. The annual health risk values of BMAA in all the measured aquatic products were within the maximum tolerable range (<1 × 10-6 a-1), and the health risk increased with the increase in the trophic level. The risk values of BMAA in the six freshwater aquaculture products for children was slightly higher than the negligible level (<1 × 10-7 a-1), thus there might have potential health risks for children's long-term consumption. Considering China's national conditions, the guidance values of BMAA based on the quality and safety of freshwater aquaculture products were proposed to be 7.2 μg g-1 DW for adults and 1.8 μg g-1 DW for children.
Collapse
Affiliation(s)
- Xiang Wu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China.
| | - Hao Wu
- Environmental Protection Monitoring Centre Station, Huzhou City, Zhejiang Province, 313000, China
| | - Xiaoxiao Gu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Rongfei Zhang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Jinyun Ye
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Qiang Sheng
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| |
Collapse
|
19
|
Pierozan P, Karlsson O. Mitotically heritable effects of BMAA on striatal neural stem cell proliferation and differentiation. Cell Death Dis 2019; 10:478. [PMID: 31209203 PMCID: PMC6579766 DOI: 10.1038/s41419-019-1710-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
The widespread environmental contaminant β-methylamino-L-alanine (BMAA) is a developmental neurotoxicant that can induce long-term learning and memory deficits. Studies have shown high transplacental transfer of 3H-BMAA and a significant uptake in fetal brain. Therefore, more information on how BMAA may influence growth and differentiation of neural stem cells is required for assessment of the risk to the developing brain. The aim of this study was to investigate direct and mitotically inherited effects of BMAA exposure using primary striatal neurons and embryonic neural stem cells. The neural stem cells were shown to be clearly more susceptible to BMAA exposure than primary neurons. Exposure to 250 µM BMAA reduced neural stem cell proliferation through apoptosis and G2/M arrest. At lower concentrations (50–100 µM), not affecting cell proliferation, BMAA reduced the differentiation of neural stem cells into astrocytes, oligodendrocytes, and neurons through glutamatergic mechanisms. Neurons that were derived from the BMAA-treated neuronal stem cells demonstrated morphological alterations including reduced neurite length, and decreased number of processes and branches per cell. Interestingly, the BMAA-induced changes were mitotically heritable to daughter cells. The results suggest that early-life exposure to BMAA impairs neuronal stem cell programming, which is vital for development of the nervous system and may result in long-term consequences predisposing for both neurodevelopmental disorders and neurodegenerative disease later in life. More attention should be given to the potential adverse effects of BMAA exposure on brain development.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Sciences and Analytical Chemistry, Stockholm University, 114 18, Stockholm, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences and Analytical Chemistry, Stockholm University, 114 18, Stockholm, Sweden. .,Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| |
Collapse
|
20
|
Lundberg S, Högman C, Roman E. Adolescent Exploratory Strategies and Behavioral Types in the Multivariate Concentric Square Field TM Test. Front Behav Neurosci 2019; 13:41. [PMID: 30886574 PMCID: PMC6409336 DOI: 10.3389/fnbeh.2019.00041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Adolescence is an important developmental phase with extensive changes in behavior due to remodeling of the brain and hormonal systems. Validation of animal behavioral tests in this age group is therefore of importance as differences to adult behavior are often not clarified. The aim of the present study was to investigate adolescent behavior in the multivariate concentric square fieldTM (MCSF) test and its relationship to other common behavioral tests as well as to a literature dataset of adult animals. Sixty adolescent male Wistar rats were tested in the MCSF and one of four reference tests; the elevated plus maze, the open field with or without start box, or the social play behavior test. Additionally, 12 animals were tested twice in the MCSF. When analyzing the first encounter with the MCSF test, a distinct grouping of the individuals into three behavioral types was observed. Approximately 20% of the animals had high levels of activity and an additional 20% had high levels of shelter seeking-behavior, these groups composed the outlying behavioral types named Explorers and Shelter seekers, respectively, which were distinct from the Main type of animals. When tested in the MCSF for a second time, the adolescent animals showed a recollection of the arena as they changed their behavior in relation to the first encounter. When comparing the MCSF performance to the reference tests, a relationship was found between the MCSF and the other behavioral test entailing forced exploration, while no relationship was found between the MCSF and social play. The adolescent behavioral profile was characterized by decreased risk assessment and a different activity profile than adults. In conclusion, the MCSF test is useful for profiling adolescent rats but the behavioral interpretation differs from that of adults due to differences in behavioral manifestation during adolescence and the presence of natural subgroups. Adolescent exploration shows a relationship across tests, but the MCSF gives more information than any of the other behavioral tests based on forced exploration. Further studies into the neurobiology behind the behavioral types and how different manipulations affect the distribution into the behavioral types are of interest.
Collapse
Affiliation(s)
- Stina Lundberg
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Cecilia Högman
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Neuropharmacology, Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Scott L, Downing T. Dose-Dependent Adult Neurodegeneration in a Rat Model After Neonatal Exposure to β-N-Methylamino-l-Alanine. Neurotox Res 2019; 35:711-723. [DOI: 10.1007/s12640-019-9996-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
|
22
|
Gerić M, Gajski G, Domijan AM, Garaj-Vrhovac V, Filipič M, Žegura B. Genotoxic effects of neurotoxin ß-N-methylamino-l-alanine in human peripheral blood cells. CHEMOSPHERE 2019; 214:623-632. [PMID: 30290362 DOI: 10.1016/j.chemosphere.2018.09.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) is associated with the development of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) and amyotrophic lateral sclerosis. BMAA is known to induce neurotoxic effects leading to neurodegeneration via multiple mechanisms including misfolded protein accumulation, glutamate induced excitotoxicity, calcium dyshomeostasis, endoplasmic reticulum stress and oxidative stress. In the present study, for the first time, genotoxic activity of BMAA (2.5, 5, 10 and 20 μg/mL) was studied in human peripheral blood cells (HPBCs) using the comet and cytokinesis-block micronucleus cytome assays. In addition, the influence of BMAA on the oxidative stress was assessed. At non-cytotoxic concentrations BMAA did not induce formation of DNA strand breaks in HPBCs after 4 and 24 h exposure; however, it significantly increased the number of micronuclei after 24 and 48 h at 20 μg/mL and nucleoplasmic bridges after 48 h at 20 μg/mL. The frequency of nuclear buds was slightly though non-significantly increased after 48 h. Altogether, this indicates that in HPBCs BMAA is clastogenic and induces complex genomic alterations including structural chromosomal rearrangements and gene amplification. No influence on oxidative stress markers was noticed. These findings provide new evidence that environmental neurotoxin BMAA, in addition to targeting common pathways involved in neurodegeneration, can also induce genomic instability in non-target HPBCs suggesting that it might be involved in cancer development. Therefore, these data are important in advancing our current knowledge and opening new questions in the understanding of the mechanisms of BMAA toxicity, particularly in the context of genotoxicity.
Collapse
Affiliation(s)
- Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Metka Filipič
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Pierozan P, Andersson M, Brandt I, Karlsson O. The environmental neurotoxin β-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 2018. [PMID: 29528516 DOI: 10.1111/jpi.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Huang Z, Liu Q, Peng Y, Dai J, Xie Y, Chen W, Long S, Pei Z, Su H, Yao X. Circadian Rhythm Dysfunction Accelerates Disease Progression in a Mouse Model With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:218. [PMID: 29740382 PMCID: PMC5928145 DOI: 10.3389/fneur.2018.00218] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by interactions between environmental factors and genetic susceptibility. Circadian rhythm dysfunction (CRD) is a significant contributor to neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease. However, whether CRD contributes to the progression of ALS remains little known. We performed behavioral and physiological tests on SOD1G93A ALS model mice with and without artificially induced CRD, and on wild-type controls; we also analyzed spinal cord samples histologically for differences between groups. We found that CRD accelerated the disease onset and progression of ALS in model mice, as demonstrated by aggravated functional deficits and weight loss, as well as increased motor neuron loss, activated gliosis, and nuclear factor κB-mediated inflammation in the spinal cord. We also found an increasing abundance of enteric cyanobacteria in the ALS model mice shortly after disease onset that was further enhanced by CRD. Our study provides initial evidence on the CRD as a risk factor for ALS, and intestinal cyanobacteria may be involved.
Collapse
Affiliation(s)
- Zhilin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiaying Dai
- Comprehensive Department, Sun Yat-sen Memorial Hospital affiliated to Sun Yat-sen University, Guangzhou, China
| | - Youna Xie
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weineng Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Clinical Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Myhre O, Eide DM, Kleiven S, Utkilen HC, Hofer T. Repeated five-day administration of L-BMAA, microcystin-LR, or as mixture, in adult C57BL/6 mice - lack of adverse cognitive effects. Sci Rep 2018; 8:2308. [PMID: 29396538 PMCID: PMC5797144 DOI: 10.1038/s41598-018-20327-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
The cyanobacterial toxins β-methylamino-L-alanine (L-BMAA) and microcystin-LR (MC-LR; a potent liver toxin) are suspected to cause neurological disorders. Adult male C57BL/6JOlaHsd mice aged approximately 11 months were subcutaneously injected for five consecutive days with L-BMAA and microcystin-LR alone, or as a mixture. A dose-range study determined a tolerable daily dose to be ~31 µg MC-LR/kg BW/day based on survival, serum liver status enzymes, and relative liver and kidney weight. Mice tolerating the first one-two doses also tolerated the subsequent three-four doses indicating adaptation. The LD50 was 43-50 μg MC-LR/kg BW. Long-term effects (up to 10 weeks) on spatial learning and memory performance was investigated using a Barnes maze, were mice were given 30 µg MC-LR/kg BW and/or 30 mg L-BMAA/kg BW either alone or in mixture for five consecutive days. Anxiety, general locomotor activity, willingness to explore, hippocampal and peri-postrhinal cortex dependent memory was investigated after eight weeks using Open field combined with Novel location/Novel object recognition tests. Toxin exposed animals did not perform worse than controls, and MC-LR exposed animals performed somewhat better during the first Barnes maze re-test session. MC-LR exposed mice rapidly lost up to ~5% body weight, but regained weight from day eight.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Dag Marcus Eide
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Synne Kleiven
- Department of Natural Sciences and Environmental Health, University College of Southeast Norway, Bø, Norway
| | - Hans Christian Utkilen
- Department of Natural Sciences and Environmental Health, University College of Southeast Norway, Bø, Norway
| | - Tim Hofer
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health (NIPH), Oslo, Norway.
| |
Collapse
|
26
|
Andersson M, Karlsson O, Brandt I. The environmental neurotoxin β-N-methylamino-l-alanine (l-BMAA) is deposited into birds' eggs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:720-724. [PMID: 28942274 DOI: 10.1016/j.ecoenv.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disorders. BMAA is also a known developmental neurotoxin and research indicates that the sources of human and wildlife exposure may be more diverse than previously anticipated. The aim of the present study was therefore to examine whether BMAA can be transferred into birds' eggs. Egg laying quail were dosed with 14C-labeled BMAA. The distribution of radioactivity in the birds and their laid eggs was then examined at different time points by autoradiography and phosphoimaging analysis. To evaluate the metabolic stability of the BMAA molecule, the distribution of 14C-methyl- and 14C-carboxyl-labeled BMAA were compared. The results revealed a pronounced incorporation of radioactivity in the eggs, predominantly in the yolk but also in the albumen. Imaging analysis showed that the concentrations of radioactivity in the liver decreased about seven times between the 24h and the 72h time points, while the concentrations in egg yolk remained largely unchanged. At 72h the egg yolk contained about five times the concentration of radioactivity in the liver. Both BMAA preparations gave rise to similar distribution pattern in the bird tissues and in the eggs, indicating metabolic stability of the labeled groups. The demonstrated deposition into eggs warrants studies of BMAAs effects on bird development. Moreover, birds' eggs may be a source of human BMAA exposure, provided that the laying birds are exposed to BMAA via their diet.
Collapse
Affiliation(s)
- Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, SE-17176 Stockholm, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
27
|
Scott LL, Downing TG. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases. Toxins (Basel) 2017; 10:E22. [PMID: 29286334 PMCID: PMC5793109 DOI: 10.3390/toxins10010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Although cyanobacterial β-N-methylamino-l-alanine (BMAA) has been implicated in the development of Alzheimer's Disease (AD), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS), no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
28
|
Scott LL, Downing TG. Β-N-Methylamino-L-Alanine (BMAA) Toxicity Is Gender and Exposure-Age Dependent in Rats. Toxins (Basel) 2017; 10:E16. [PMID: 29280981 PMCID: PMC5793103 DOI: 10.3390/toxins10010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cyanobacterial β-N-methylamino-L-alanine (BMAA) has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS) or Parkinson's Disease (PD). We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats' natural passive defense mechanism, and potential memory deficits and changes to the rat's natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3-7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
29
|
Laugeray A, Oummadi A, Jourdain C, Feat J, Meyer-Dilhet G, Menuet A, Plé K, Gay M, Routier S, Mortaud S, Guillemin GJ. Perinatal Exposure to the Cyanotoxin β-N-Méthylamino-L-Alanine (BMAA) Results in Long-Lasting Behavioral Changes in Offspring-Potential Involvement of DNA Damage and Oxidative Stress. Neurotox Res 2017; 33:87-112. [PMID: 28879461 DOI: 10.1007/s12640-017-9802-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
We recently demonstrated that perinatal exposure to the glutamate-related herbicide, glufosinate ammonium, has deleterious effects on neural stem cell (NSC) homeostasis within the sub-ventricular zone (SVZ), probably leading to ASD-like symptoms in offspring later in life. In the present study, we aimed to investigate whether perinatal exposure to another glutamate-related toxicant, the cyanobacterial amino acid β-N-methylamino-L-alanine (BMAA), might also trigger neurodevelopmental disturbances. With this aim, female mice were intranasally exposed to low doses of BMAA, 50 mg kg-1 three times a week from embryonic days 7-10 to postnatal day 21. Behavioral analyses were performed during the offspring's early life and during adulthood. Developmental analyses revealed that perinatal exposure to BMAA hastened the appearance of some reflexes and communicative skills. BMAA-exposed offspring displayed sex-dependent changes in emotional cognition shortly after exposure. Later in life, the female offspring continued to express emotional defects and to display abnormal sociability, while males were less affected. To assess whether early exposure to BMAA had deleterious effects on NSC homeostasis, we exposed mice NSCs to 1 and 3 mM BMAA during 24 h. We found that BMAA-exposed NSCs produced high levels of ROS, highlighting the ability of BMAA to induce oxidative stress. We also showed that BMAA exposure increased the number of γH2AX/53BP1 foci per nucleus, suggesting that BMAA-induced DNA damage in NSCs. Collectively, this data strongly suggests that perinatal exposure to the cyanobacteria BMAA, even at low doses, results in neurobehavioral disturbances during both the postnatal period and adulthood. This is considered to be underpinned at the cellular level through dysregulation of NSC homeostasis in the developing brain.
Collapse
Affiliation(s)
- Anthony Laugeray
- Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, Centre National de la Recherche Scientifique, 3b, rue de la Férollerie, 45071, Orléans, France. .,University of Orléans, Orléans, France.
| | | | | | - Justyne Feat
- Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, Centre National de la Recherche Scientifique, 3b, rue de la Férollerie, 45071, Orléans, France
| | - Géraldine Meyer-Dilhet
- Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, Centre National de la Recherche Scientifique, 3b, rue de la Férollerie, 45071, Orléans, France
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, Centre National de la Recherche Scientifique, 3b, rue de la Férollerie, 45071, Orléans, France.,University of Orléans, Orléans, France
| | - Karen Plé
- University of Orléans, Orléans, France.,Institute de Chimie Organique et Analytique, UMR 7311, Center National de la Recherche Scientifique, Orléans, France
| | - Marion Gay
- University of Orléans, Orléans, France.,Institute de Chimie Organique et Analytique, UMR 7311, Center National de la Recherche Scientifique, Orléans, France
| | - Sylvain Routier
- University of Orléans, Orléans, France.,Institute de Chimie Organique et Analytique, UMR 7311, Center National de la Recherche Scientifique, Orléans, France
| | - Stéphane Mortaud
- Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, Centre National de la Recherche Scientifique, 3b, rue de la Férollerie, 45071, Orléans, France. .,University of Orléans, Orléans, France.
| | - Gilles J Guillemin
- Neuroinflammation Group, MND and Neurodegenerative Diseases Research Center, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
30
|
Tan VX, Mazzocco C, Varney B, Bodet D, Guillemin TA, Bessede A, Guillemin GJ. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes. Neurotox Res 2017; 33:55-61. [PMID: 28852990 DOI: 10.1007/s12640-017-9787-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.
Collapse
Affiliation(s)
- Vanessa X Tan
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Bianca Varney
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Tristan A Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Gilles J Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
31
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
32
|
Banack SA, Cox PA. Creating a Simian Model of Guam ALS/PDC Which Reflects Chamorro Lifetime BMAA Exposures. Neurotox Res 2017; 33:24-32. [PMID: 28478528 DOI: 10.1007/s12640-017-9745-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/03/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
Abstract
The theory that β-N-methylamino-L-alanine (BMAA), a cyanobacterial toxin, contaminates traditional food supplies of the Chamorro people of Guam is supported by the recent finding that chronic dietary exposure to L-BMAA in vervets (Chlorocebus sabaeus) triggers the formation of neurofibrillary tangles (NFT) and β-amyloid plaques in the brain. In the first experiment, we found that all four vervets receiving a 210 mg/kg dose for 140 days developed NFT and sparse amyloid deposits. In the second experiment, all eight vervets receiving a 210 mg/kg dose for 140 days developed NFT and amyloid deposits, as well as all eight vervets that received only 21 mg/kg. Based on dietary surveys of the Chamorro people, we estimated lifetime chronic BMAA exposure at a high and a low level: 1) adult male Chamorros eating two flying foxes per month plus one 30 g serving of cycad flour per week; and 2) adult male Chamorros eating one 30 g serving of cycad flour per day combined with the consumption of eight flying foxes per month. The resultant cumulative lifetime Chamorro exposures ranged from 1 to 41 g/kg and are comparable to the total lifetime vervet exposures in our experiments of 2 and 22 g/kg, respectively. Furthermore, measured protein-bound BMAA concentrations of vervets fed L-BMAA powder are comparable to measured protein-bound BMAA concentrations in postmortem brain tissues of Chamorros who died with ALS/PDC.
Collapse
Affiliation(s)
- Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA.
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
33
|
Andersson M, Ersson L, Brandt I, Bergström U. Potential transfer of neurotoxic amino acid β-N-methylamino-alanine (BMAA) from mother to infant during breast-feeding: Predictions from human cell lines. Toxicol Appl Pharmacol 2017; 320:40-50. [PMID: 28174119 DOI: 10.1016/j.taap.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
β-N-methylamino-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria, diatoms and dinoflagellates. BMAA has potential to biomagnify in a terrestrial food chain, and to bioaccumulate in fish and shellfish. We have reported that administration of [14C]l-BMAA to lactating mice and rats results in a mother to off-spring transfer via the milk. A preferential enantiomer-specific uptake of [14C]l-BMAA has also been demonstrated in differentiated murine mammary epithelium HC11 cells. These findings, together with neurotoxic effects of BMAA demonstrated both in vitro and in vivo, highlight the need to determine whether such transfer could also occur in humans. Here, we used four cell lines of human origin to examine and compare the transport of the two BMAA enantiomers in vitro. The uptake patterns of [14C]l- and [14C]d-BMAA in the human mammary MCF7 cell line were in agreement with the results in murine HC11 cells, suggesting a potential secretion of BMAA into human breast milk. The permeability coefficients for both [14C]l- and [14C]d-BMAA over monolayers of human intestinal Caco2 cells supported an efficient absorption from the human intestine. As a final step, transport experiments confirmed that [14C]l-and [14C]d-BMAA can be taken up by human SHSY5Y neuroblastoma cells and even more efficiently by human U343 glioblastoma cells. In competition experiments with various amino acids, the ASCT2 specific inhibitor benzylserine was the most effective inhibitor of [14C]l-BMAA uptake tested here. Altogether, our results suggest that BMAA can be transferred from an exposed mother, via the milk, to the brain of the nursed infant.
Collapse
Affiliation(s)
- Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Lisa Ersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | - Ulrika Bergström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden; Swedish Defence Research Agency, Division of CBRN Defence and Security, SE-164 90 Stockholm, Sweden
| |
Collapse
|
34
|
Engskog MKR, Ersson L, Haglöf J, Arvidsson T, Pettersson C, Brittebo E. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling. Amino Acids 2017; 49:905-919. [PMID: 28161796 PMCID: PMC5383692 DOI: 10.1007/s00726-017-2391-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.
Collapse
Affiliation(s)
- Mikael K R Engskog
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden.
| | - Lisa Ersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 23, Uppsala, Sweden
| | - Jakob Haglöf
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Torbjörn Arvidsson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden.,Medical Product Agency, Box 26, Dag Hammarskjölds väg 42, 751 03, Uppsala, Sweden
| | - Curt Pettersson
- Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 23, Uppsala, Sweden
| |
Collapse
|
35
|
Karlsson O, Michno W, Ransome Y, Hanrieder J. MALDI imaging delineates hippocampal glycosphingolipid changes associated with neurotoxin induced proteopathy following neonatal BMAA exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:740-746. [PMID: 27956354 DOI: 10.1016/j.bbapap.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
The environmental toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative diseases. We have previously shown that neonatal exposure to BMAA results in dose-dependent cognitive impairments, proteomic alterations and progressive neurodegeneration in the hippocampus of adult rats. A high BMAA dose (460mg/kg) also induced intracellular fibril formation, increased protein ubiquitination and enrichment of proteins important for lipid transport and metabolism. The aim of this study was therefore to elucidate the role of neuronal lipids in BMAA-induced neurodegeneration. By using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we characterized the spatial lipid profile in the hippocampus of six month-old rats that were treated neonatally (postnatal days 9-10) with 460mg/kg BMAA. Multivariate statistical analysis revealed long-term changes in distinct ganglioside species (GM, GD, GT) in the dentate gyrus. These changes could be a consequence of direct effects on ganglioside biosynthesis through the b-series (GM3-GD3-GD2-GD1b-GT1b) and may be linked to astrogliosis. Complementary immunohistochemistry experiments towards GFAP and S100β further verified the role of increased astrocyte activity in BMAA-induced brain damage. This highlights the potential of imaging MS for probing chemical changes associated with neuropathological mechanisms in situ. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden; Department of Pharmaceutical Biosciences, Toxicology and Drug Safety, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80 Mölndal, Sweden
| | - Yusuf Ransome
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80 Mölndal, Sweden; Department of Chemistry and Chemical Engineering, Analytical Chemistry, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
36
|
Karlsson O, Hanrieder J. Imaging mass spectrometry in drug development and toxicology. Arch Toxicol 2016; 91:2283-2294. [PMID: 27933369 PMCID: PMC5429351 DOI: 10.1007/s00204-016-1905-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022]
Abstract
During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76, Stockholm, Sweden.
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, WC1N, UK
| |
Collapse
|
37
|
Novak M, Hercog K, Žegura B. Assessment of the mutagenic and genotoxic activity of cyanobacterial toxin beta-N-methyl-amino-L-alanine in Salmonella typhimurium. Toxicon 2016; 118:134-40. [DOI: 10.1016/j.toxicon.2016.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
|
38
|
Andersson M, Karlsson O, Banack SA, Brandt I. Transfer of developmental neurotoxin β-N-methylamino-l-alanine (BMAA) via milk to nursed offspring: Studies by mass spectrometry and image analysis. Toxicol Lett 2016; 258:108-114. [PMID: 27320960 DOI: 10.1016/j.toxlet.2016.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
The cyanobacterial non-proteinogenic amino acid β-N-methylamino-l-alanine (BMAA) is proposed to be involved in the etiology of amyotrophic lateral sclerosis/parkinsonism dementia complex. When administered as single doses to neonatal rats, BMAA gives rise to cognitive and neurodegenerative impairments in the adult animal. Here, we employed mass spectrometry (LC-MS/MS) and autoradiographic imaging to examine the mother-to-pup transfer of BMAA in rats. The results show that unchanged BMAA was secreted into the milk and distributed to the suckling pups. The concentration of BMAA in pup stomach milk and the neonatal liver peaked after 8h, while the concentration in the pup brain increased throughout the study period. About 1 and 6% of the BMAA recovered from adult liver and brain were released following hydrolysis, suggesting that this fraction was associated with protein. No association to milk protein was observed. Injection of rat pups with [methyl-(14)C]-l-BMAA or [carboxyl-(14)C]-l-BMAA resulted in highly similar distribution patterns, indicating no or low metabolic elimination of the methylamino- or carboxyl groups. In conclusion, BMAA is transported as a free amino acid to rat milk and suckling pups. The results strengthen the proposal that mothers' milk could be a source of exposure for BMAA in human infants.
Collapse
Affiliation(s)
- Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, SE-17176 Stockholm, Sweden
| | | | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
39
|
Tian KW, Jiang H, Wang BB, Zhang F, Han S. Intravenous injection of l-BMAA induces a rat model with comprehensive characteristics of amyotrophic lateral sclerosis/Parkinson-dementia complex. Toxicol Res (Camb) 2015; 5:79-96. [PMID: 30090328 DOI: 10.1039/c5tx00272a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
Non-protein amino acid beta-N-methylamino-l-alanine (l-BMAA) is a neurotoxin that was associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinson-Dementia Complex (ALS/PDC) in Guam. This neurotoxin has been implicated as a potential environmental factor in amyotrophic lateral sclerosis, Alzheimer's disease and other neurodegenerative diseases, and was found to accumulate in brain tissues of ALS/PDC patients. It is extremely important to establish a reliable animal model that has the comprehensive characteristics of ALS/PDC for studying mechanisms underlying neurodegeneration, and exploring effective therapies. However, very few good animal models that mimic ALS/PDC have been established. In this study, an ideal rat model that mimicked most characteristics of ALS/PDC was established by administering continuous intravenous (i.v.) injections of neurotoxic l-BMAA. Based on the data obtained, it was demonstrated that continuous i.v. injections of l-BMAA induced mitochondrial morphology and structural changes, astrogliosis, motor neuronal death, and other relative functional changes, which led to the overexpression of pro-inflammatory cytokines cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α), and resulted in the upregulation of glycogen synthase kinase-3 (GSK3), downregulation of astrocytic glutamate transporter-1 (GLT-1), accumulation of microtubule-associated protein tau and cytosolic aggregates of TAR DNA-binding protein-43 (TDP-43) in degenerating motor neurons. These results suggest that this model could be used as a useful tool for the mechanistic and therapeutic study of ALS/PDC.
Collapse
Affiliation(s)
- Ke-Wei Tian
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| | - Hong Jiang
- Department of Electrophysiology , Sir Run Run Shaw Hospital , Medical College , Zhejiang University , Hangzhou 310058 , China
| | - Bei-Bei Wang
- Core Facilities , Zhejiang University School of Medicine , Hangzhou 310058 , China
| | - Fan Zhang
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| | - Shu Han
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| |
Collapse
|
40
|
Momeni S, Segerström L, Roman E. Supplier-dependent differences in intermittent voluntary alcohol intake and response to naltrexone in Wistar rats. Front Neurosci 2015; 9:424. [PMID: 26594143 PMCID: PMC4633506 DOI: 10.3389/fnins.2015.00424] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is a worldwide public health problem and a polygenetic disorder displaying substantial individual variation. This work aimed to study individual differences in behavior and its association to voluntary alcohol intake and subsequent response to naltrexone in a seamless heterogenic group of animals. Thus, by this approach the aim was to more accurately recapitulate the existing heterogeneity within the human population. Male Wistar rats from three different suppliers (Harlan Laboratories B.V., RccHan™:WI; Taconic Farms A/S, HanTac:WH; and Charles River GmbH, Crl:WI) were used to create a heterogenic group for studies of individual differences in behavior, associations to intermittent voluntary alcohol intake and subsequent response to naltrexone. The rats were tested in the open field prior to the Y-maze and then given voluntary intermittent access to alcohol or water in the home cage for 6 weeks, where after, naltrexone in three different doses or saline was administered in a Latin square design over 4 weeks and alcohol intake and preference was measured. However, supplier-dependent differences and concomitant skew subgroup formations, primarily in open field behavior and intermittent alcohol intake, resulted in a shifted focus to instead study voluntary alcohol intake and preference, and the ensuing response to naltrexone in Wistar rats from three different suppliers. The results showed that outbred Wistar rats are diverse with regard to voluntary alcohol intake and preference in a supplier-dependent manner; higher in RccHan™:WI relative to HanTac:WH and Crl:WI. The results also revealed supplier-dependent differences in the effect of naltrexone that were dose- and time-dependent; evident differences in high-drinking RccHan™:WI rats relative to HanTac:WH and Crl:WI rats. Overall these findings render RccHan™:WI rats more suitable for studies of individual differences in voluntary alcohol intake and response to naltrexone and further highlight the inherent heterogeneity of the Wistar strain. The overall results put focus on the importance of thoroughly considering the animals used to aid in study design and for comparison of reported results.
Collapse
Affiliation(s)
- Shima Momeni
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| | - Lova Segerström
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior, Uppsala University Uppsala, Sweden
| |
Collapse
|
41
|
Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain. Sci Rep 2015; 5:15570. [PMID: 26498001 PMCID: PMC4620439 DOI: 10.1038/srep15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022] Open
Abstract
β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.
Collapse
|
42
|
de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Martínez A, Arahuetes RM. Morphometric and neurochemical alterations found in l-BMAA treated rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1232-45. [PMID: 26002186 DOI: 10.1016/j.etap.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis that reflects the motoneurons' degeneration. Several studies support the relationship between β-N-methylamino-l-alanine (l-BMAA), a neurotoxic amino acid produced by cyanobacteria and diatoms, and the sporadic occurrence of ALS and other neurodegenerative diseases. Therefore, the study of its neurotoxicity mechanisms has assumed great relevance in recent years. Recently, our research team has proposed a sporadic ALS animal model by l-BMAA administration in rats, which displays many pathophysiological features of human ALS. In this paper, we deepen the characterization of this model corroborating the occurrence of alterations present in ALS patients such as decreased muscle volume, thinning of the motor cortex, enlarged brain's lateral ventricles, and alteration of both bulbar nuclei and neurotransmitters' levels. Therefore, we conclude that l-BMAA treated rats could be a good model which mimics degenerative features that ALS causes in humans.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Begoña G Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - M Teresa Solas
- Departamento de Biología Celular (Morfología Microscópica), Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Ana Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - Rosa M Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
43
|
Hanrieder J, Karlsson O, Brittebo E, Malmberg P, Ewing AG. Probing the lipid chemistry of neurotoxin-induced hippocampal lesions using multimodal imaging mass spectrometry. SURF INTERFACE ANAL 2014; 46:375-378. [PMID: 28824213 PMCID: PMC5558446 DOI: 10.1002/sia.5418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The environmental toxin β-N-methylamino-L-alanine (BMAA) has been causatively linked to neurodegenerative disease pathology. In a rat model, neonatal BMAA exposure resulted in selective uptake in the hippocampal formation and caused learning and memory impairments in adult animals. Moreover, high dose neonatal BMAA exposure resulted in formation of protein inclusions in the CA1 region of the adult hippocampus. However the mechanism underlying BMAA induced neuropathology remains elusive. Imaging mass spectrometry is a powerful method for spatial interrogation of biochemical distribution in biological tissue with high chemical specificity. The aim of this study was to therefore characterize the lipid microenvironment of BMAA-induced hippocampal lesions in adult rats using matrix-assisted laser desorption/ionization (MALDI) and time-of-flight SIMS (ToF-SIMS imaging). Multimodal imaging was carried out by ToF-SIMS scans of the hippocampal formation followed by whole tissue scans using MALDI imaging. Multivariate analysis was performed on the SIMS data in order to delineate the spatial biochemistry surrounding the lesions. The data show lesion-specific localization of phosphatidylcholine fragments, suggesting neuroinflammatory glial cell activation. Complementary MALDI imaging data showed increased levels of phosphoethanolamines colocalizing with the proteopathic lesions pointing to macroautophagic mechanisms associated with neurotoxin-induced protein accumulation. Multimodal IMS by means of ToF-SIMS and MALDI mass spectrometry proved to be a powerful technique for neurotoxicological research.
Collapse
Affiliation(s)
- Jörg Hanrieder
- National Center for Imaging Mass Spectrometry, Gothenburg University and Chalmers University of Technology, Sweden
- Department of Chemical and Biological Engineering, Analytical Chemistry, Chalmers University of Technology, Gothenburg Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden
| | - Per Malmberg
- National Center for Imaging Mass Spectrometry, Gothenburg University and Chalmers University of Technology, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew G. Ewing
- National Center for Imaging Mass Spectrometry, Gothenburg University and Chalmers University of Technology, Sweden
- Department of Chemical and Biological Engineering, Analytical Chemistry, Chalmers University of Technology, Gothenburg Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
45
|
Hanrieder J, Gerber L, Persson Sandelius Å, Brittebo EB, Ewing AG, Karlsson O. High resolution metabolite imaging in the hippocampus following neonatal exposure to the environmental toxin BMAA using ToF-SIMS. ACS Chem Neurosci 2014; 5:568-75. [PMID: 24779349 PMCID: PMC4102959 DOI: 10.1021/cn500039b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/28/2014] [Indexed: 12/11/2022] Open
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is suggested to be linked with neurodegenerative disease. In a rat model, neonatal exposure to BMAA induced selective uptake in the hippocampus and caused cell loss, mineralization and astrogliosis as well as learning and memory impairments in adulthood. Moreover, neonatal exposure resulted in increased protein ubiquitination in the cornus ammonis 1 (CA1) region of the adult hippocampus indicating that BMAA may induce protein aggregation. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) based imaging is a powerful technology for spatial profiling of small molecular weight compounds in biological tissues with high chemical specificity and high spatial resolution. The aim of this study was to characterize neurochemical changes in the hippocampus of six month-old rats treated neonatally (postnatal days 9-10) with BMAA. Multivariate data analysis of whole section ToF-SIMS scans was performed to delineate anatomical regions of interest based on their chemical distribution pattern. Further analysis of spectral data obtained from the outlined anatomical regions, including CA1 and dentate gyrus (DG) revealed BMAA-induced long-term changes. Increased levels of phospholipids and protein fragments in the histopathologically altered CA1 region as well as phosphate depletion in the DG were observed. Moreover, high resolution SIMS imaging revealed a specific localization of phosphatidylcholine lipids, protein signals and potassium in the histopathologically altered CA1. These findings demonstrate that ToF-SIMS based imaging is a powerful approach for probing biochemical changes in situ and might serve as promising technique for investigating neurotoxin-induced brain pathology.
Collapse
Affiliation(s)
- Jörg Hanrieder
- National Center
for Imaging Mass Spectrometry, University of Gothenburg and Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg Sweden
| | - Lorenz Gerber
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Åsa Persson Sandelius
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Eva B. Brittebo
- Department
of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Andrew G. Ewing
- National Center
for Imaging Mass Spectrometry, University of Gothenburg and Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Oskar Karlsson
- Department
of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, SE-751 05 Uppsala, Sweden
- Department
of Environmental Toxicology, Uppsala University, SE-751 05 Uppsala, Sweden
| |
Collapse
|
46
|
Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA. Arch Toxicol 2014; 89:423-36. [PMID: 24798087 PMCID: PMC4335130 DOI: 10.1007/s00204-014-1262-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/15/2014] [Indexed: 12/31/2022]
Abstract
The environmental neurotoxin β-N-methylamino-l-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9–10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3–6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.
Collapse
|
47
|
Karlsson O, Jiang L, Andersson M, Ilag LL, Brittebo EB. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats. Toxicol Lett 2014; 226:1-5. [PMID: 24472610 DOI: 10.1016/j.toxlet.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Liying Jiang
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Leopold L Ilag
- Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Eva B Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
48
|
Roman E, Karlsson O. Increased anxiety-like behavior but no cognitive impairments in adult rats exposed to constant light conditions during perinatal development. Ups J Med Sci 2013; 118:222-7. [PMID: 23902426 PMCID: PMC4190892 DOI: 10.3109/03009734.2013.821191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Shift-work is suggested to affect fetal development negatively. In particular, maternal hormonal disturbance arising from sleep deprivation or circadian rhythm changes may disturb fetal growth or lead to complications during pregnancy. Exposure to constant light is an environmental stressor that can affect the circadian system and has been shown to induce neurochemical and behavioral changes when used during the prenatal and/or postnatal period in experimental animals. However, studies investigating long-term effects of constant light in the offspring are sparse. METHODS An accidental power outage resulted in pregnant females being housed under constant light (LL) conditions for seven days of the offspring perinatal development (embryonic day 20 to postnatal day 4). The long-term effects of constant light on the behavior in the adult offspring were assessed by means of open field, object recognition, and water maze tests. RESULTS In adulthood, LL-animals displayed an intact recognition memory and no deficits in spatial learning or memory. In the open field test, LL-animals exhibited higher anxiety-like behavior, observed as significantly more thigmotaxis and less ambulation. These results were confirmed in the other behavioral tests as the LL-animals spent less time exploring the objects in the object recognition test, and showed thigmotactic behavior also in the water maze test. CONCLUSION The results confirm that early life experience can cause changes in brain development that shape brain function and add to the sparse literature on long-term effects of constant light conditions during perinatal development on specific behaviors in adulthood.
Collapse
Affiliation(s)
- Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| |
Collapse
|
49
|
Andersson M, Karlsson O, Bergström U, Brittebo EB, Brandt I. Maternal transfer of the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) via milk to suckling offspring. PLoS One 2013; 8:e78133. [PMID: 24194910 PMCID: PMC3806833 DOI: 10.1371/journal.pone.0078133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease and proposed to be biomagnified in terrestrial and aquatic food chains. We have previously shown that the neonatal period in rats, which in humans corresponds to the last trimester of pregnancy and the first few years of age, is a particularly sensitive period for exposure to BMAA. The present study aimed to examine the secretion of 14C-labeled L- and D-BMAA into milk in lactating mice and the subsequent transfer of BMAA into the developing brain. The results suggest that secretion into milk is an important elimination pathway of BMAA in lactating mothers and an efficient exposure route predominantly for L-BMAA but also for D-BMAA in suckling mice. Following secretion of [14C]L-BMAA into milk, the levels of [14C]L-BMAA in the brains of the suckling neonatal mice significantly exceeded the levels in the maternal brains. In vitro studies using the mouse mammary epithelial HC11 cell line confirmed a more efficient influx and efflux of L-BMAA than of D-BMAA in cells, suggesting enantiomer-selective transport. Competition experiments with other amino acids and a low sodium dependency of the influx suggests that the amino acid transporters LAT1 and LAT2 are involved in the transport of L-BMAA into milk. Given the persistent neurodevelopmental toxicity following injection of L-BMAA to neonatal rodent pups, the current results highlight the need to determine whether BMAA is enriched mother's and cow's milk.
Collapse
Affiliation(s)
- Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulrika Bergström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Eva B. Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
50
|
Karlsson O, Bergquist J, Andersson M. Quality measures of imaging mass spectrometry aids in revealing long-term striatal protein changes induced by neonatal exposure to the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Mol Cell Proteomics 2013; 13:93-104. [PMID: 24126143 PMCID: PMC3879633 DOI: 10.1074/mcp.m113.031435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many pathological processes are not directly correlated to dramatic alterations in protein levels. The changes in local concentrations of important proteins in a subset of cells or at specific loci are likely to play a significant role in disease etiologies, but the precise location might be unknown, or the concentration might be too small to be adequately sampled for traditional proteomic techniques. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a unique analytical method that combines analysis of multiple molecular species and of their distribution in a single platform. As reproducibility is essential for successful biomarker discovery, it is important to systematically assess data quality in biologically relevant MALDI IMS experiments. In the present study, we applied four simple tools to study the reproducibility for individual sections, within-group variation, and between-group variation of data acquired from brain sections of 21 animals divided into three treatment groups. We also characterized protein changes in distinct regions of the striatum from six-month-old rats treated neonatally (postnatal days 9–10) with the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA), which has been implicated in neurodegenerative diseases. The results showed that optimized experimental settings can yield high-quality MALDI IMS data with relatively low variation (14% to 15% coefficient of variance) that allow the characterization of subtle changes in protein expression in various subregions of the brain. This was further exemplified by the dose-dependent reduction of myelin basic protein in the caudate putamen and the nucleus accumbens of adult rats neonatally treated with BMAA (150 and 460 mg/kg). The reduction in myelin basic protein was confirmed through immunohistochemistry and indicates that developmental exposure to BMAA may induce structural effects on axonal growth and/or directly on the proliferation of oligodendrocytes and myelination, which might be important for the previously shown BMAA-induced long-term cognitive impairments.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | | | | |
Collapse
|