1
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen H, Wang S, Chen Q, Yu W, Nie H, Liu L, Zheng B, Gong Q. Aloperine Ameliorates Acetaminophen-Induced Acute Liver Injury through HMGB1/TLR4/NF- κB and NLRP3/Inflammasome Pathway. Mediators Inflamm 2024; 2024:3938136. [PMID: 39381066 PMCID: PMC11461077 DOI: 10.1155/2024/3938136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose Aloperine (ALO), an alkaloid isolated from Sophora alopecuroides L., possesses multiple pharmacological activities and holds a promise potential for the treatment of various clinical conditions, including skin hypersensitivity, cancer, and inflammatory disorders. The purpose of this study was to investigate the role of ALO in acetaminophen (N-acetyl-para-aminophenol (APAP))-induced acute liver injury and its underlying mechanisms. Materials and Methods An animal model of acute liver injury was induced by intraperitoneal injection of APAP (150 mg/kg). Prior to APAP injection, ALO (40 mg/kg) was administered daily for 7 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels were then measured using an automated chemical analyzer. Histopathological changes were evaluated using hematoxylin and eosin staining. Oxidative stress levels were measured by detecting superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). Pro-inflammatory cytokines were detected in serum and liver tissues using ELISA and quantitative real-time polymerase chain reaction (q-PCR). The expression of members of the HMGB1/TLR4/NF-κB signaling pathway and NLRP3 inflammasome were determined by Western blot and/or q-PCR. In addition, the expression and location of NLRP3, cleaved caspase-1, high-mobility group box 1 (HMGB1), and phosphorylated p65 (p-p65) were detected by immunofluorescence. Results Pretreatment with ALO significantly protected mice from APAP-induced acute liver injury, with decreased MDA content, and significantly increased GSH and SOD activities. Furthermore, ALO pretreatment reduced the release of pro-inflammatory cytokines (IL-1β and TNF-α) and decreased the expression of caspase-1, cleaved caspase-1, and NLRP3. In addition, ALO pretreatment also inhibited the activation of the HMGB1/TLR4/NF-κB signaling pathway. Conclusion Taken together, ALO can ameliorate APAP-induced acute liver injury by inhibiting oxidative stress, inflammation by inhibiting the HMGB1/TLR4/NF-κB, and NLRP3/inflammasome pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Laboratory Medicine The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Hubei College of Chinese Medicine, Jingzhou, China
| | - Wen Yu
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology School of Medicine Yangtze University, Jingzhou, China
| | - Bing Zheng
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Park SY, Kim MW, Kang JH, Hwang JH, Choi H, Park J, Seong JK, Yoon YS, Oh SH. Loss of Ninjurin1 alleviates acetaminophen-induced liver injury via enhancing AMPKα-NRF2 pathway. Life Sci 2024; 350:122782. [PMID: 38848941 DOI: 10.1016/j.lfs.2024.122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Acetaminophen (APAP), a widely used pain and fever reliever, is a major contributor to drug-induced liver injury, as its toxic metabolites such as NAPQI induce oxidative stress and hepatic necrosis. While N-acetylcysteine serves as the primary treatment for APAP-induced liver injury (AILI), its efficacy is confined to a narrow window of 8-24 h post-APAP overdose. Beyond this window, liver transplantation emerges as the final recourse, prompting ongoing research to pinpoint novel therapeutic targets aimed at enhancing AILI treatment outcomes. Nerve injury-induced protein 1 (Ninjurin1; Ninj1), initially recognized as an adhesion molecule, has been implicated in liver damage stemming from factors like TNFα and ischemia-reperfusion. Nonetheless, its role in oxidative stress-related liver diseases, including AILI, remains unexplored. In this study, we observed up-regulation of Ninj1 expression in the livers of both human DILI patients and the AILI mouse model. Through the utilization of Ninj1 null mice, hepatocyte-specific Ninj1 KO mice, and myeloid-specific Ninj1 KO mice, we unveiled that the loss of Ninj1 in hepatocytes, rather than myeloid cells, exerts alleviative effects on AILI irrespective of sex dependency. Further in vitro experiments demonstrated that Ninj1 deficiency shields hepatocytes from APAP-induced oxidative stress, mitochondrial dysfunctions, and cell death by bolstering NRF2 stability via activation of AMPKα. In summary, our findings imply that Ninj1 likely plays a role in AILI, and its deficiency confers protection against APAP-induced hepatotoxicity through the AMPKα-NRF2 pathway.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Hoon Choi
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Jiwon Park
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Oh
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
5
|
Ghosh P, Magee N, Akakpo JY, Ahamed F, Eppler N, Jones E, Yu Y, He L, Lebofsky M, Dai H, Jaeschke H, Ding WX, Zhang Y. Hepatocyte-specific deletion of small heterodimer partner protects mice against acetaminophen-induced hepatotoxicity via activation of Nrf2. Toxicol Sci 2023; 197:53-68. [PMID: 37792503 PMCID: PMC10734614 DOI: 10.1093/toxsci/kfad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Acetaminophen (APAP) overdose stands as the primary cause of acute liver failure in the United States. APAP hepatotoxicity involves hepatic glutathione (GSH) depletion and mitochondrial damage. To counteract the toxicity of APAP, the nuclear factor erythroid 2 like 2 (Nrf2) activates the expression of genes responsible for drug detoxification and GSH synthesis. In this study, we present evidence that the elimination of hepatocyte small heterodimer partner, a critical transcriptional repressor for liver metabolism, results in Nrf2 activation and protects mice from APAP-induced acute liver injury. Initial investigations conducted on wildtype (WT) mice revealed a swift downregulation of Shp mRNA within the first 24 h after APAP administration. Subsequent treatment of hepatocyte-specific Shp knockout (ShpHep-/-) mice with 300 mg/kg APAP for 2 h exhibited comparable bioactivation of APAP with that observed in the WT controls. However, a significant reduction in liver injury was observed in ShpHep-/- after APAP treatment for 6 and 24 h. The decreased liver injury correlated with a faster recovery of GSH, attributable to heightened expression of Nrf2 target genes involved in APAP detoxification and GSH synthesis. Moreover, in vitro studies revealed that SHP protein interacted with NRF2 protein, inhibiting the transcription of Nrf2 target genes. These findings hold relevance for humans, as overexpression of SHP hindered APAP-induced NRF2 activation in primary human hepatocytes. In conclusion, our studies have unveiled a novel regulatory axis involving SHP and NRF2 in APAP-induced acute liver injury, emphasizing SHP as a promising therapeutic target in APAP overdose-induced hepatotoxicity.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yifan Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hongyan Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
6
|
Xu L, Wang H. A dual role of inflammation in acetaminophen-induced liver injury. LIVER RESEARCH 2023; 7:9-15. [PMID: 39959696 PMCID: PMC11791818 DOI: 10.1016/j.livres.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
In many affluent nations, acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure. The process of APAP-induced liver injury (AILI) is intimately tied to inflammation, including hepatocyte necrosis-caused initiation of inflammation, inflammation amplification that exacerbates liver injury, and the resolution of inflammation that triggers liver regeneration and repair. Excessive APAP metabolism in the liver eventually leads to hepatocyte necrosis and inflammation. Innate immune cells, such as neutrophils, eosinophils, monocytes, and gammadelta T cells, are recruited into the injured liver and release various cytokines. These immune cells and cytokines have been found to serve two purposes in AILI. In this review, we highlighted the dual role of inflammation, including inflammatory cytokines and inflammatory immune cells in AILI, and discussed possible explanations for contradictory findings.
Collapse
Affiliation(s)
- Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang W, Han Q, Ding Y, Zhou H, Chen Z, Wang J, Xiang J, Song Z, Abbas M, Shi L. Bcl6 drives stem-like memory macrophages differentiation to foster tumor progression. Cell Mol Life Sci 2022; 80:14. [PMID: 36542153 PMCID: PMC9771855 DOI: 10.1007/s00018-022-04660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Cancer development is a long-lasting process during which macrophages play a pivotal role. However, how macrophages maintain their cellular identity, persistence, expanding and pro-tumor property during malignant progression remains elusive. Inspired by the recent report of the activation of stem cell-like self-renewal mechanism in mature macrophages, we postulate that intra-tumoral macrophages might be trained to assume stem-like properties and memory-like activity favoring cancer development. Herein we demonstrated that tumor infiltrating macrophages rapidly converted into the CD11b+F4/80+Ly6C-Bcl6+ phenotype, and adopted stem cell-like properties involving expression of stemness-related genes, long-term persistence and self-renewing. Importantly, Bcl6+ macrophages stably maintained cell identity, gene signature, metabolic profile, and pro-tumor property even after long-term culture in tumor-free medium, which were hence termed stem cell-like memory macrophages (SMMs). Mechanistically, we showed that transcriptional factor Bcl6 co-opted the demethylase Tet2 and the deacetylase SIRT1 to confer the epigenetic imprinting and mitochondrial metabolic traits to SMMs, bolstering the stability and longevity of trained immunity in tumor-associated macrophages (TAMs). Furthermore, tumor-derived redHMGB1 was identified as the priming signal, which, through TLR4 and mTOR/AKT pathway, induced Bcl6-driven program underpinning SMMs generation. Collectively, our study uncovers a distinct macrophage population with a hybrid of stem cell and memory cell properties, and unveils a regulatory mechanism that integrates transcriptional, epigenetic and metabolic pathways to promote long-lasting pro-tumor immunity.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qin Han
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yina Ding
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310012, Zhejiang, China
| | - Huihui Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxin Xiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhengbo Song
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Muhammad Abbas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China
| | - Liyun Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China.
| |
Collapse
|
8
|
Hepatoprotective effects of carvedilol and crocin against leflunomide-induced liver injury. Int Immunopharmacol 2022; 113:109297. [DOI: 10.1016/j.intimp.2022.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
9
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
10
|
Woolbright BL, Nguyen NT, McGill MR, Sharpe MR, Curry SC, Jaeschke H. Generation of pro-and anti-inflammatory mediators after acetaminophen overdose in surviving and non-surviving patients. Toxicol Lett 2022; 367:59-66. [PMID: 35905941 PMCID: PMC9849076 DOI: 10.1016/j.toxlet.2022.07.813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury in animals and humans. Although well-studied in animals, limited longitudinal data exist on cytokine release after APAP overdose in patients. The purpose of this study was to quantify concentrations of cytokines in APAP overdose patients to determine if early cytokine or complement measurements can distinguish between surviving and non-surviving patients. Plasma was obtained from healthy controls, APAP overdose patients with no increase in liver transaminases, and surviving and non-surviving APAP overdose patients with severe liver injury. Interleukin-10 (IL-10), and CC chemokine ligand-2 (CCL2, MCP-1) were substantially elevated in surviving and non-surviving patients, whereas IL-6 and CXC chemokine ligand-8 (CXCL8, IL-8) had early elevations in a subset of patients only with liver injury. Day 1 IL-10 and IL-6 levels, and Day 2 CCL2, levels correlated positively with survival. There was no significant increase in IL-1α, IL-1β or TNF-α in any patient during the first week after APAP. Monitoring cytokines such as CCL2 may be a good indicator of patient prognosis; furthermore, these data indicate the inflammatory response after APAP overdose in patients is not mediated by a second phase of inflammation driven by the inflammasome.
Collapse
Affiliation(s)
| | - Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, USA
| | | | - Matthew R Sharpe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA; Department of Medicine, and Center for Toxicology and Pharmacology Education and Research, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
11
|
Zajkowska M, Mroczko B. Chemokines in Primary Liver Cancer. Int J Mol Sci 2022; 23:ijms23168846. [PMID: 36012108 PMCID: PMC9408270 DOI: 10.3390/ijms23168846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is responsible for extremely important functions in the human body. In the liver’s structure, we distinguish between connective tissue (stroma) and parenchyma, the latter of which is formed from the basic structural and functional units of the liver—hepatocytes. There are many factors, that negatively affect the liver cells, contributing to their damage. This may lead to fibrosis, liver failure and, in consequence, primary liver cancer, which is the sixth most commonly diagnosed malignancy and the fourth leading cause of cancer death worldwide. Chemokines are a large family of secreted proteins. Their main role is to direct the recruitment and migration of cells to sites of inflammation or injury. Some authors suggest that these proteins might play a potential role in the development of many malignancies, including primary liver cancer. The aim of this study was to evaluate and summarize the knowledge regarding liver diseases, especially primary liver cancer (HCC) and the participation of chemokines in the development of this malignancy. Chemokines involved in the initiation of this type of tumor belong mainly to the CC and CXC chemokines. Their significant role in the course of hepatocellular carcinoma proves their usefulness in detecting and monitoring the course and treatment in patients with this disease.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: ; Tel.: +48-686-5168; Fax: +48-686-5169
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
12
|
Bloom J, Uzamere T, Hurd Y, Manini AF. Macrophage Migration Inhibitory Factor as a Potential Biomarker in Acetaminophen Overdose: A Pilot Study. TOXICOLOGY COMMUNICATIONS 2022; 6:1-5. [PMID: 35310880 PMCID: PMC8932641 DOI: 10.1080/24734306.2021.2015551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction Acetaminophen overdose is a leading cause of liver failure in the United States. Macrophage migration inhibitory factor (MIF) is a cytokine that is released early and promotes acetaminophen toxicity in preclinical models. This cytokine could prove a useful biomarker in emergency department (ED) patients immediately following an acute acetaminophen overdose. Methods We selected a convenience sample of thirteen patients from a prospective consecutive cohort of ED patients with suspected acute overdose. Research associates collected waste specimens for MIF analysis that remained after use for clinical care. Our team compared patients with confirmed acetaminophen overdose (n=9) to patients without acetaminophen exposure or liver injury (n=3) and a patient with liver injury in the absence of detectable acetaminophen (n=1). Results In our acetaminophen group, all nine patients had measurable acetaminophen concentrations. Median MIF serum concentrations were 16.08 ng/mL (IQR 2.06, 91.40) in the overdose group compared with the control group serum concentrations of 0.19 ng/mL (IQR 0.05, 0.32) (p = 0.0091). Conclusion In this pilot study, MIF was feasible to measure in specimens from an ED drug overdose cohort, and was significantly elevated in the acetaminophen group compared to non-acetaminophen controls without liver injury.
Collapse
Affiliation(s)
- Joshua Bloom
- Department of Emergency Medicine, Mount Sinai West, New York, NY.,Corresponding author:
| | - Teddy Uzamere
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yasmin Hurd
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex F. Manini
- Division of Medical Toxicology, Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, NY
| |
Collapse
|
13
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
14
|
Cheng X, Zhu JL, Li Y, Luo WW, Xiang HR, Zhang QZ, Peng WX. Serum biomarkers of isoniazid-induced liver injury: Aminotransferases are insufficient, and OPN, L-FABP and HMGB1 can be promising novel biomarkers. J Appl Toxicol 2021; 42:516-528. [PMID: 34494278 DOI: 10.1002/jat.4236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Isoniazid (INH)-induced liver injury is a great challenge for tuberculosis treatment. Existing biomarkers cannot accurately determine the occurrence of this injury in the early stage. Therefore, developing early specific sensitive biomarkers of INH-induced liver injury is urgent. A rat model of liver injury was established with gastric infusion of INH or INH plus rifampicin (RFP). We examined seven potential novel serum biomarkers, namely, glutamate dehydrogenase (GLDH), liver-fatty acid-binding protein (L-FABP), high-mobility group box-1 (HMGB1), macrophage colony-stimulating factor receptor (MCSF1R), osteopontin (OPN), total cytokeratin 18 (K18), and caspase-cleaved cytokeratin-18 (ccK18), to evaluate their sensitivity and specificity on INH-induced liver injury. With the increase of drug dosage, combining with RFP and prolonging duration of administration, the liver injury was aggravated, showing as decreased weight of the rats, upgraded liver index and oxidative stress level, and histopathological changes of liver becoming marked. But the activity of serum aminotransferases decreased significantly. The area under the curve (AUC) of receiver-operating characteristic (ROC) curve of OPN, L-FABP, HMGB1, MCSF1R, and GLDH was 0.88, 0.87, 0.85, 0.71, and 0.70 (≥0.7), respectively, and 95% confidence interval of them did not include 0.5, with statistical significance, indicating their potential abilities to become biomarkers of INH-induced liver injury. In conclusion, we found traditional biomarkers ALT and AST were insufficient to discover the INH-induced liver injury accurately and OPN, L-FABP, and HMGB1 can be promising novel biomarkers.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Lian Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Wen Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai-Rong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Xing Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
15
|
Abstract
The incidence rate of drug-induced liver injury has been high with the extensive use of drugs and the development and application of new drugs. The pathogenesis of drug-induced liver injury is not fully understood, so there is no significant breakthrough in its treatment. The diagnosis of drug-induced liver injury still depends on drug history, clinical manifestations, imaging, biochemical tests, and liver biopsy. This article reviews the recent progress in the understanding of the incidence rate, classification, risk factors, and serum markers of drug-induced liver injury.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
16
|
Zhang C, Shi X, Su Z, Hu C, Mu X, Pan J, Li M, Teng F, Ling T, Zhao T, Xu C, Ji G, You Q. CD36 deficiency ameliorates drug-induced acute liver injury in mice. Mol Med 2021; 27:57. [PMID: 34092215 PMCID: PMC8182905 DOI: 10.1186/s10020-021-00325-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Acetaminophen (APAP) overdose causes hepatotoxicity and even acute liver failure. Recent studies indicate that sterile inflammation and innate immune cells may play important roles in damage-induced hepatocytes regeneration and liver repair. The scavenger receptor CD36 has its crucial functions in sterile inflammation. However, the roles of CD36 in APAP induced acute liver injury remain unclear and warrant further investigation. Methods WT C57BL/6 J and CD36−/− mice were intraperitoneally injected with APAP (300 mg/kg) after fasting for 16 h. Liver injury was evaluated by serum alanine aminotransferase (ALT) level and liver tissue hematoxylin and eosin (H&E) staining. Liver inflammatory factor expression was determined by real-time polymerase chain reaction (PCR). The protein adducts forming from the metabolite of APAP and the metabolism enzyme cytochrome P450 2E1 (CYP2E1) levels were measured by Western blot. Liver infiltrating macrophages and neutrophils were characterized by flow cytometry. RNA sequencing and Western blot were used to evaluate the effect of damage-associated molecular patterns (DAMP) molecule high mobility group B1 (HMGB1) on WT and CD36−/− macrophages. Moreover, PP2, a Src kinase inhibitor, blocking CD36 signaling, was applied in APAP model. Results The expression of CD36 was increased in the liver of mice after APAP treatment. Compared with WT mice, APAP treated CD36−/− mice show less liver injury. There was no significant difference in APAP protein adducts and CYP2E1 expression between these two strains. However, reduced pro-inflammatory factor mRNA expression and serum IL-1β level were observed in APAP treated CD36−/− mice as well as infiltrating macrophages and neutrophils. Moreover, CD36 deficiency impaired the activation of c-Jun N-terminal kinase (JNK) caused by APAP. Interestingly, the lack of CD36 reduced the activation of extracellular regulated protein kinases (Erk) and v-akt murine thymoma viral oncogene homolog (Akt) induced by HMGB1. RNA transcription sequencing data indicated that HMGB1 has a different effect on WT and CD36−/− macrophages. Furthermore, treatment with PP2 attenuated APAP induced mouse liver injury. Conclusion Our data demonstrated that CD36 deficiency ameliorated APAP-induced acute liver injury and inflammatory responses by decreasing JNK activation. CD36 might serve as a new target to reduce acute liver injury.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xiao Shi
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhongping Su
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Chao Hu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fengmeng Teng
- Affilated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ting Zhao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Che Xu
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Guozhong Ji
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China. .,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
17
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
18
|
Adhyapok P, Fu X, Sluka JP, Clendenon SG, Sluka VD, Wang Z, Dunn K, Klaunig JE, Glazier JA. A computational model of liver tissue damage and repair. PLoS One 2020; 15:e0243451. [PMID: 33347443 PMCID: PMC7752149 DOI: 10.1371/journal.pone.0243451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/22/2020] [Indexed: 01/09/2023] Open
Abstract
Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.
Collapse
Affiliation(s)
- Priyom Adhyapok
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Physics, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| | - Xiao Fu
- The Francis Crick Institute, London, United Kingdom
| | - James P. Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| | - Sherry G. Clendenon
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| | - Victoria D. Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
| | - Zemin Wang
- School of Public Health, Indiana University, Bloomington, IN, United States of America
| | - Kenneth Dunn
- School of Medicine, Indiana University, Indianapolis, IN, United States of America
| | - James E. Klaunig
- School of Public Health, Indiana University, Bloomington, IN, United States of America
| | - James A. Glazier
- Biocomplexity Institute, Indiana University, Bloomington, IN, United States of America
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
19
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Minsart C, Rorive S, Lemmers A, Quertinmont E, Gustot T. N-acetylcysteine and glycyrrhizin combination: Benefit outcome in a murine model of acetaminophen-induced liver failure. World J Hepatol 2020; 12:596-618. [PMID: 33033567 PMCID: PMC7522565 DOI: 10.4254/wjh.v12.i9.596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acetaminophen overdose is the most frequent cause of drug-induced liver failure in developed countries. Substantial progress has been made in understanding the mechanism of hepatocellular injury, but N-acetylcysteine remains the only effective treatment despite its short therapeutic window. Thus, other hepatoprotective drugs are needed for the delayed treatment of acetaminophen-induced hepatotoxicity. Our interest focused on glycyrrhizin for its role as an inhibitor of high mobility group box 1 (HMGB1) protein, a member of the family of damage-associated molecular pattern, known to play an important pathological role in various diseases.
AIM To investigate the efficacy of the N-acetylcysteine/glycyrrhizin combination compared to N-acetylcysteine alone in the prevention of liver toxicity.
METHODS Eight-week-old C57BL/6J wild-type female mice were used for all our experiments. Mice fasted for 15 h were treated with acetaminophen (500 mg/kg) or vehicle (phosphate-buffered saline) by intraperitoneal injection and separated into the following groups: Glycyrrhizin (200 mg/kg); N-acetylcysteine (150 mg/kg); and N-acetylcysteine/glycyrrhizin. In all groups, mice were sacrificed 12 h following acetaminophen administration. The assessment of hepatotoxicity was performed by measuring plasma levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase. Hepatotoxicity was also evaluated by histological examination of hematoxylin and eosin-stained tissues sections. Survival rates were compared between various groups using Kaplan-Meier curves.
RESULTS Consistent with data published in the literature, we confirmed that intraperitoneal administration of acetaminophen (500 mg/kg) in mice induced severe liver injury as evidenced by increases in alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase but also by liver necrosis score. Glycyrrhizin administration was shown to reduce the release of HMGB1 and significantly decreased the severity of liver injury. Thus, the co-administration of glycyrrhizin and N-acetylcysteine was investigated. Administered concomitantly with acetaminophen, the combination significantly reduced the severity of liver injury. Delayed administration of the combination of drugs, 2 h or 6 h after acetaminophen, also induced a significant decrease in hepatocyte necrosis compared to mice treated with N-acetylcysteine alone. In addition, administration of N-acetylcysteine/glycyrrhizin combination was associated with an improved survival rate compared to mice treated with only N-acetylcysteine.
CONCLUSION We demonstrate that, compared to N-acetylcysteine alone, co-administration of glycyrrhizin decreases the liver necrosis score and improves survival in a murine model of acetaminophen-induced liver injury. Our study opens a potential new therapeutic pathway in the prevention of acetaminophen hepatotoxicity.
Collapse
Affiliation(s)
- Charlotte Minsart
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- DIAPATH-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies 6041, Belgium
| | - Arnaud Lemmers
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Department of Gastroenterology, Hepato Pancreatology and Digestive Oncology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Eric Quertinmont
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Thierry Gustot
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Department of Gastroenterology, Hepato Pancreatology and Digestive Oncology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Inserm Unité 1149, Centre de Recherche sur l’inflammation, Paris 75006, France
- UMR S_1149, Université Paris Diderot, Paris 75006, France
| |
Collapse
|
21
|
Kaur I, Behl T, Bungau S, Kumar A, Mehta V, Setia D, Uddin MS, Zengin G, Aleya L, Arora S. Exploring the therapeutic promise of targeting HMGB1 in rheumatoid arthritis. Life Sci 2020; 258:118164. [PMID: 32739467 DOI: 10.1016/j.lfs.2020.118164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022]
Abstract
High mobility group box-1 (HMGB1) protein is a diverse, single polypeptide moiety, present in mammalian eukaryotic cells. In response to stimuli, this nuclear protein is actively secreted in to the extracellular compartment or passively released by the necrotic cells, in order to mediate inflammatory responses, by forming complexes with IL-1α, IL-1β, LPS and other moieties, and binding to RAGE, TLR and other receptor ligands, initiating downstream, signaling processes. This molecule acts as a proinflammatory cytokine and contributes to the progression of diseases like, acute lung injury, autoimmune liver damage, graft rejection immune response and arthritis. Small concentrations of HMGB1 are released during apoptosis, which facilitates oxidative regulation on Cys106, and propagates immune inactivating tolerogenic signals in the body. The review portrays the role of HMGB1 in rheumatoid arthritis, evidently supported by pre-clinical and clinical investigations, demonstrating extensive HMGB1 expression in synovial tissue and fluid as well as serum, excessive expression of transduction receptor signaling molecules, bone remodeling and uncontrolled expression of bone destroying osteoclastogenesis, resulting in destruction of articular cartilage, bone deformation and synovial proliferation, alleviating the pathogenesis in RA disease. Moreover, the review highlights the therapeutic regime targeting HMGB1, facilitating inhibition of its actions and release into the extracellular compartment, to ameliorate the destructive events that prevail in rheumatoid arthritis.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, University Campus, Konya, Turkey
| | - Lotfi Aleya
- Department of Biology, Faculty of Science, University Campus, Konya, Turkey; Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
22
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
23
|
Abstract
Ample evidence suggests that hepatic macrophages play key roles in the injury and repair mechanisms during liver disease progression. There are two major populations of hepatic macrophages: the liver resident Kupffer cells and the monocyte-derived macrophages, which rapidly infiltrate the liver during injury. Under different disease conditions, the tissue microenvironmental cues of the liver critically influence the phenotypes and functions of hepatic macrophages. Furthermore, hepatic macrophages interact with multiple cells types in the liver, such as hepatocytes, neutrophils, endothelial cells, and platelets. These crosstalk interactions are of paramount importance in regulating the extents of liver injury, repair, and ultimately liver disease progression. In this review, we summarize the novel findings highlighting the impact of injury-induced microenvironmental signals that determine the phenotype and function of hepatic macrophages. Moreover, we discuss the role of hepatic macrophages in homeostasis and pathological conditions through crosstalk interactions with other cells of the liver.
Collapse
Affiliation(s)
- Zhao Shan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
25
|
Reisinger A, Rabensteiner J, Hackl G. Diagnosis of acute intoxications in critically ill patients: focus on biomarkers - part 2: markers for specific intoxications. Biomarkers 2020; 25:112-125. [PMID: 32011177 DOI: 10.1080/1354750x.2020.1725787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In medical intensive care units, acute intoxications contribute to a large proportion of all patients. Epidemiology and a basic overview on this topic were presented in part one. The purpose of this second part regarding toxicological biomarkers in the ICU setting focuses on specific poisons and toxins. Following the introduction of anion and osmol gap in part one, it's relevance in toxic alcohols and other biomarkers for these poisonings are presented within this publication. Furthermore, the role of markers in the blood, urine and cerebrospinal fluid for several intoxications is evaluated. Specific details are presented, amongst others, for cardiovascular drug poisoning, paracetamol (acetaminophen), ethanol, pesticides, ricin and yew tree intoxications. Detailed biomarkers and therapeutic decision tools are shown for carbon monoxide (CO) and cyanide (CN-) poisoning. Also, biomarkers in environmental toxicological situations such as mushroom poisoning and scorpion stings are presented.
Collapse
Affiliation(s)
- Alexander Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jasmin Rabensteiner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerald Hackl
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
|
28
|
Muhammad-Azam F, Nur-Fazila SH, Ain-Fatin R, Mustapha Noordin M, Yimer N. Histopathological changes of acetaminophen-induced liver injury and subsequent liver regeneration in BALB/C and ICR mice. Vet World 2019; 12:1682-1688. [PMID: 32009746 PMCID: PMC6925052 DOI: 10.14202/vetworld.2019.1682-1688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice. Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods. Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult. Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
Collapse
Affiliation(s)
- Fazil Muhammad-Azam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raslan Ain-Fatin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamed Mustapha Noordin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurhusien Yimer
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol 2019; 170:113664. [PMID: 31606409 DOI: 10.1016/j.bcp.2019.113664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Several biomarkers are used to monitor organ damage caused by drug toxicity. Traditional markers of kidney function, such as serum creatinine and blood urea nitrogen are commonly used to estimate glomerular filtration rate. However, these markers have several limitations including poor specificity and sensitivity. A number of serum and urine biomarkers have recently been described to detect kidney damage caused by drugs such as cisplatin, gentamicin, vancomycin, and tacrolimus. Neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein-1 (MCP-1), and cystatin C have been identified as biomarkers for early kidney damage. Hy's Law is widely used as to predict a high risk of severe drug-induced liver injury caused by drugs such as acetaminophen. Recent reports have indicated that glutamate dehydrogenase (GLDH), high-mobility group box 1 (HMGB-1), Keratin-18 (k18), MicroRNA-122 and ornithine carbamoyltransferase (OCT) are more sensitive markers of hepatotoxicity compared to the traditional markers including the blood levels of amiotransferases and total bilirubin. Additionally, the rapid development of proteomic technologies in biofluids and tissue provides a new multi-marker panel, leading to the discovery of more sensitive biomarkers. In this review, an update topics of biomarkers for the detection of kidney or liver injury associated with pharmacotherapy.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Nanae Yamamoto
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan; Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Japan.
| |
Collapse
|
30
|
Roth S, Singh V, Tiedt S, Schindler L, Huber G, Geerlof A, Antoine DJ, Anfray A, Orset C, Gauberti M, Fournier A, Holdt LM, Harris HE, Engelhardt B, Bianchi ME, Vivien D, Haffner C, Bernhagen J, Dichgans M, Liesz A. Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Sci Transl Med 2019. [PMID: 29540615 DOI: 10.1126/scitranslmed.aao1313] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stroke induces a multiphasic systemic immune response, but the consequences of this response on atherosclerosis-a major source of recurrent vascular events-have not been thoroughly investigated. We show that stroke exacerbates atheroprogression via alarmin-mediated propagation of vascular inflammation. The prototypic brain-released alarmin high-mobility group box 1 protein induced monocyte and endothelial activation via the receptor for advanced glycation end products (RAGE)-signaling cascade and increased plaque load and vulnerability. Recruitment of activated monocytes via the CC-chemokine ligand 2-CC-chemokine receptor type 2 pathway was critical in stroke-induced vascular inflammation. Neutralization of circulating alarmins or knockdown of RAGE attenuated atheroprogression. Blockage of β3-adrenoreceptors attenuated the egress of myeloid monocytes after stroke, whereas neutralization of circulating alarmins was required to reduce systemic monocyte activation and aortic invasion. Our findings identify a synergistic effect of the sympathetic stress response and alarmin-driven inflammation via RAGE as a critical mechanism of exacerbated atheroprogression after stroke.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Vikramjeet Singh
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Lisa Schindler
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Georg Huber
- Institute of Structural Biology, Helmholtz Centre Munich, 85764 Munich, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Centre Munich, 85764 Munich, Germany
| | - Daniel J Antoine
- Medical Research Council Center for Drug Safety Science, Department for Molecular and Clinical Pharmacology, University of Liverpool, L69 3GE Liverpool, UK
| | - Antoine Anfray
- INSERM, Université de Caen-Normandie, CHU de Caen, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, 14074 Caen, France
| | - Cyrille Orset
- INSERM, Université de Caen-Normandie, CHU de Caen, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, 14074 Caen, France
| | - Maxime Gauberti
- INSERM, Université de Caen-Normandie, CHU de Caen, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, 14074 Caen, France
| | - Antoine Fournier
- INSERM, Université de Caen-Normandie, CHU de Caen, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, 14074 Caen, France
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Klinikum der Universität München, 81377 Munich, Germany
| | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Marco E Bianchi
- Faculty of Medicine, San Raffaele University, 20132, Milan, Italy
| | - Denis Vivien
- INSERM, Université de Caen-Normandie, CHU de Caen, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, 14074 Caen, France
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany.,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, 81377 Munich, Germany. .,Munich Cluster for System Neurology (SyNergy), 80336 Munich, Germany
| |
Collapse
|
31
|
Abstract
Drug-induced liver injury (DILI), including herbal and dietary supplement hepatotoxicity, is often passed lightly; however, it can lead to the requirement of a liver transplant or may even cause death because of liver failure. Recently, the American College of Gastroenterology, Chinese Society of Hepatology and European Association for the Study of the Liver guidelines for the diagnosis and treatment of DILI have been established, and they will be helpful for guiding clinical treatment decisions. Roussel Uclaf Causality Assessment Method scoring is the most commonly used method to diagnose DILI; however, it has some limitations, such as poor validity and reproducibility. Recently, studies on new biomarkers have been actively carried out, which will help diagnose DILI and predict the prognosis of DILI. It is expected that the development of new therapies such as autophagy inducers and various other technologies of the fourth industrial revolution will be applicable to DILI research.
Collapse
Affiliation(s)
- Jeong Ill Suh
- Department of Internal Medicine, College of Medicine, Dongguk Unversity, Gyeongju, Korea
| |
Collapse
|
32
|
Roth K, Strickland J, Joshi N, Deng M, Kennedy RC, Rockwell CE, Luyendyk JP, Billiar TR, Copple BL. Dichotomous Role of Plasmin in Regulation of Macrophage Function after Acetaminophen Overdose. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1986-2001. [PMID: 31381887 DOI: 10.1016/j.ajpath.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Kupffer cells and monocyte-derived macrophages are critical for liver repair after acetaminophen (APAP) overdose. These cells produce promitogenic cytokines and growth factors, and they phagocytose dead cell debris, a process that is critical for resolution of inflammation. The factors that regulate these dynamic functions of macrophages after APAP overdose, however, are not fully understood. We tested the hypothesis that the fibrinolytic enzyme, plasmin, is a key regulator of macrophage function after APAP-induced liver injury. In these studies, inhibition of plasmin in mice with tranexamic acid delayed up-regulation of proinflammatory cytokines after APAP overdose. In culture, plasmin directly, and in synergy with high-mobility group B1, stimulated Kupffer cells and bone marrow-derived macrophages to produce cytokines by a mechanism that required NF-κB. Inhibition of plasmin in vivo also prevented trafficking of monocyte-derived macrophages into necrotic lesions after APAP overdose. This prevented phagocytic removal of dead cells, prevented maturation of monocyte-derived macrophages into F4/80-expressing macrophages, and prevented termination of proinflammatory cytokine production. Our studies reveal further that phagocytosis is an important stimulus for cessation of proinflammatory cytokine production as treatment of proinflammatory, monocyte-derived macrophages, isolated from APAP-treated mice, with necrotic hepatocytes decreased expression of proinflammatory cytokines. Collectively, these studies demonstrate that plasmin is an important regulator of macrophage function after APAP overdose.
Collapse
Affiliation(s)
- Katherine Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Jenna Strickland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Nikita Joshi
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebekah C Kennedy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bryan L Copple
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
33
|
Gloor Y, Schvartz D, F Samer C. Old problem, new solutions: biomarker discovery for acetaminophen liver toxicity. Expert Opin Drug Metab Toxicol 2019; 15:659-669. [PMID: 31293190 DOI: 10.1080/17425255.2019.1642323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Although the hepatotoxicity of acetaminophen is a well-known problem, the search for reliable biomarker of toxicity is still a current issue as clinical tools are missing to assess patients intoxicated following chronic use, sequential ingestion, use of modified release formulations or in case of delayed arrival to hospital. The need for new specific and robust biomarkers for acetaminophen toxicity has prompted many studies exploring the use of blood levels of acetaminophen derivatives, mitochondrial damage markers, liver cell apoptosis and/or necrosis markers and circulating microRNAs. Areas covered: In this review, we present a concise overview of the most promising biomarkers currently under evaluation including descriptions of their properties with respect to exposure type, APAP specificity, and potential clinical application. In addition, we illustrate the power of new technologies for biomarker research and describe their current application to the field of acetaminophen-induced hepatotoxicity. Expert opinion: Recently the use of extracellular vesicles isolation in combination with omics techniques has opened a new perspective to the field of biomarker research. However, the potential of those new technologies for the prediction and monitoring of hepatic diseases and acetaminophen toxicity has not yet been fully taken into consideration.
Collapse
Affiliation(s)
- Yvonne Gloor
- a Division of clinical pharmacology and toxicology, Geneva University Hospital , Geneva , Switzerland.,b Laboratory of clinical pharmacology, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Domitille Schvartz
- c Department of internal medicine specialties, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Caroline F Samer
- a Division of clinical pharmacology and toxicology, Geneva University Hospital , Geneva , Switzerland.,b Laboratory of clinical pharmacology, Faculty of Medicine, University of Geneva , Geneva , Switzerland
| |
Collapse
|
34
|
Abstract
Acetaminophen (APAP) is one of the most popular and safe pain medications worldwide. However, due to its wide availability, it is frequently implicated in intentional or unintentional overdoses where it can cause severe liver injury and even acute liver failure (ALF). In fact, APAP toxicity is responsible for 46% of all ALF cases in the United States. Early mechanistic studies in mice demonstrated the formation of a reactive metabolite, which is responsible for hepatic glutathione depletion and initiation of the toxicity. This insight led to the rapid introduction of N-acetylcysteine as a clinical antidote. However, more recently, substantial progress was made in further elucidating the detailed mechanisms of APAP-induced cell death. Mitochondrial protein adducts trigger a mitochondrial oxidant stress, which requires amplification through a MAPK cascade that ultimately results in activation of c-jun N-terminal kinase (JNK) in the cytosol and translocation of phospho-JNK to the mitochondria. The enhanced oxidant stress is responsible for the membrane permeability transition pore opening and the membrane potential breakdown. The ensuing matrix swelling causes the release of intermembrane proteins such as endonuclease G, which translocate to the nucleus and induce DNA fragmentation. These pathophysiological signaling mechanisms can be additionally modulated by removing damaged mitochondria by autophagy and replacing them by mitochondrial biogenesis. Importantly, most of the mechanisms have been confirmed in human hepatocytes and indirectly through biomarkers in plasma of APAP overdose patients. The extensive necrosis caused by APAP overdose leads to a sterile inflammatory response. Although recruitment of inflammatory cells is necessary for removal of cell debris in preparation for regeneration, these cells have the potential to aggravate the injury. This review touches on the newest insight into the intracellular mechanisms of APAP-induced cells death and the resulting inflammatory response. Furthermore, it discusses the translation of these findings to humans and the emergence of new therapeutic interventions.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
35
|
Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O'Brien TP, Printz RL, Papin JA, Reifman J, Shiota M, Young JD, Wallqvist A. Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced liver toxicity in rats. Toxicol Appl Pharmacol 2019; 372:19-32. [PMID: 30974156 DOI: 10.1016/j.taap.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the early onset of liver injury associated with excess APAP-information that is vital to reverse injury progression through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and metabolomics technologies, both independently and in combination, in an attempt to discover potential early markers of liver injury. However, the casual relationship between these observations and their relation to the APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, metabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.
Collapse
Affiliation(s)
- Venkat R Pannala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| | - Kalyan C Vinnakota
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
36
|
Hassan A, Fontana RJ. The diagnosis and management of idiosyncratic drug-induced liver injury. Liver Int 2019; 39:31-41. [PMID: 30003672 DOI: 10.1111/liv.13931] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is an uncommon but important cause of liver disease that can arise after exposure to a multitude of drugs and herbal and dietary supplements. The severity of idiosyncratic DILI varies from mild serum aminotransferase elevations to the development of severe liver injury that can progress to acute liver failure resulting in death or liver transplantation within days of DILI onset. Chronic liver injury that persists for more than 6 months after DILI onset is also becoming increasingly recognized in up to 20% of DILI patients. Host demographic (age, gender, race), clinical and laboratory features at DILI onset have been associated with the severity and outcome of liver injury in DILI patients. In addition to cessation of the suspect drug, other medical interventions including the use of N-acetylcysteine and corticosteroids in selected patients have shown some clinical benefit, but additional prospective studies are needed. A number of promising diagnostic, prognostic and mechanistic serum and genetic biomarkers may help improve our understanding of the pathogenesis and treatment of idiosyncratic DILI.
Collapse
Affiliation(s)
- Ammar Hassan
- Division of Gastroenterology, Department of internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert J Fontana
- Division of Gastroenterology, Department of internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
37
|
Mendonça Gorgulho C, Murthy P, Liotta L, Espina V, Lotze MT. Different measures of HMGB1 location in cancer immunology. Methods Enzymol 2019; 629:195-217. [DOI: 10.1016/bs.mie.2019.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Front Immunol 2018; 9:2948. [PMID: 30619308 PMCID: PMC6302023 DOI: 10.3389/fimmu.2018.02948] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Acute and acute-on-chronic liver failure (ALF and ACLF), though distinct clinical entities, are considered syndromes of innate immune dysfunction. Patients with ALF and ACLF display evidence of a pro-inflammatory state with local liver inflammation, features of systemic inflammatory response syndrome (SIRS) and vascular endothelial dysfunction that drive progression to multi-organ failure. In an apparent paradox, these patients are concurrently immunosuppressed, exhibiting acquired immune defects that render them highly susceptible to infections. This paradigm of tissue injury succeeded by immunosuppression is seen in other inflammatory conditions such as sepsis, which share poor outcomes and infective complications that account for high morbidity and mortality. Monocyte and macrophage dysfunction are central to disease progression of ALF and ACLF. Activation of liver-resident macrophages (Kupffer cells) by pathogen and damage associated molecular patterns leads to the recruitment of innate effector cells to the injured liver. Early monocyte infiltration may contribute to local tissue destruction during the propagation phase and results in secretion of pro-inflammatory cytokines that drive SIRS. In the hepatic microenvironment, recruited monocytes mature into macrophages following local reprogramming so as to promote resolution responses in a drive to maintain tissue integrity. Intra-hepatic events may affect circulating monocytes through spill over of soluble mediators and exposure to apoptotic cell debris during passage through the liver. Hence, peripheral monocytes show numerous acquired defects in acute liver failure syndromes that impair their anti-microbial programmes and contribute to enhanced susceptibility to sepsis. This review will highlight the cellular and molecular mechanisms by which monocytes and macrophages contribute to the pathophysiology of ALF and ACLF, considering both hepatic inflammation and systemic immunosuppression. We identify areas for further research and potential targets for immune-based therapies to treat these devastating conditions.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kevin J. Woollard
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mark J. W. McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Charalambos G. Antoniades
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
| | - Lucia A. Possamai
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, London, United Kingdom
- Division of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Duarte CA, Chávez S, Masforrol Y, Puertas S, Paneque T, Ramirez AC, Casillas D, Puente P, Garay H, Fernández-Ortega C. A competitive ELISA for the quantitative determination of the novel anti-HIV drug candidate CIGB-210 in biological fluids. J Immunoassay Immunochem 2018; 40:193-213. [PMID: 30497338 DOI: 10.1080/15321819.2018.1547975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The synthetic peptide CIGB-210 is a promising anti-HIV drug candidate shown to inhibit HIV replication in MT4 cells at the nanomolar range by triggering the rearrangement of vimentin intermediate filaments. Sensitive and specific analytical methods are required for pharmacological studies of CIBG-210 in animals. In this study, we describe the development of a competitive ELISA for the quantitative determination of CIGB-210 using an anti-CIGB-210 hyperimmune serum. After optimization of all the steps, the assay exhibited a dynamic range from 11.87 to 0.0095 µg/mL. The intra-assay coefficient of variation (CV) was lower than or close to 5% for all the six concentrations of the calibrator, and the inter-assay CV was below 10% in five out of the six concentrations tested. No interference of either murine or human plasma was observed. The analyte was stable in plasma after five freeze-thaw cycles, while the hyperimmune serum maintained its binding capacity after 10 freeze-thaw cycles. Furthermore, the ELISA was able to detect the two main metabolites of CIGB-210, although with a tenfold decrease in sensitivity. Our results demonstrate the utility and feasibility of this analytical method for pharmacological experiments in animals as humans.
Collapse
Affiliation(s)
- Carlos A Duarte
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Sheila Chávez
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Yordanka Masforrol
- b Physical-Chemistry Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Samy Puertas
- c Animal Research Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Taimí Paneque
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Anna C Ramirez
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Dionne Casillas
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Pedro Puente
- c Animal Research Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Hilda Garay
- b Physical-Chemistry Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| | - Celia Fernández-Ortega
- a Pharmaceutical Departments , Centro de Ingeniería Genética y Biotecnología , La Habana , Cuba
| |
Collapse
|
40
|
Dai C, Xiao X, Li D, Tun S, Wang Y, Velkov T, Tang S. Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death Dis 2018; 9:1164. [PMID: 30478280 PMCID: PMC6255886 DOI: 10.1038/s41419-018-1136-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
This is the first study to investigate the hepatoprotective effect of CQ on acute liver injury caused by carbon tetrachloride (CCl4) in a murine model and the underlying molecular mechanisms. Ninety-six mice were randomly divided into the control (n = 8), CQ (n = 8), CCl4 (n = 40), and CCl4 + CQ (n = 40) treatment groups. In the CCl4 group, mice were intraperitoneally (i.p) injected with 0.3% CCl4 (10 mL/kg, dissolved in olive oil); in the CCl4 + CQ group, mice were i.p injected with CQ at 50 mg/kg at 2, 24, and 48 h before CCl4 administration. The mice in the control and CQ groups were administered with an equal vehicle or CQ (50 mg/kg). Mice were killed at 2, 6, 12, 24, 48 h post CCl4 treatment and their livers were harvested for analysis. The results showed that CQ pre-treatment markedly inhibited CCl4-induced acute liver injury, which was evidenced by decreased serum transaminase, aspartate transaminase and lower histological scores of liver injury. CQ pretreatment downregulated the CCl4-induced hepatic tissue expression of high-mobility group box 1 (HMGB1) and the levels of serum HMGB1 as well as IL-6 and TNF-α. Furthermore, CQ pre-treatment inhibited autophagy, downregulated NF-kB expression, upregulated p53 expression, increased the ratio of Bax/Bcl-2, and increased the activation of caspase-3 in hepatic tissue. This is the first study to demonstrate that CQ ameliorates CCl4-induced acute liver injury via the inhibition of HMGB1-mediated inflammatory responses and the stimulation of pro-apoptotic pathways to modulate the apoptotic and inflammatory responses associated with progress of liver damage.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Sun Tun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Ying Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China.
| |
Collapse
|
41
|
Du K, Ramachandran A, Weemhoff JL, Woolbright BL, Jaeschke AH, Chao X, Ding WX, Jaeschke H. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Arch Toxicol 2018; 93:163-178. [PMID: 30324313 DOI: 10.1007/s00204-018-2331-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
We previously reported that delayed treatment with Mito-tempo (MT), a mitochondria-targeted superoxide dismutase mimetic, protects against the early phase of acetaminophen (APAP) hepatotoxicity by inhibiting peroxynitrite formation. However, whether this protection is sustained to the late phase of toxicity is unknown. To investigate the late protection, C57Bl/6J mice were treated with 300 mg/kg APAP followed by 20 mg/kg MT 1.5 h or 3 h later. We found that both MT treatments protected against the late phase of APAP hepatotoxicity at 12 and 24 h. Surprisingly, MT-treated mice demonstrated a significant increase in apoptotic hepatocytes, while the necrotic phenotype was observed almost exclusively in mice treated with APAP alone. In addition, there was a significant increase in caspase-3 activity and cleavage in the livers of MT-treated mice. Immunostaining for active caspase-3 revealed that the positively stained hepatocytes were exclusively in centrilobular areas. Treatment with the pan-caspase inhibitor ZVD-fmk (10 mg/kg) 2 h post-APAP neutralized this caspase activation and provided additional protection against APAP hepatotoxicity. Treatment with N-acetylcysteine, the current standard of care for APAP poisoning, protected but did not induce this apoptotic phenotype. Mechanistically, MT treatment inhibited APAP-induced RIP3 kinase expression, and RIP3-deficient mice showed caspase activation and apoptotic morphology in hepatocytes analogous to MT treatment. These data suggest that while necrosis is the primary cause of cell death after APAP hepatotoxicity, treatment with the antioxidant MT may switch the mode of cell death to secondary apoptosis in some cells. Modulation of mitochondrial oxidative stress and RIP3 kinase expression play critical roles in this switch.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Andrew H Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
42
|
Li X, Lin J, Lin Y, Huang Z, Pan Y, Cui P, Yu C, Cai C, Xia J. Hydrogen sulfide protects against acetaminophen-induced acute liver injury by inhibiting apoptosis via the JNK/MAPK signaling pathway. J Cell Biochem 2018; 120:4385-4397. [PMID: 30260040 DOI: 10.1002/jcb.27724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/29/2018] [Indexed: 01/29/2023]
Abstract
Acetaminophen (APAP) is a widely used over-the-counter analgesic and antipyretic. It can cause hepatotoxicity. Recent studies demonstrated that hydrogen sulfide (H2 S) exhibits cell protection in several cell types. This study was designed to investigate whether H 2 S ameliorated APAP-induced acute liver injury and to elucidate its mechanisms. In this study, we analyzed the detailed biological and molecular processes of APAP-induced hepatotoxicity using a bioinformatics analysis, which showed that apoptosis and the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase pathway were confirmed to play critical roles in these processes. We further investigated the protective effects of H 2 S on APAP-induced hepatotoxicity. In vivo, we observed that the exogenous supplement of H 2 S ameliorated APAP-induced liver injury. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) systems were the endogenous pathway of H 2 S. The expression of CBS/CSE was decreased in APAP-treated mice, while H 2 S could significantly restore it. In addition, APAP-induced JNK activation was inhibited by H 2 S in vivo. In vitro, H 2 S abolished the active effects of APAP on caspase3, Bax, and Bcl-2 expressions as well as JNK phosphorylation in hepatocytes. It was found through flow cytometry that the amount of APAP-induced apoptotic hepatocytes was decreased in the presence of H 2 S. In conclusion, our results suggested that H 2 S attenuated APAP-induced apoptosis in hepatocytes through JNK/MAPK siganaling pathway.
Collapse
Affiliation(s)
- Xiaoyong Li
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqiong Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Lin
- Department of Nephrology, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zena Huang
- Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuguo Pan
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Cui
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chicai Yu
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cun Cai
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jintang Xia
- Department of General Surgery, The Third Affiliated hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018; 2:1005-1020. [PMID: 30202816 PMCID: PMC6128227 DOI: 10.1002/hep4.1223] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
High‐mobility group box‐1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA‐binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage‐associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll‐like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug‐induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine University of Illinois at Chicago Chicago IL
| |
Collapse
|
44
|
García-Cortés M, Ortega-Alonso A, Lucena MI, Andrade RJ. Drug-induced liver injury: a safety review. Expert Opin Drug Saf 2018; 17:795-804. [PMID: 30059261 DOI: 10.1080/14740338.2018.1505861] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (DILI) remains one of the most important causes of drug attrition both in the early phases of clinical drug development and in the postmarketing scenario. This is because, in spite of emerging data on genetic susceptibility variants associated to the risk of hepatotoxicity, the precise identification of the individual who will develop DILI when exposed to a given drug remains elusive. AREAS COVERED In this review, we have addressed recent progress made and initiatives taken in the field of DILI from a safety perspective through a comprehensive search of the literature. EXPERT OPINION Despite the substantial progress made over this century, new approaches using big data analysis to characterize the true incidence of DILI are needed and to categorize the drugs' hepatotoxic potential. Genetic studies have highlighted the role of the adaptive immune system yet the mechanisms leading adaptation versus progression remain to be elucidated. There is a compelling need for development and qualification of sensitive, specific, and affordable biomarkers in DILI to foster drug development, patient treatment stratification and, improvement of causality assessment methods. Gaining mechanistic insights in DILI is essential to uncover therapeutic targets and design prospective clinical trials with appropriate endpoints.
Collapse
Affiliation(s)
- Miren García-Cortés
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | - Aida Ortega-Alonso
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | - M Isabel Lucena
- b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain.,c Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria , Universidad de Málaga , Málaga , Spain
| | - Raúl J Andrade
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | | |
Collapse
|
45
|
Waddington JC, Meng X, Naisbitt DJ, Park BK. Immune drug-induced liver disease and drugs. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Chao X, Wang H, Jaeschke H, Ding WX. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 2018; 38:1363-1374. [PMID: 29682868 PMCID: PMC6105454 DOI: 10.1111/liv.13866] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
47
|
Mason CL, Leedale J, Tasoulis S, Jarman I, Antoine DJ, Webb SD. Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT Pharmacometrics Syst Pharmacol 2018; 7:394-403. [PMID: 29667370 PMCID: PMC6027737 DOI: 10.1002/psp4.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022] Open
Abstract
Paracetamol (acetaminophen (APAP)) is one of the most commonly used analgesics in the United Kingdom and the United States. However, exceeding the maximum recommended dose can cause serious liver injury and even death. Promising APAP toxicity biomarkers are thought to add value to those used currently and clarification of the functional relationships between these biomarkers and liver injury would aid clinical implementation of an improved APAP toxicity identification framework. The framework currently used to define an APAP overdose is highly dependent upon time since ingestion and initial dose; information that is often highly unpredictable. A pharmacokinetic/pharmacodynamic (PK/PD) APAP model has been built in order to understand the relationships between a panel of biomarkers and APAP dose. Visualization and statistical tools have been used to predict initial APAP dose and time since administration. Additionally, logistic regression analysis has been applied to histology data to provide a prediction of the probability of liver injury.
Collapse
Affiliation(s)
- Chantelle L. Mason
- Department of Applied MathematicsLiverpool John Moores UniversityLiverpoolUK
| | - Joseph Leedale
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
| | - Sotiris Tasoulis
- Department of Applied MathematicsLiverpool John Moores UniversityLiverpoolUK
| | - Ian Jarman
- Department of Applied MathematicsLiverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Antoine
- MRC Centre for Inflammation ResearchQueens Medical Research Institute, University of EdinburghEdinburghUK
| | - Steven D. Webb
- Department of Applied MathematicsLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
48
|
Ramachandran A, Visschers RGJ, Duan L, Akakpo JY, Jaeschke H. Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res 2018. [PMID: 30873497 PMCID: PMC6261533 DOI: 10.18053/jctres.04.201801.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critical cellular organelles for energy generation and are now also recognized as playing important roles in cellular signaling. Their central role in energy metabolism, as well as their high abundance in hepatocytes, make them important targets for drug-induced hepatotoxicity. This review summarizes the current mechanistic understanding of the role of mitochondria in drug-induced hepatotoxicity caused by acetaminophen, diclofenac, anti-tuberculosis drugs such as rifampin and isoniazid, anti-epileptic drugs such as valproic acid and constituents of herbal supplements such as pyrrolizidine alkaloids. The utilization of circulating mitochondrial-specific biomarkers in understanding mechanisms of toxicity in humans will also be examined. In summary, it is well-established that mitochondria are central to acetaminophen-induced cell death. However, the most promising areas for clinically useful therapeutic interventions after acetaminophen toxicity may involve the promotion of adaptive responses and repair processes including mitophagy and mitochondrial biogenesis, In contrast, the limited understanding of the role of mitochondria in various aspects of hepatotoxicity by most other drugs and herbs requires more detailed mechanistic investigations in both animals and humans. Development of clinically relevant animal models and more translational studies using mechanistic biomarkers are critical for progress in this area. Relevance for patients:This review focuses on the role of mitochondrial dysfunction in liver injury mechanisms of clinically important drugs like acetaminophen, diclofenac, rifampicin, isoniazid, amiodarone and others. A better understanding ofthe mechanisms in animal models and their translation to patients will be critical for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ruben G J Visschers
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
49
|
Athersuch TJ, Antoine DJ, Boobis AR, Coen M, Daly AK, Possamai L, Nicholson JK, Wilson ID. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective. Toxicol Res (Camb) 2018; 7:347-357. [PMID: 30090586 PMCID: PMC6062253 DOI: 10.1039/c7tx00340d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
After over 60 years of therapeutic use in the UK, paracetamol (acetaminophen, N-acetyl-p-aminophenol, APAP) remains the subject of considerable research into both its mode of action and toxicity. The pharmacological properties of APAP are the focus of some activity, with the role of the metabolite N-arachidonoylaminophenol (AM404) still a topic of debate. However, that the hepatotoxicity of APAP results from the production of the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI/NABQI) that can deplete glutathione, react with cellular macromolecules, and initiate cell death, is now beyond dispute. The disruption of cellular pathways that results from the production of NAPQI provides a source of potential biomarkers of the severity of the damage. Research in this area has provided new diagnostic markers such as the microRNA miR-122 as well as mechanistic biomarkers associated with apoptosis, mitochondrial dysfunction, inflammation and tissue regeneration. Additionally, biomarkers of, and systems biology models for, glutathione depletion have been developed. Furthermore, there have been significant advances in determining the role of both the innate immune system and genetic factors that might predispose individuals to APAP-mediated toxicity. This perspective highlights some of the progress in current APAP-related research.
Collapse
Affiliation(s)
- Toby J Athersuch
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Daniel J Antoine
- MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , EH16 4TJ , UK
| | - Alan R Boobis
- Department of Medicine , Imperial College London , London W12 0NN , UK
| | - Muireann Coen
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ann K Daly
- Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne NE2 4HH , UK
| | - Lucia Possamai
- Department of Hepatology , St Mary's Hospital , Imperial College London , London W2 1NY , UK
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ian D Wilson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| |
Collapse
|
50
|
Francis B, Clarke JI, Walker LE, Brillant N, Jorgensen AL, Park BK, Pirmohamed M, Antoine DJ. WITHDRAWN: Reference intervals for putative biomarkers of drug-induced liver injury and liver regeneration in healthy human volunteers. J Hepatol 2018:S0168-8278(18)32042-7. [PMID: 29729369 DOI: 10.1016/j.jhep.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ben Francis
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Joanna I Clarke
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Lauren E Walker
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrea L Jorgensen
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|