1
|
Graceli JB, Zomer HD, Medrano TI, Hess RA, Korach KS, Cooke PS. Role for Nongenomic Estrogen Signaling in Male Fertility. Endocrinology 2024; 165:bqad180. [PMID: 38066676 PMCID: PMC10797322 DOI: 10.1210/endocr/bqad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 01/22/2024]
Abstract
Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
- Department of Morphology, Federal University of Espirito Santo, Vitoria, 29040-090, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Rodriguez EE, Bott CB, Wigginton KR, Love NG. In vitro bioassays to monitor complex chemical mixtures at a carbon-based indirect potable reuse plant. WATER RESEARCH 2023; 241:120094. [PMID: 37276655 DOI: 10.1016/j.watres.2023.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Potable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance. In vitro bioassays are a useful tool for screening if reuse treatment processes adequately reduce toxicity associated with a range of chemical classes that are contaminants of concern. In this study, we used an aryl hydrocarbon receptor (AhR) and an estrogen receptor luciferase bioassay to detect the presence of dioxin-like and estrogenic compounds across a 3800 m3/d carbon-based indirect potable reuse plant that uses carbon-based treatment (SWIFT-RC). Our results demonstrate significant removal of dioxin-like compounds across the SWIFT-RC treatment train. Estrogenicity declined across the treatment train for some months but was extremely variable and low with many samples falling below the method quantification level; consequently, we were not able to reliably determine estrogenicity trends for SWIFT-RC. Comparing the bioanalytical equivalent concentrations detected in the SWIFT-RC water with established monitoring trigger levels from the state of California suggests that SWIFT-RC produced water that met the bioassay guidelines. The log total organic carbon concentration and AhR assay equivalent concentrations are weakly correlated when data across all SWIFT-RC processes are included. Overall, this research demonstrates the performance of in vitro bioassays at a demonstration-scale carbon-based IPR system and highlights both the potential utility and challenges associated with these methods for assessing system performance.
Collapse
Affiliation(s)
- Enrique E Rodriguez
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Krista R Wigginton
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nancy G Love
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
4
|
Are BPA Substitutes as Obesogenic as BPA? Int J Mol Sci 2022; 23:ijms23084238. [PMID: 35457054 PMCID: PMC9031831 DOI: 10.3390/ijms23084238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of “environmental obesogens” emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.
Collapse
|
5
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Avellaneda E, Lim A, Moeller S, Marquez J, Escalante Cobb P, Zambrano C, Patel A, Sanchez V, Godde K, Broussard C. HPTE-Induced Embryonic Thymocyte Death and Alteration of Differentiation Is Not Rescued by ERα or GPER Inhibition but Is Exacerbated by Concurrent TCR Signaling. Int J Mol Sci 2021; 22:ijms221810138. [PMID: 34576301 PMCID: PMC8471014 DOI: 10.3390/ijms221810138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Organochlorine pesticides, such as DDT, methoxychlor, and their metabolites, have been characterized as endocrine disrupting chemicals (EDCs); suggesting that their modes of action involve interaction with or abrogation of endogenous endocrine function. This study examined whether embryonic thymocyte death and alteration of differentiation induced by the primary metabolite of methoxychlor, HPTE, rely upon estrogen receptor binding and concurrent T cell receptor signaling. Estrogen receptor inhibition of ERα or GPER did not rescue embryonic thymocyte death induced by HPTE or the model estrogen diethylstilbestrol (DES). Moreover, adverse effects induced by HPTE or DES were worsened by concurrent TCR and CD2 differentiation signaling, compared with EDC exposure post-signaling. Together, these data suggest that HPTE- and DES-induced adverse effects on embryonic thymocytes do not rely solely on ER alpha or GPER but may require both. These results also provide evidence of a potential collaborative signaling mechanism between TCR and estrogen receptors to mediate adverse effects on embryonic thymocytes, as well as highlight a window of sensitivity that modulates EDC exposure severity.
Collapse
Affiliation(s)
- Eddie Avellaneda
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Atalie Lim
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Sara Moeller
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Jacqueline Marquez
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Priscilla Escalante Cobb
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Cristina Zambrano
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Aaditya Patel
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Victoria Sanchez
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - K. Godde
- Department of Sociology/Anthropology, University of La Verne, La Verne, CA 91750, USA;
| | - Christine Broussard
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
- Correspondence:
| |
Collapse
|
7
|
Lu Y, Yang R, Yin N, Faiola F. In vivo and in vitro transcriptomics meta-analyses reveal that BPA may affect TGF-beta signaling regardless of the toxicology system employed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117472. [PMID: 34082367 DOI: 10.1016/j.envpol.2021.117472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a high-production-volume monomer for the manufacture of a wide variety of polycarbonate plastics and resins. Evidence suggests BPA can induce carcinogenesis, reproductive toxicity, abnormal inflammatory or immune response, and developmental disorders of the brain or nervous system. However, whether BPA affects the very same basic molecular processes in all the in vivo and in vitro systems employed to exert its molecular mechanisms of toxicity remains to be clarified. In this study, we collected multi-source global transcriptomics datasets for BPA-exposed organisms and cells, and evaluated the adverse effects of BPA by using data integration and gene functional enrichment analyses. We found that BPA may affect basic cellular processes, such as cell growth, survival, proliferation, differentiation, and apoptosis, independent of species and specific in vivo or in vitro systems. Mechanistically, BPA could regulate cell-extra cellular matrix interactions via challenging TGF-beta signaling pathways. Furthermore, we compared our in vitro BPA-dependent mouse embryoid body (EB) global differentiation transcriptomics with all the other datasets. We verified the EB-based toxicological system could recapitulate several in vivo and other in vitro findings very efficiently, and in a less time- and resource-consuming fashion. Taken together, this study emphasizes the utility of meta-analyses to understand common molecular mechanisms of toxicity of synthetic chemicals.
Collapse
Affiliation(s)
- Yuanping Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Saraf MK, Jeng YJ, Watson CS. Nongenomic effects of estradiol vs. the birth control estrogen ethinyl estradiol on signaling and cell proliferation in pituitary tumor cells, and differences in the ability of R-equol to neutralize or enhance these effects. Steroids 2021; 168:108411. [PMID: 31132367 DOI: 10.1016/j.steroids.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
Ethinyl estradiol (EE2, the active component of many birth control formulations) persists in treated waste waters and it has become a concerning endocrine-disrupting contaminant throughout the world. Previous studies have not examined the behavior of EE2 in nongenomic signaling pathways and the subsequent functional responses (either alone or in mixtures) or conducted comparisons with the physiological estrogen estradiol (E2). In this study, mitogen-activated protein kinases (MAPKs), ERK, and JNK were activated in pituitary tumor cells by fM EE2, but p38 activation was insensitive to
Collapse
Affiliation(s)
- Manish Kumar Saraf
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States
| | - Yow-Jiun Jeng
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States
| | - Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States.
| |
Collapse
|
9
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
10
|
Nanjappa MK, Medrano TI, Mesa AM, Ortega MT, Caldo PD, Mao J, Kinkade JA, Levin ER, Rosenfeld CS, Cooke PS. Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposure†. Biol Reprod 2020; 101:392-404. [PMID: 31141131 DOI: 10.1093/biolre/ioz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Indexed: 01/06/2023] Open
Abstract
Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17β-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1-5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 μg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.
Collapse
Affiliation(s)
- Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Madison T Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D Caldo
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jessica A Kinkade
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Biomedical Sciences, University of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA.,MU Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Gounden V, Zain Warasally M, Magwai T, Naidoo R, Chuturgoon A. A pilot study: Bisphenol-A and Bisphenol-A glucuronide levels in mother and child pairs in a South African population. Reprod Toxicol 2019; 89:93-99. [PMID: 31302198 DOI: 10.1016/j.reprotox.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Exposure to Bisphenol A (BPA) during early development particularly in- utero has been linked to a wide range of pathology. The aim of this study was to determine serum levels of BPA and its naturally occurring metabolite BPA-glucuronide (BPA-g) in South African mother-child pairs. METHOD Third-trimester serum maternal samples and matching cord blood samples were analysed for BPA and BPA-g using LC-MS/MS. RESULTS Ninety maternal and child pairs were analysed. BPA was detectable in more than 25% of maternal and cord blood samples. Spearman correlation demonstrated significant positive correlation between maternal and child BPA and BPA-g levels with correlation coefficients of 0.892 and 0.744, respectively. A significant positive association between cord BPA levels and child birth-weight (p = 0.02) as well as with maternal BMI (p = 0.04) was noted. CONCLUSION This is the first study to describe the presence of detectable BPA levels using LC-MS/MS methodology in a South African population.
Collapse
Affiliation(s)
- Verena Gounden
- Department of Chemical Pathology, University of KwaZulu-Natal and National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa.
| | - Mohamed Zain Warasally
- Department of Chemical Pathology, National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Thabo Magwai
- Department of Chemical Pathology, National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Rajen Naidoo
- Department of Occupational Health, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Chuturgoon
- Department of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol 2019; 187:106-117. [PMID: 30465854 PMCID: PMC6370520 DOI: 10.1016/j.jsbmb.2018.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Estrogen binding to estrogen receptors (ESR) triggers signaling cascades within cells. Historically, a major emphasis has been characterizing estrogen-induced genomic actions resulting from binding to nuclear estrogen receptor 1 (nESR1). However, recent evidence indicates the first receptors estrogens encounter as they enter a cell, membrane ESR1 (mESR1), also play crucial roles. Membrane and nuclear ESR are derived from the same transcripts but the former are directed to the membrane via palmitoylation. Binding and activation of mESR1 leads to rapid fluctuations in cAMP and Ca+2 and stimulation of protein kinase pathways. Endocrine disrupting chemicals (EDC) that mimic 17β-estradiol can signal through mESR1 and elicit non-genomic effects. Most current EDC studies have focused on genomic actions via nESR1. However, increasing number of studies have begun to examine potential EDC effects mediated through mESR1, and some EDC might have higher potency for signaling through mESR1 than nESR1. The notion that such chemicals might also affect mESR1 signaling via palmitoylation and depalmitoylation pathways has also begun to gain currency. Recent development of transgenic mice that lack either mESR1 or nESR1, while retaining functional ESR1 in the other compartment, will allow more precise in vivo approaches to determine EDC effects through nESR1 and/or mESR1. It is increasingly becoming apparent in this quickly evolving field that EDC directly affect mESR and estrogen signaling, but such chemicals can also affect proportion of ESR reaching the membrane. Future EDC studies should be designed to consider the full range of effects through mESR alone and in combination with nESR.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, 65211, USA.
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Watson CS, Koong L, Jeng YJ, Vinas R. Xenoestrogen interference with nongenomic signaling actions of physiological estrogens in endocrine cancer cells. Steroids 2019; 142:84-93. [PMID: 30012504 PMCID: PMC6339598 DOI: 10.1016/j.steroids.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
Rapid nongenomic signaling by estrogens (Es), initiated near the cell membrane, provides new explanations for the potent actions of environmental chemicals that imperfectly mimic physiological Es. These pathways can affect tumor growth, stabilization, or shrinkage via a number of signaling streams such as activation/inactivation of mitogen-activated protein kinases and caspases, generation of second messengers, and phospho-triggering of cyclin instability. Though prostate cancers are better known for their responsiveness to androgen deprivation, ∼17% of late stage tumors regress in response to high dose natural or pharmaceutical Es; however, the mechanisms at the cellular level are not understood. More accurate recent measurements show that estradiol (E2) levels decline in aging men, leading to the hypothesis that maintaining young male levels of E2 may prevent the growth of prostate cancers. Major contributions to reducing prostate cancer cell numbers included low E2 concentrations producing sustained ERK phospho-activation correlated with generation of reactive oxygen species causing cancer cell death, and phospho-activation of cyclin D1 triggering its rapid degradation by interrupting cell cycle progression. These therapeutic actions were stronger in early stage tumor cells (with higher membrane estrogen receptor levels), and E2 was far more effective compared to diethylstilbestrol (the most frequently prescribed E treatment). Xenoestrogens (XEs) exacerbated the growth of prostate cancer cells, and as we know from previous studies in pituitary cancer cells, can interfere with the nongenomic signaling actions of endogenous Es. Therefore, nongenomic actions of physiological levels of E2 may be important deterrents to the growth of prostate cancers, which could be undermined by the actions of XEs.
Collapse
Affiliation(s)
- Cheryl S Watson
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Luke Koong
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Yow-Jiun Jeng
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Rene Vinas
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
14
|
Sosa LDV, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S, Torres AI. The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol 2019; 240:229-241. [PMID: 30400032 DOI: 10.1530/joe-18-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms underlying the ERα nuclear/cytoplasmic pool that modulates pituitary cell proliferation have been widely described, but it is still not clear how ERα is targeted to the plasma membrane. The aim of this study was to analyse ERα palmitoylation and the plasma membrane ERα (mERα) pool, and their participation in E2-triggered membrane-initiated signalling in normal and pituitary tumour cell growth. Cell cultures were prepared from anterior pituitaries of female Wistar rats and tumour GH3 cells, and treated with 10 nM of oestradiol (E2). The basal expression of ERα was higher in tumour GH3 than in normal pituitary cells. Full-length palmitoylated ERα was observed in normal and pituitary tumour cells, demonstrating that E2 stimulation increased both, ERα in plasma membrane and ERα and caveolin-1 interaction after short-term treatment. In addition, the Dhhc7 and Dhhc21 palmitoylases were negatively regulated after sustained stimulation of E2 for 3 h. Although the uptake of BrdU into the nucleus in normal pituitary cells was not modified by E2, a significant increase in the GH3 tumoural cell, as well as ERK1/2 activation, with this effect being mimicked by PPT, a selective antagonist of ERα. These proliferative effects were blocked by ICI 182780 and the global inhibitor of palmitoylation. These findings indicate that ERα palmitoylation modulated the mERα pool and consequently the ERK1/2 pathway, thereby contributing to pituitary tumour cell proliferation. These results suggest that the plasma membrane ERα pool might be related to the proliferative behaviour of prolactinoma and may be a marker of pituitary tumour growth.
Collapse
Affiliation(s)
- Liliana Del V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan P Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Sabrina Chumpen
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Juan P Nicola
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIBICI-CONICET, Cordoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Javier Valdez-Taubas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
15
|
Sheng Z, Wang C, Ren F, Liu Y, Zhu B. Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. J Environ Sci (China) 2019; 75:1-13. [PMID: 30473274 DOI: 10.1016/j.jes.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume industrial products worldwide and has been widely used to make various products as the intermediates of polycarbonate plastics and epoxy resins. Inevitably, general population has been widely exposed to BPA due to extensive use of BPA-containing products. BPA has similar chemical structure with the natural estrogen and has been shown to induce a variety of estrogen-like endocrine effects on organism in vivo or in vitro. High doses of BPA tend to act as antagonist of estrogen receptors (ERs) by directly regulating the genomic transcription. However, BPA at environmentally relevant low-dose always disrupt the biological function via a non-genomic manner mediated by membrane receptors, rather than ERs. Although some studies had investigated the non-genomic effects of low-dose BPA, the exact molecular mechanism still remains unclear. Recently, we found that membrane G protein-coupled estrogen receptor 1 and integrin αvβ3 and its relative signal pathways participate in the induction of male germ cell proliferation and thyroid transcription disruption by the low-dose BPA. A profound understanding for the mechanism of action of the environmentally relevant BPA exposure not only contributes to objectively evaluate and predict the potential influence to human health, but also provides theoretical basis and methodological support for assessing health effects trigged by other estrogen-like environmental endocrine disruptors. Based mainly on our recent findings, this review outlines the research progress of molecular mechanism on endocrine disrupting effects of environmental low-dose BPA, existing problems and some consideration for future studies.
Collapse
Affiliation(s)
- Zhiguo Sheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Liu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Benzhan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Pouzaud F, Thierry-Mieg M, Burga K, Vérines-Jouin L, Fiore K, Beausoleil C, Michel C, Rousselle C, Pasquier E. Concerns related to ED-mediated effects of Bisphenol A and their regulatory consideration. Mol Cell Endocrinol 2018; 475:92-106. [PMID: 29428396 DOI: 10.1016/j.mce.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
The extensive database on BPA provides strong evidence of its adverse effects on reproductive, neurobehavioural, metabolic functions and mammary gland. Disruption of estrogenic pathway is central in the mediation of these effects although other modes of action may be involved. BPA has a weak affinity for ERα/β but interaction with extranuclearly located pathways activated by estrogens such as ERRγ and GPER reveals how BPA can act at low doses. The effects are observed later in life after developmental exposure and are associated with pathologies of major societal concern in terms of severity, incidence, impact on quality of life, burden on public health system. The complexity of the dose response raise uncertainties on the possibility to establish safe levels and the scope of ED-mediated effects of BPA may be wider. These concerns fulfill the requirements for ED identification under REACH regulation.
Collapse
Affiliation(s)
| | | | - Karen Burga
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Karine Fiore
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | | |
Collapse
|
17
|
Yang S, Deng L, Lai Y, Liu Z. Over expression of GPR30, indicating poor prognosis and promoting proliferation, upregulates Beclin-1 expression via p38MAPK signaling in esophageal squamous cell carcinoma progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3426-3435. [PMID: 31949720 PMCID: PMC6962856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/10/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Beclin-1 and GPR30, both very important proteins, have been associated with tumor development. In our pre-experiment, the co-expression of GPR30 and Beclin-1 was observed in esophageal squamous cell carcinoma (ESCC), an observation not reported in other studies. The aim of our research was to investigate the relationship of these two proteins in the further progression of ESCC. METHODS The over expression of GPR30 and Beclin-1 proteins was observed and confirmed by immunohistochemistry and immunofluorescence arrays. By interfering with GPR30 and p38 MAPK expression in EC-109, KYSE510, and KYSE3 cell lines, MTT and a scratch wound healing assay were used to investigate the impact of the GPR30 protein on the proliferative and migrative abilities of ESCC cells. A co-immunoprecipitation assay was used to observe the interaction between the p38 MAPK and Beclin-1 proteins; meanwhile, at a different time, in each group, the GPR30, MAPK, p ERK1/2, p38 MAPK, and Beclin-1 proteins were analyzed. The correlation between GPR30, Beclin-1 expression levels, and the clinical characteristics were evaluated by Mann-Whitney and chi-square tests. Using Kaplan-Meier plots and the Cox proportional hazard model analysis, we determined overall survival (OS) and progression free survival (PFS). RESULTS GPR30 and Beclin-1 were over expressed significantly in ESCC (both p=0.0000) and were distributed into cytoplasms the most (the former p=0.0223, latter p=0.0018). In contrast to the non-agonist group, the abilities of GPR30 in promoting cell proliferation and metastasis were observed in the agonist group, and the effects could be blocked by p38MAPK inhibitors. In further assays, GPR30 agonists, via binding to GPR30, up-regulated Beclin-1, MAPK, and p38 MAPK expression, and Beclin-1 expression was reversed in the p38MAPK inhibitor group. In the GPR30 agonist group, an interaction between p38MARK and Beclin-1 was observed, but no similar results were observed in the non-agonist group. The high expression of both GPR30 and Beclin-1 was observed with p-stage and pT advancing (both p<0.0001). In a Kaplan-Meier analysis, compared to GPR30's negative expression, high expression identified a group of patients with the shortest overall survival (OS, p=0.0072) and progression free survival (PFS, p=0.0074). The Cox proportional hazard models revealed that they predicted a short time to OS (p=0.0125). CONCLUSION Over expression of GPR30 up-regulated Beclin-1 expression and indicated a poor prognosis and may promote ESCC development via p38 MAPK in ESCC progression.
Collapse
Affiliation(s)
- Shibin Yang
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Liang Deng
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Yuanhui Lai
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Zhaoguo Liu
- Department of General Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
18
|
Agas D, Lacava G, Sabbieti MG. Bone and bone marrow disruption by endocrine‐active substances. J Cell Physiol 2018; 234:192-213. [DOI: 10.1002/jcp.26837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine University of Camerino Camerino Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine University of Camerino Camerino Italy
| | | |
Collapse
|
19
|
Levašič V, Milošev I, Zadnik V. Risk of cancer after primary total hip replacement: The influence of bearings, cementation and the material of the stem. Acta Orthop 2018; 89:234-239. [PMID: 29388497 PMCID: PMC5901524 DOI: 10.1080/17453674.2018.1431854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Despite the increasing number of total hip replacements (THRs), their systemic influence is still not known. We have studied the influence of specific features of THRs-the bearing surface, the use of bone cement and the material of the stem-on the cancer incidence. Patients and methods - In a retrospective cohort study we identified 8,343 patients with THRs performed at Valdoltra Hospital from September 1, 1997 to December 31, 2009. Patient data were linked to national cancer and population registries. The standardized incidence ratios (SIR) and Poisson regression relative risks (RR) were calculated for all and specific cancers. Results - General cancer risk in our cohort was comparable to the population risk. Comparing with population, the risk of prostate cancer was statistically significantly higher in patients with metal-on-metal bearings (SIR =1.35); with metal-on-polyethylene bearings (SIR =1.30), with non-cemented THRs (SIR =1.40), and with titanium alloy THRs (SIR =1.41). In these last 3 groups there was a lower risk of hematopoietic tumors (SIR =0.69; 0.66 and 0.66 respectively). Risk of kidney cancer was significantly higher in the non-metal-on-metal, non-cemented, and titanium alloy groups (SIR =1.30; 1.46 and 1.41 respectively). Risk of colorectal and lung cancer was significantly lower in the investigated cohort (SIR =0.82 and 0.83, respectively). Risk for all cancers combined as well as for prostate and skin cancer, shown by Poisson analysis, was higher in the metal-on-metal group compared with non-metal-on-metal group (RR =1.56; 2.02 and 1.92, respectively). Interpretation - Some associations were found between the THRs' features, especially a positive association between metal-on-metal bearings, and specific cancers.
Collapse
Affiliation(s)
- Vesna Levašič
- Valdoltra Orthopaedic Hospital, Ankaran,University of Ljubljana, Faculty of Medicine, Ljubljana,Correspondence:
| | - Ingrid Milošev
- Valdoltra Orthopaedic Hospital, Ankaran,Jožef Stefan Institute, Ljubljana
| | - Vesna Zadnik
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
|
21
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
|
23
|
Saraf MK, Jeng YJ, Watson CS. R-equol, a synthetic metabolite of the dietary estrogen daidzein, modulates the nongenomic estrogenic effects of 17β-estradiol in pituitary tumor cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23273747.2016.1226697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Dogan S, Simsek T. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers. Med Hypotheses 2016; 92:84-7. [PMID: 27241264 DOI: 10.1016/j.mehy.2016.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/24/2016] [Indexed: 01/29/2023]
Abstract
The effects of the natural and synthetic estrogens have been studied for a long time but the data regarding estrogen related chemicals (endocrine disrupting chemicals, EDCs) and their effects on reproductive system are scarce. EDCs are hormone like agents that are readily present in the environment, which may alter the endocrine system of humans and animals. Approximately 800 chemicals are known or suspected to have the potential to function as EDC. Potential role of EDCs on reproductive disease has gained attention in medical literature in recent years. We hypothesize that exposure to low doses of EDCs in a chronic manner could cause hormone dependent genital cancers including ovarian and endometrial cancer. Long term exposure to low concentrations of EDCs may exert potentiation effect with each other and even with endogenous estrogens and could inhibit enzymes responsible for estrogen metabolism. Exposure time to these EDCs is essential as we have seen from Diethylstilbestrol experience. Dose-response curves of EDCs are also unpredictable. Hence mode of action of EDCs are more complex than previously thought. In the light of these controversies lower doses of EDCs in long term exposure is not harmless. Possibility of this relationship and this hypothesis merit further investigation especially through in vivo studies that could better show the realistic environmental exposure. With the confirmation of our hypothesis, possible EDCs could be identified and eliminated from general use as a public health measure.
Collapse
Affiliation(s)
- Selen Dogan
- Department of Obstetrics and Gynecology, Gynecologic Oncologic Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Tayup Simsek
- Department of Obstetrics and Gynecology, Gynecologic Oncologic Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
25
|
Huff MO, Todd SL, Smith AL, Elpers JT, Smith AP, Murphy RD, Bleser-Shartzer AS, Hoerter JE, Radde BN, Klinge CM. Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells. Toxicol Sci 2016; 152:62-71. [PMID: 27071941 DOI: 10.1093/toxsci/kfw064] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiological evidence indicates that cadmium and arsenic exposure increase lung cancer risk. Cadmium and arsenic are environmental contaminants that act as endocrine disruptors (EDs) by activating estrogen receptors (ERs) in breast and other cancer cell lines but their activity as EDs in lung cancer is untested. Here, we examined the effect of cadmium chloride (CdCl2) and sodium arsenite (NaAsO2) on the proliferation of human lung adenocarcinoma cell lines. Results demonstrated that both CdCl2 and NaAsO2 stimulated cell proliferation at environmentally relevant nM concentrations in a similar manner to 17β-estradiol (E2) in H1793, H2073, and H1944 cells but not in H1792 or H1299 cells. Further studies in H1793 cells showed that 100 nM CdCl2 and NaAsO2 rapidly stimulated mitogen-activated protein kinase (MAPK, extracellular-signal-regulated kinases) phosphorylation with a peak detected at 15 min. Inhibitor studies suggest that rapid MAPK phosphorylation by NaAsO2, CdCl2, and E2 involves ER, Src, epidermal growth factor receptor, and G-protein coupled ER (GPER) in a pertussis toxin-sensitive pathway. CdCl2 and E2 activation of MAPK may also involve ERβ. This study supports the involvement of membrane ER and GPER signaling in mediating cellular responses to environmentally relevant nM concentrations of CdCl2 and NaAsO2 in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Mary O Huff
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205;
| | - Sarah L Todd
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | - Aaron L Smith
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | - Julie T Elpers
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | - Alexander P Smith
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | - Robert D Murphy
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | | | - Jacob E Hoerter
- *Department of Biology, Bellarmine University, Louisville, Kentucky 40205
| | - Brandie N Radde
- †Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - Carolyn M Klinge
- †Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40292
| |
Collapse
|
26
|
Moghaddam HS, Samarghandian S, Farkhondeh T. Effect of bisphenol A on blood glucose, lipid profile and oxidative stress indices in adult male mice. Toxicol Mech Methods 2015; 25:507-13. [DOI: 10.3109/15376516.2015.1056395] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Ali I, Damdimopoulou P, Stenius U, Halldin K. Cadmium at nanomolar concentrations activates Raf–MEK–ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem Biol Interact 2015; 231:44-52. [DOI: 10.1016/j.cbi.2015.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/18/2015] [Indexed: 02/08/2023]
|
28
|
Marmugi A, Lasserre F, Beuzelin D, Ducheix S, Huc L, Polizzi A, Chetivaux M, Pineau T, Martin P, Guillou H, Mselli-Lakhal L. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology 2014; 325:133-43. [DOI: 10.1016/j.tox.2014.08.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
|
29
|
Viñas R, Goldblum RM, Watson CS. Rapid estrogenic signaling activities of the modified (chlorinated, sulfonated, and glucuronidated) endocrine disruptor bisphenol A. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/endo.25411] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Liang Q, Gao X, Chen Y, Hong K, Wang HS. Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac myocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:601-8. [PMID: 24569941 PMCID: PMC4050515 DOI: 10.1289/ehp.1307491] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/21/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND The need for mechanistic understanding of nonmonotonic dose responses has been identified as one of the major data gaps in the study of bisphenol A (BPA). Previously we reported that acute exposure to BPA promotes arrhythmogenesis in female hearts through alteration of myocyte Ca(2+) handling, and that the dose response of BPA was inverted U-shaped. OBJECTIVE We sought to define the cellular mechanism underlying the nonmonotonic dose response of BPA in the heart. METHODS We examined rapid effects of BPA in female rat ventricular myocytes using video-edge detection, confocal and conventional fluorescence imaging, and patch clamp. RESULTS The rapid effects of BPA in cardiac myocytes, as measured by multiple end points, including development of arrhythmic activities, myocyte mechanics, and Ca(2+) transient, were characterized by nonmonotonic dose responses. Interestingly, the effects of BPA on individual processes of myocyte Ca(2+) handling were monotonic. Over the concentration range of 10(-12) to 10(-6) M, BPA progressively increased sarcoplasmic reticulum (SR) Ca(2+) release and Ca(2+) reuptake and inhibited the L-type Ca(2+) current (I(CaL)). These effects on myocyte Ca(2+) handling were mediated by estrogen receptor (ER) β signaling. The nonmonotonic dose responses of BPA can be accounted for by the combined effects of progressively increased SR Ca(2+) reuptake/release and decreased Ca(2+) influx through I(CaL). CONCLUSION The rapid effects of BPA on female rat cardiac myocytes are characterized by nonmonotonic dose responses as measured by multiple end points. The nonmonotonic dose response was produced by ERβ-mediated monotonic effects on multiple cellular Ca(2+) handling processes. This represents a distinct mechanism underlying the nonmonotonicity of BPA's actions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | | | | | | | | |
Collapse
|
31
|
Abstract
Some chemicals used in consumer products or manufacturing (e.g. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (e.g. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Guangzhen Hu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Adriana A Paulucci-Holthauzen
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
32
|
Harding LB, Schultz IR, Goetz GW, Luckenbach JA, Young G, Goetz FW, Swanson P. High-throughput sequencing and pathway analysis reveal alteration of the pituitary transcriptome by 17α-ethynylestradiol (EE2) in female coho salmon, Oncorhynchus kisutch. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:146-163. [PMID: 24007788 DOI: 10.1016/j.aquatox.2013.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone β subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone β subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-β signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.
Collapse
Affiliation(s)
- Louisa B Harding
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Shen J, Xu L, Fang H, Richard AM, Bray JD, Judson RS, Zhou G, Colatsky TJ, Aungst JL, Teng C, Harris SC, Ge W, Dai SY, Su Z, Jacobs AC, Harrouk W, Perkins R, Tong W, Hong H. EADB: an estrogenic activity database for assessing potential endocrine activity. Toxicol Sci 2013; 135:277-91. [PMID: 23897986 DOI: 10.1093/toxsci/kft164] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body's endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many endocrine disruptors are estrogenic and affect the normal estrogen signaling pathways. However, ERs can also serve as therapeutic targets for various medical conditions, such as menopausal symptoms, osteoporosis, and ER-positive breast cancer. Because of the decades-long interest in the safety and therapeutic utility of estrogenic chemicals, a large number of chemicals have been assayed for estrogenic activity, but these data exist in various sources and different formats that restrict the ability of regulatory and industry scientists to utilize them fully for assessing risk-benefit. To address this issue, we have developed an Estrogenic Activity Database (EADB; http://www.fda.gov/ScienceResearch/BioinformaticsTools/EstrogenicActivityDatabaseEADB/default.htm) and made it freely available to the public. EADB contains 18,114 estrogenic activity data points collected for 8212 chemicals tested in 1284 binding, reporter gene, cell proliferation, and in vivo assays in 11 different species. The chemicals cover a broad chemical structure space and the data span a wide range of activities. A set of tools allow users to access EADB and evaluate potential endocrine activity of chemicals. As a case study, a classification model was developed using EADB for predicting ER binding of chemicals.
Collapse
Affiliation(s)
- Jie Shen
- * Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol 2013; 42:256-68. [PMID: 23892310 DOI: 10.1016/j.reprotox.2013.07.017] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022]
Abstract
Exposure to bisphenol A (BPA) is implicated in many aspects of metabolic disease in humans and experimental animals. We fed pregnant CD-1 mice BPA at doses ranging from 5 to 50,000μg/kg/day, spanning 10-fold below the reference dose to 10-fold above the currently predicted no adverse effect level (NOAEL). At BPA doses below the NOAEL that resulted in average unconjugated BPA between 2 and 200pg/ml in fetal serum (AUC0-24h), we observed significant effects in adult male offspring: an age-related change in food intake, an increase in body weight and liver weight, abdominal adipocyte mass, number and volume, and in serum leptin and insulin, but a decrease in serum adiponectin and in glucose tolerance. For most of these outcomes non-monotonic dose-response relationships were observed; the highest BPA dose did not produce a significant effect for any outcome. A 0.1-μg/kg/day dose of DES resulted in some but not all low-dose BPA outcomes.
Collapse
|
35
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Myers JP, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod Toxicol 2013; 38:1-15. [PMID: 23411111 PMCID: PMC3902067 DOI: 10.1016/j.reprotox.2013.02.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 02/05/2023]
Abstract
For years, scientists from various disciplines have studied the effects of endocrine disrupting chemicals (EDCs) on the health and wellbeing of humans and wildlife. Some studies have specifically focused on the effects of low doses, i.e. those in the range that are thought to be safe for humans and/or animals. Others have focused on the existence of non-monotonic dose-response curves. These concepts challenge the way that chemical risk assessment is performed for EDCs. Continued discussions have clarified exactly what controversies and challenges remain. We address several of these issues, including why the study and regulation of EDCs should incorporate endocrine principles; what level of consensus there is for low dose effects; challenges to our understanding of non-monotonicity; and whether EDCs have been demonstrated to produce adverse effects. This discussion should result in a better understanding of these issues, and allow for additional dialog on their impact on risk assessment.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Center for Regenerative & Developmental Biology, and Department of Biology, Tufts University, Medford, MA, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao Q, Zhu T, Guo F, Huang S, Hu H, Feng R, Hao L. Nonylphenol, an environmental estrogen, affects voltage-gated K+ currents and L-type Ca2+ currents in a non-monotonic manner in GH3 pituitary cells. Toxicol Lett 2013; 218:137-43. [DOI: 10.1016/j.toxlet.2013.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
|
37
|
Viñas R, Watson CS. Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells. Environ Health 2013; 12:26. [PMID: 23530988 PMCID: PMC3643824 DOI: 10.1186/1476-069x-12-26] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/28/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Our study examines the effects of xenoestrogen mixtures on estradiol-induced non-genomic signaling and associated functional responses. Bisphenol-A, used to manufacture plastic consumer products, and nonylphenol, a surfactant, are estrogenic by a variety of assays, including altering many intracellular signaling pathways; bisphenol-S is now used as a bisphenol-A substitute. All three compounds contaminate the environment globally. We previously showed that bisphenol-S, bisphenol-A, and nonylphenol alone rapidly activated several kinases at very low concentrations in the GH3/B6/F10 rat pituitary cell line. METHODS For each assay we compared the response of individual xenoestrogens at environmentally relevant concentrations (10-15 -10-7 M), to their mixture effects on 10-9 M estradiol-induced responses. We used a medium-throughput plate immunoassay to quantify phosphorylations of extracellular signal-regulated kinases (ERKs) and c-Jun-N-terminal kinases (JNKs). Cell numbers were assessed by crystal violet assay to compare the proliferative effects. Apoptosis was assessed by measuring caspase 8 and 9 activities via the release of the fluorescent product 7-amino-4-trifluoromethylcoumarin. Prolactin release was measured by radio-immunoassay after a 1 min exposure to all individual and combinations of estrogens. RESULTS Individual xenoestrogens elicited phospho-activation of ERK in a non-monotonic dose- (fM-nM) and mostly oscillating time-dependent (2.5-60 min) manner. When multiple xenoestrogens were combined with nM estradiol, the physiologic estrogen's response was attenuated. Individual bisphenol compounds did not activate JNK, while nonylphenol did; however, the combination of two or three xenoestrogens with estradiol generated an enhanced non-monotonic JNK dose-response. Estradiol and all xenoestrogen compounds induced cell proliferation individually, while the mixtures of these compounds with estradiol suppressed proliferation below that of the vehicle control, suggesting a possible apoptotic response. Extrinsic caspase 8 activity was suppressed by estradiol, elevated by bisphenol S, and unaffected by mixtures. Intrinsic caspase 9 activity was inhibited by estradiol, and by xenoestrogen combinations (at 10-14 and 10-8 M). Mixtures of xenoestrogens impeded the estradiol-induced release of prolactin. CONCLUSIONS In mixtures expected to be found in contaminated environments, xenoestrogens can have dramatic disrupting effects on hormonal mechanisms of cell regulation and their downstream functional responses, altering cellular responses to physiologic estrogens.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555-0645, USA
| | - Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555-0645, USA
| |
Collapse
|
38
|
Viñas R, Watson CS. Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:352-8. [PMID: 23458715 PMCID: PMC3621186 DOI: 10.1289/ehp.1205826] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/13/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor that imperfectly mimics the effects of physiologic estrogens via membrane-bound estrogen receptors (mERα, mERβ, and GPER/GPR30), thereby initiating nongenomic signaling. Bisphenol S (BPS) is an alternative to BPA in plastic consumer products and thermal paper. OBJECTIVE To characterize the nongenomic activities of BPS, we examined signaling pathways it evoked in GH3/B6/F10 rat pituitary cells alone and together with the physiologic estrogen estradiol (E2). Extracellular signal-regulated kinase (ERK)- and c-Jun-N-terminal kinase (JNK)-specific phosphorylations were examined for their correlation to three functional responses: proliferation, caspase activation, and prolactin (PRL) release. METHODS We detected ERK and JNK phosphorylations by fixed-cell immunoassays, identified the predominant mER initiating the signaling with selective inhibitors, estimated cell numbers by crystal violet assays, measured caspase activity by cleavage of fluorescent caspase substrates, and measured PRL release by radioimmunoassay. RESULTS BPS phosphoactivated ERK within 2.5 min in a nonmonotonic dose-dependent manner (10-15 to 10-7 M). When combined with 10-9 M E2, the physiologic estrogen's ERK response was attenuated. BPS could not activate JNK, but it greatly enhanced E2-induced JNK activity. BPS induced cell proliferation at low concentrations (femtomolar to nanomolar), similar to E2. Combinations of both estrogens reduced cell numbers below those of the vehicle control and also activated caspases. Earlier activation of caspase 8 versus caspase 9 demonstrated that BPS initiates apoptosis via the extrinsic pathway, consistent with activation via a membrane receptor. BPS also inhibited rapid (≤ 1 min) E2-induced PRL release. CONCLUSION BPS, once considered a safe substitute for BPA, disrupts membrane-initiated E2-induced cell signaling, leading to altered cell proliferation, cell death, and PRL release.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch Galveston, Texas 77555-0645, USA
| | | |
Collapse
|
39
|
Hejmej A, Kotula-Balak M, Chojnacka K, Kuras P, Lydka-Zarzycka M, Bilinska B. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules. Int J Endocrinol 2013; 2013:134589. [PMID: 23737770 PMCID: PMC3666197 DOI: 10.1155/2013/134589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 12/03/2022] Open
Abstract
In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP) on the expression and distribution of adherens and gap junction proteins, N-cadherin, β -catenin, and connexin 43 (Cx43), in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β -catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w.) resulted in the reduction of junction proteins expressions (P < 0.05, P < 0.01) and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P < 0.05), N-cadherin, and β -catenin (statistically nonsignificant) levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β -catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
- *Anna Hejmej:
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Katarzyna Chojnacka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Paulina Kuras
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Marta Lydka-Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
40
|
Jala VR, Radde BN, Haribabu B, Klinge CM. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer. BMC Cancer 2012; 12:624. [PMID: 23273253 PMCID: PMC3557142 DOI: 10.1186/1471-2407-12-624] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022] Open
Abstract
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
Collapse
Affiliation(s)
- Venkatakrishna Rao Jala
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, 505 South Hancock Street, Room 323, CTR Building, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Bone microenvironment is a complex dynamic equilibrium between osteoclasts and osteoblasts and is modulated by a wide variety of hormones and osteocyte mediators secreted in response to physiological and pathological conditions. The rate of remodeling involves tight coupling and regulation of both cells population and is regulated by a wide variety of hormones and mediators such as parathyroid hormone, prostaglandins, thyroid hormone, sex steroids, etc. It is also well documented that bone formation is easily influenced by the exposure of osteoblasts and osteoclasts to chemical compounds. Currently, humans and wildlife animals are exposed to various environmental xenoestrogens typically at low doses. These compounds, known as endocrine disruptor chemicals (EDCs), can alter the systemic hormonal regulation of the bone remodeling process and the skeletal formation. This review highlights the effects of the EDCs on mammalian bone turnover and development providing a macro and molecular view of their action.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | | | | |
Collapse
|
42
|
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, Vom Saal FS. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 2012; 153:4097-110. [PMID: 22733974 PMCID: PMC3423612 DOI: 10.1210/en.2012-1422] [Citation(s) in RCA: 741] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive "safe" dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Patel VP, Defranco DB, Chu CT. Altered transcription factor trafficking in oxidatively-stressed neuronal cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1773-82. [PMID: 22902725 DOI: 10.1016/j.bbadis.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 08/03/2012] [Indexed: 12/31/2022]
Abstract
Age-related neurodegenerative diseases are associated with alterations in gene expression in affected neurons. One of the mechanisms that could account for this is altered subcellular localization of transcription factors, which has been observed in human post-mortem brains of each of the major neurodegenerative diseases, including Parkinson's disease (PD). The specific mechanisms are yet to be elucidated; however a potential mechanism involves alterations in nuclear transport. In this study, we examined the nucleocytoplasmic trafficking of select transcription factors in response to a PD-relevant oxidative injury, 6-hydroxydopamine (6OHDA). Utilizing a well-established model of ligand-regulated nucleocytoplasmic shuttling, the glucocorticoid receptor, we found that 6OHDA selectively impaired nuclear import through an oxidative mechanism without affecting nuclear export or nuclear retention. Interestingly, impaired nuclear import was selective as Nrf2 (nuclear factor E2-related factor 2) nuclear localization remained intact in 6OHDA-treated cells. Thus, oxidative stress specifically impacts the subcellular localization of some but not all transcription factors, which is consistent with observations in post-mortem PD brains. Our data further implicate a role for altered microtubule dependent trafficking in the differential effects of 6OHDA on transcription factor import. Oxidative disruption of microtubule-dependent nuclear transport may contribute to selective declines in transcriptional responses of aging or diseased dopaminergic cells.
Collapse
Affiliation(s)
- Vivek P Patel
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
44
|
Marino M, Pellegrini M, La Rosa P, Acconcia F. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids 2012; 77:910-7. [PMID: 22410438 DOI: 10.1016/j.steroids.2012.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 02/06/2023]
Abstract
17β-Estradiol (E2) binding induces rapid modification in the conformation of its cognate receptors (i.e., ERα and ERβ). These allosteric changes allow the association of ERs with cell specific transcriptional cofactors, thus determining cellular contexts specific variations in gene expression. In addition, E2-ER complexes could also interact with membrane and cytosolic signal molecules triggering extra-nuclear signalling pathways. The synergy between these mechanisms is necessary for E2-induced pleiotropic actions in target tissues. Besides E2, the ER ligand binding domains can accommodate many other natural and synthetic ligands. Several of these compounds act as agonist or antagonist of ER transcriptional activity due to their ability to modify the interactions between ERs and transcriptional co-regulators. However, the ability of natural or manmade ER ligands to affect the extra-nuclear interactions of the ERs has been rarely evaluated. Here, the ability of two diet-derived flavonoids (i.e., naringenin and quercetin) and of the synthetic food-contaminant bisphenol A to modulate specifically ER extra-nuclear signalling pathways will be reported. All the tested compounds bind to both ER subtypes even if lesser than E2 activating divergent signal transduction pathways. In fact, in the presence of ERα, both naringenin and quercetin decouple ERα activities by specifically interfering with ERα membrane initiating signals. On the other hand, bisphenol A, but not flavonoids, maintains ERβ at the membrane thus impairing the activation of the downstream kinases. As a whole, extra-nuclear ER signals are highly susceptible to different ligands that, by unbalancing E2-induced cell functions drive cells to different functional endpoints.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma TRE, viale G. Marconi, 446, I-00146 Rome, Italy.
| | | | | | | |
Collapse
|
45
|
Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2694-714. [PMID: 23066391 PMCID: PMC3447581 DOI: 10.3390/ijerph9082694] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens' actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
46
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2090] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 2012; 354:74-84. [PMID: 22249005 PMCID: PMC3306519 DOI: 10.1016/j.mce.2012.01.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
Abstract
There is increasing experimental and epidemiological evidence that fetal programming of genetic systems is a contributing factor in the recent increase in adult obesity and other components of metabolic syndrome. In particular, there is evidence that epigenetic changes associated with the use of manmade chemicals may interact with other factors that influence fetal and postnatal growth in contributing to the current obesity epidemic. The focus of this review is on the developmental effects of estrogenic endocrine disrupting chemicals (EDCs), and more specifically on effects of exposure to the estrogenic EDC bisphenol A (BPA), on adipocytes and their function, and the ultimate impact on adult obesity; BPA exposure also results in impaired reproductive capacity. We discuss the interaction of EDCs with other factors that impact growth during fetal and neonatal life, such as placental blood flow and nutrient transport to fetuses, and how these influence fetal growth and abnormalities in homeostatic control systems required to maintain normal body weight throughout life.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Benjamin L. Coe
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Brittany M. Angle
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211 USA
| |
Collapse
|
48
|
Hall JM, Korach KS. Endocrine disrupting chemicals promote the growth of ovarian cancer cells via the ER-CXCL12-CXCR4 signaling axis. Mol Carcinog 2012; 52:715-25. [PMID: 22549810 DOI: 10.1002/mc.21913] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/05/2012] [Accepted: 03/19/2012] [Indexed: 12/26/2022]
Abstract
The majority of ovarian cancers over-express the estrogen receptor (ERα) and grow in response to estrogens. We previously demonstrated that ER induction of the chemokine CXCL12 (stromal cell-derived factor-1) is required for estradiol (E2)-stimulated proliferation of human ovarian carcinoma cells. In the current study, we report that known "endocrine disrupting chemicals" (EDCs) display mitogenic activities in ovarian cancer cells via their ability to activate the ER and upregulate CXCL12 expression. Notably, the EDCs genistein, bisphenol A and HPTE stimulated both cell proliferation and induction of CXCL12 mRNA and protein in a manner comparable to estradiol. The effects were completely attenuated by the ER antagonist ICI 182,780, revealing that observed activities of these agents were receptor-mediated. In cell proliferation assays, the mitogenic effects of estradiol and EDCs were obviated by siRNAs targeting CXCL12 and restored upon addition of exogenous CXCL12. Furthermore, an inhibitor to the CXCL12 receptor CXCR4 completely attenuated growth-stimulatory effects of E2 and EDCs. These studies highlight a potential role of EDCs possessing estrogenic activities in the etiology of ovarian cancer. Moreover, they suggest that the ER-CXCL12-CXCR4 signaling axis may represent a promising target for development of therapeutics for ER+ ovarian cancers.
Collapse
Affiliation(s)
- Julie M Hall
- College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | | |
Collapse
|
49
|
Edberg A, Soeria-Atmadja D, Bergman Laurila J, Johansson F, Gustafsson MG, Hammerling U. Assessing Relative Bioactivity of Chemical Substances Using Quantitative Molecular Network Topology Analysis. J Chem Inf Model 2012; 52:1238-49. [DOI: 10.1021/ci200429f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Edberg
- Division of Food
Data, National Food Agency, SE-75126 Uppsala, Sweden
| | - Daniel Soeria-Atmadja
- Division of R&D Information, AstraZeneca Research and Development, SE-15185, Södertälje, Sweden
| | | | - Fredrik Johansson
- Division of Information
Technology,
National Food Agency, SE-75126 Uppsala, Sweden
| | - Mats G. Gustafsson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital, SE-75185 Uppsala, Sweden
| | - Ulf Hammerling
- Department of Risk Benefit Assessment,
National Food Agency, SE-75126 Uppsala, Sweden
| |
Collapse
|
50
|
Banerjee SK, Banerjee S. CCN5/WISP-2: A micromanager of breast cancer progression. J Cell Commun Signal 2012; 6:63-71. [PMID: 22487979 DOI: 10.1007/s12079-012-0158-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/09/2012] [Indexed: 12/19/2022] Open
Abstract
The gain of plasticity by a subset of cancer cells is a unique but common sequence of cancer progression from epithelial phenotype to mesenchymal phenotype (EMT) that is followed by migration, invasion and metastasis to a distant organ, and drug resistance. Despite multiple studies, it is still unclear how cancer cells regulate plasticity. Recent studies from our laboratory and others' proposed that CCN5/WISP-2, which is found intracellularly (in the nucleus and cytoplasm) and extracellularly, plays a negative regulator of plasticity. It prevents the EMT process in breast cancer cells as well as pancreatic cancer cells. Multiple genetic insults, including the gain of p53 mutations that accumulate over the time, may perturb CCN5 expression in non-invasive breast cancer cells, which ultimately helps cells to gain invasive phenotypes. Moreover, emerging evidence indicates that several oncogenic lesions such as miR-10b upregulation and activation of TGF-β-signaling can accumulate during CCN5 crisis in breast cancer cells. Collectively, these studies indicate that loss of CCN5 activity may promote breast cancer progression; application of CCN5 protein may represent a novel therapeutic intervention in breast cancer and possibly pancreatic cancer.
Collapse
Affiliation(s)
- Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA,
| | | |
Collapse
|