1
|
Hammoudeh N, Hasan R, Deeb M, Radwan Z, Ayoubi O, Alendary R, Youssef M, Kazan A, Alsahli R, Faiad W, Aldeli N, Hanano A. Exploring transcriptomic databases to identify and experimentally validate tissue-specific consensus reference gene for gene expression normalization in BALB/c mice acutely exposed to 2,3,7,8-Tetrachlorodibenzo- p-dioxin. Curr Res Toxicol 2025; 8:100234. [PMID: 40391131 PMCID: PMC12088766 DOI: 10.1016/j.crtox.2025.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic compound affecting organs like the liver, kidney, lung, and reproductive systems in mammals. This study outlines a strategy for choosing appropriate HKGs for tissue-specific gene expression analysis in TCDD toxicity, including four steps: i) identifying candidate HKGs from literature and databases; ii) defining primers from literature or designing new ones; iii) validating primer efficiency and specificity; iv) experimentally assessing candidate HKGs' stability in various tissues of TCDD-exposed mice. Based on this strategy, a total of 40 potential HKGs was selected, further filtered based on their database sources and ranked according to their frequency of use or expression stability. Ultimately, we identified a final set of 15 HKGs (Rps18, Calr, Polr2b, Brms1l, P4hb, Esd, Hdgf, Gapdh, Mlec, Tbp, Rn18s, Sdha, B2m, Actr3 and Actb) with typical efficiencies for further evaluation. Then, the stability of the selected HKGs was determined in the liver, kidney, lung, ovary and testis of TCDD-exposed mouse compared to the control group using the [log (2ΔCt)] and statistically analyzed using Pearson correlation coefficient (r) by BestKeeper algorithm. Our data analysis revealed that Actb, Rps18, and Polr2b were the most stable HKGs for normalizing gene expression in the liver, while Sdha, Actb, and Gapdh were suitable for kidney tissue. In the lung, Tbp, Sdha, and Rps18 showed stability, while Tbp, B2m, and Actb were most stable in ovary. Lastly, Actb, B2m, and Tbp were accurately stable in the testis of TCDD-exposed mice. Our study identifies stable HKGs, improving TCDD toxicity research accuracy and reliability.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Reem Hasan
- Distinction and Creativity Agency, Damascus, Syria
| | | | - Zuher Radwan
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Omar Ayoubi
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Roaa Alendary
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Mouayad Youssef
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Abdulfattah Kazan
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Rasil Alsahli
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Nour Aldeli
- Department of Animal Biology, Faculty of Science, Al Furat University, Deir-ez-Zor, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
2
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sulentic CEW, Kaplan BLF, Lawrence BP. Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System. Annu Rev Immunol 2025; 43:191-218. [PMID: 39813730 DOI: 10.1146/annurev-immunol-083122-040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B Paige Lawrence
- Department of Environmental Medicine and Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA;
| |
Collapse
|
4
|
Aldeli N, Hanano A. Unveiling the transcriptional pattern of epithelial ovarian carcinoma-related microRNAs-mRNAs network after mouse exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Reprod Toxicol 2025; 132:108863. [PMID: 39978740 DOI: 10.1016/j.reprotox.2025.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent organic environmental contaminant known to date, is recognized as a human carcinogen. Despite the documented link between TCDD exposure and epithelial ovarian cancer (EOC) in mammalian females, the molecular mechanisms underlying cancer initiation remain elusive. Emerging evidence suggests aberrant miRNA expression in various human malignancies, including OC. This work was performed to examine whether TCDD exposure in female mice disrupts the expression of miRNAs, particularly those known as OC-modulators. We conducted an extensive search in the PubMed database to identify miRNAs experimentally implicated in OC. Fifty-two miRNAs were identified as potential OC modulators and classified into two groups based on their abundance in OC. Group I comprised 24 miRNAs upregulated in OC, while Group II included 28 miRNAs downregulated in OC. Subsequently, we analyzed the expression of both groups in BALB/c mice ovaries following a single TCDD dose. Our findings revealed significant upregulation of 10 miRNAs from Group I (miR-21, miR-27a, miR-30a, miR-99a, miR-141, miR-182, miR-183, miR-200a, miR-200b, and miR-429) and significant downregulation of 12 miRNAs from Group II (let-7d, miR-15a, miR-19a, miR-23b, miR-34a, miR-34c, miR-125b-1, miR-133, miR-140, miR-199a, miR-210, and miR-383) in TCDD-exposed mouse ovaries. Furthermore, we identified OC-related genes targeted by miRNAs from both groups through an extensive search in PubMed databases. Using TR-qPCR, we evaluated the downstream impact of TCDD-dysregulated miRNAs on their target genes. Our results indicate that TCDD-induced upregulation of oncogenic miRNAs negatively regulates target genes associated with EOC, while downregulation of cancer-suppressor miRNAs positively regulates genes linked to EOC.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of science, Al Furat University, Deir-ez-Zor, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
5
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
6
|
Aldeli N, Soukkarie C, Hanano A. Transcriptional, hormonal and histological alterations in the ovaries of BALB/c mice exposed to TCDD in connection with multigenerational female infertility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114990. [PMID: 37156038 DOI: 10.1016/j.ecoenv.2023.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, has a proven reproductive toxicity. Due to the lack of evidence on the multigenerational female reproductive toxicity of TCDD through the maternal exposure, the current study aims to evaluate, on the one hand, the acute reproductive toxicity of TCDD on adult female pre-gestational exposed to a critical single dose of TCDD (25 μg/kg) for a week (group referred to as AFnG; adult female/non-gestation). On the other hand, the transcription, hormonal and histological effects of TCDD on the females of two generations F1 and F2, were also investigated after the exposure of pregnant females to TCDD on gestational day 13 (GD13) (group referred to as AFG; adult female/gestation). First, our data showed alternations in the ovarian expressional pattern of certain key genes involved in the detoxification of TCDD as well as in the biosynthesis of steroidal hormones. The expression of Cyp1a1 was highly induced in TCDD-AFnG group, but reduced in both F1 and F2. While the transcripts levels of Cyp11a1 and 3βhsd2 were decreased, Cyp19a1 transcripts were increased as a function of TCDD exposure. This was synchronized with a dramatic increase in the level of estradiol hormone in the females of both experimental groups. Beside a significant reduce in their size and weight, ovaries of TCDD-exposed females showed serious histological alterations marked by atrophy of the ovary, congestion in the blood vessels, necrosis in the layer of granular cells, dissolution of the oocyte and nucleus of ovarian follicles. Finally, the female fertility was dramatically affected across generations with a reduced male\female ratio. Our data indicate that the exposure of pregnant female to TCDD has serious negative effects in the female productive system across generations and suggest the use of hormonal alternation as biomarker to monitor and assess the indirect exposure of these generations to TCDD.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarie
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
7
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
8
|
Tomalka JA, Suthar MS, Diamond MS, Sekaly RP. Innate antiviral immunity: how prior exposures can guide future responses. Trends Immunol 2022; 43:696-705. [PMID: 35907675 DOI: 10.1016/j.it.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Innate immunity is an intrinsic baseline defense in cells, with its earliest origins in bacteria, and with key roles in defense against pathogens and in the activation of B and T cell responses. In mammals, the efficacy of innate immunity in initiating the cascades that lead to pathogen control results from the interplay of transcriptomic, epigenomic, and proteomic responses regulating immune activation and long-lived pathogen-specific memory responses. Recent studies suggest that intrinsic innate immunity is modulated by individual exposure histories - prior infections, vaccinations, and metabolites of microbial origin - and this promotes, or impairs, the development of efficacious innate immune responses. Understanding how environmental factors regulate innate immunity and boost protection from infection or response to vaccination could be a valuable tool for pandemic preparedness.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Vaughan KL, Franchini AM, Kern HG, Lawrence BP. The Aryl Hydrocarbon Receptor Modulates Murine Hematopoietic Stem Cell Homeostasis and Influences Lineage-Biased Stem and Progenitor Cells. Stem Cells Dev 2021; 30:970-980. [PMID: 34428990 PMCID: PMC8851211 DOI: 10.1089/scd.2021.0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
The core function of hematopoietic stem and progenitor cells (HSPCs) is to provide lifelong production of all lineages of the blood and immune cells. The mechanisms that modulate HSPC homeostasis and lineage biasing are not fully understood. Growing evidence implicates the aryl hydrocarbon receptor (AHR), an environment-sensing transcription factor, as a regulator of hematopoiesis. AHR ligands modulate the frequency of mature hematopoietic cells in the bone marrow and periphery, while HSPCs from mice lacking AHR (AHR KO) have increased proliferation. Yet, whether AHR modulates HSPC lineage potential and directs differentiation toward specific lineage-biased progenitors is not well understood. This study revealed that AHR KO mice have an increased proportion of myeloid-biased HSCs and myeloid-biased multipotent progenitor (MPP3) cells. Utilizing inducible AHR knockout mice (iAHR KO), it was discovered that acute deletion of AHR doubled the number of MPP3 cells and altered the composition of downstream lineage-committed progenitors, such as increased frequency of pregranulocyte/premonocyte committed progenitors. Furthermore, in vivo antagonism of the AHR led to a 2.5-fold increase in the number of MPP3 cells and promoted myeloid-biased differentiation. Using hematopoietic-specific conditional AHR knockout mice (AHRVav1) revealed that increased frequency of myeloid-biased HSCs and myeloid-biased progenitors is driven by AHR signaling that is intrinsic to the hematopoietic compartment. These findings demonstrate that the AHR plays a pivotal role in regulating steady-state hematopoiesis, influencing HSPC homeostasis and lineage potential. In addition, the data presented provide potential insight into how deliberate modulation of AHR signaling could help with the treatment of a broad range of diseases that require the hematopoietic compartment.
Collapse
Affiliation(s)
- Keegan L. Vaughan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony M. Franchini
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Harrison G. Kern
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
10
|
The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proc Natl Acad Sci U S A 2021; 118:2012692118. [PMID: 33941684 PMCID: PMC8126867 DOI: 10.1073/pnas.2012692118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint inhibitors represent some of the most important cancer treatments developed in the last 20 y. However, existing immunotherapy approaches benefit only a minority of patients. Here, we provide evidence that the aryl hydrocarbon receptor (AhR) is a central player in the regulation of multiple immune checkpoints in oral squamous cell carcinoma (OSCC). Orthotopic transplant of mouse OSCC cells from which the AhR has been deleted (MOC1AhR-KO) results, within 1 wk, in the growth of small tumors that are then completely rejected within 2 wk, concomitant with an increase in activated T cells in tumor-draining lymph nodes (tdLNs) and T cell signaling within the tumor. By 2 wk, AhR+ control cells (MOC1Cas9), but not MOC1AhR-KO cells up-regulate exhaustion pathways in the tumor-infiltrating T cells and expression of checkpoint molecules on CD4+ T cells (PD-1, CTLA4, Lag3, and CD39) and macrophages, dendritic cells, and Ly6G+ myeloid cells (PD-L1 and CD39) in tdLNs. Notably, MOC1AhR-KO cell transplant renders mice 100% immune to later challenge with wild-type tumors. Analysis of altered signaling pathways within MOC1AhR-KO cells shows that the AhR controls baseline and IFNγ-induced Ido and PD-L1 expression, the latter of which occurs through direct transcriptional control. These observations 1) confirm the importance of malignant cell AhR in suppression of tumor immunity, 2) demonstrate the involvement of the AhR in IFNγ control of PD-L1 and IDO expression in the cancer context, and 3) suggest that the AhR is a viable target for modulation of multiple immune checkpoints.
Collapse
|
11
|
Park R, Madhavaram S, Ji JD. The Role of Aryl-Hydrocarbon Receptor (AhR) in Osteoclast Differentiation and Function. Cells 2020; 9:cells9102294. [PMID: 33066667 PMCID: PMC7602422 DOI: 10.3390/cells9102294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a crucial role in bone remodeling through altering the interplay between bone-forming osteoblasts and bone-resorbing osteoclasts. While effects of AhR signaling in osteoblasts are well understood, the role and mechanism of AhR signaling in regulating osteoclastogenesis is not widely understood. AhR, when binding with exogenous ligands (environmental pollutants such as polycylic aryl hydrocarbon (PAH), dioxins) or endogenous ligand indoxyl-sulfate (IS), has dual functions that are mediated by the nature of the binding ligand, binding time, and specific pathways of distinct ligands. In this review, AhR is discussed with a focus on (i) the role of AhR in osteoclast differentiation and function and (ii) the mechanisms of AhR signaling in inhibiting or promoting osteoclastogenesis. These findings facilitate an understanding of the role of AhR in the functional regulation of osteoclasts and in osteoclast-induced bone destructive conditions such as rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- Robin Park
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Shreya Madhavaram
- MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA; (R.P.); (S.M.)
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence:
| |
Collapse
|
12
|
Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology 2020; 225:151929. [PMID: 32115260 DOI: 10.1016/j.imbio.2020.151929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is an environmental sensor and ligand-activated transcription factor that is critically involved in the regulation of inflammatory responses and the induction of tolerance by modulating immune cells. As dendritic cells (DCs) express high AhR levels, they are efficient to induce immunomodulatory effects after being exposed to AhR-activating compounds derived from the environment or diet. To gain new insights into the molecular targets following AhR-activation in human monocyte-derived (mo)DCs, we investigated whether the natural AhR ligand quercetin or the synthetic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates the function of human moDCs regarding their capability to prime naïve T cells or to migrate. As only quercetin, but not TCDD, impaired T cell activation and migration of LPS-matured DCs (LPS-DCs), we analyzed the mode of action of quercetin on moDCs in more detail. Here, we found a specific down-regulation of the immunomodulatory molecule CD83 through the direct binding of the activated AhR to the CD83 promoter. Furthermore, treatment of LPS-DCs with quercetin resulted in a reduced production of the pro-inflammatory cytokine IL-12p70 and in an increased expression of the immunoregulatory molecules disabled adaptor protein (Dab) 2, immunoglobulin-like transcript (ILT)-3, ILT4, ILT5 as well as ectonucleotidases CD39 and CD73, thereby inducing a tolerogenic phenotype in quercetin-treated maturing DCs. Overall, these data demonstrate that quercetin represents a potent immunomodulatory agent to alter human DC phenotype and function, shifting the immune balance from inflammation to resolution.
Collapse
|
13
|
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 2019; 19:184-197. [PMID: 30718831 DOI: 10.1038/s41577-019-0125-8] [Citation(s) in RCA: 780] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The environment, diet, microbiota and body's metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut-brain axis and the therapeutic potential of targeting AHR in neurological disorders.
Collapse
|
14
|
Csaba G. Aromatic hydrocarbon receptors in the immune system: Review and hypotheses. Acta Microbiol Immunol Hung 2019; 66:273-287. [PMID: 30803253 DOI: 10.1556/030.66.2019.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ah-receptors (AhRs) recognize and bind foreign environmental molecules as well as some target hormones of other nuclear receptors. As ligands activate transcription factors, they transmit the information on the presence of these molecules by binding to the DNA, which in turn activate xenobiotic metabolism genes. Cross talk with other nuclear receptors or some non-nuclear receptors also activates or inhibits endocrine processes. Immune cells have AhRs by which they are activated for physiological (immunity) or non-physiological (allergy and autoimmunity) processes. They can be imprinted by hormonal or pseudo-hormonal (environmental) factors, which could provoke pathological alterations for life (by faulty perinatal hormonal imprinting). The variety and amount of human-made new environmental molecules (endocrine disruptors) are enormously growing, so the importance of AhR functions is also expanding.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Li Y, Xie HQ, Zhang W, Wei Y, Sha R, Xu L, Zhang J, Jiang Y, Guo TL, Zhao B. Type 3 innate lymphoid cells are altered in colons of C57BL/6 mice with dioxin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:639-645. [PMID: 30703721 DOI: 10.1016/j.scitotenv.2019.01.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are distributed in the gut and regulate inflammation by secreting cytokines, including interferon (IFN)-γ and interleukin (IL)-17. The maintenance and function of ILC3s involve the activity of aryl hydrocarbon receptor (AhR), a potent ligand of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), one of the most toxic dioxin congeners. Thus, TCDD exposure might affect ILC3s. To obtain in vivo evidence supporting this notion, we exposed female C57BL/6 mice orally to TCDD (low/high doses: 0.1/10 μg/kg body weight) during pregnancy and lactation periods, and after the exposure, evaluated the mothers and offspring for alterations in ILC3 differentiation and function in the colon. ILC3 frequency among colonic lamina propria lymphocytes was preferentially diminished in the offspring, and, in parallel, the median fluorescence intensity (MFI) of retinoic acid receptor-related orphan receptor (ROR)γt, which is associated with ILC3 differentiation, was also decreased in ILC3s. Conversely, the percentages of two subsets of the cells, one positive for natural cytotoxicity receptor NKp46 and the other for IL-17a, were increased in TCDD-exposed mothers and offspring. Moreover, the percentage of IFN-γ+ ILC3s was increased specifically in the mothers, but this was in conjunction with a significant decrease in the MFI of IFN-γ, which suggests that the IFN-γ+ ILC3 subset was functionally altered. In conclusion, maternal exposure to TCDD suppresses ILC3 differentiation in the offspring and influences ILC3 function in distinct manners in the mother and offspring. Our study provides new insights into the intergenerational interference of dioxins in colonic ILC3s.
Collapse
Affiliation(s)
- Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Meyers JL, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence BP. Environmental cues received during development shape dendritic cell responses later in life. PLoS One 2018; 13:e0207007. [PMID: 30412605 PMCID: PMC6226176 DOI: 10.1371/journal.pone.0207007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Environmental signals mediated via the aryl hydrocarbon receptor (AHR) shape the developing immune system and influence immune function. Developmental exposure to AHR binding chemicals causes persistent changes in CD4+ and CD8+ T cell responses later in life, including dampened clonal expansion and differentiation during influenza A virus (IAV) infection. Naïve T cells require activation by dendritic cells (DCs), and AHR ligands modulate the function of DCs from adult organisms. Yet, the consequences of developmental AHR activation by exogenous ligands on DCs later in life has not been examined. We report here that early life activation of AHR durably reduces the ability of DC to activate naïve IAV-specific CD8+ T cells; however, activation of naïve CD4+ T cells was not impaired. Also, DCs from developmentally exposed offspring migrated more poorly than DCs from control dams in both in vivo and ex vivo assessments of DC migration. Conditional knockout mice, which lack Ahr in CD11c lineage cells, suggest that dampened DC emigration is intrinsic to DCs. Yet, levels of chemokine receptor 7 (CCR7), a key regulator of DC trafficking, were generally unaffected. Gene expression analyses reveal changes in Lrp1, Itgam, and Fcgr1 expression, and point to alterations in genes that regulate DC migration and antigen processing and presentation as being among pathways disrupted by inappropriate AHR signaling during development. These studies establish that AHR activation during development causes long-lasting changes to DCs, and provide new information regarding how early life environmental cues shape immune function later in life.
Collapse
Affiliation(s)
- Jessica L. Meyers
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Erin Kelsaw
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| |
Collapse
|
17
|
Gutiérrez-Vázquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018; 48:19-33. [PMID: 29343438 DOI: 10.1016/j.immuni.2017.12.012] [Citation(s) in RCA: 661] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease. As its activity is regulated by small molecules, AhR also constitutes a potential target for therapeutic immunomodulation. In this review we discuss the role of AhR in the regulation of the immune response in the context of autoimmunity, infection, and cancer, as well as the potential opportunities and challenges of developing AhR-targeted therapeutics.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Xu H, Zhang X, Li H, Li C, Huo XJ, Hou LP, Gong Z. Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:99-108. [PMID: 29902668 DOI: 10.1016/j.aquatox.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollutants may cause adverse effects on the immune system of aquatic organisms. However, the cellular effects of pollutants on fish immune system are largely unknown. Here, we exploited the transgenic zebrafish Tg(lysC:DsRed2) larva as a preliminary screening system to evaluate the potential inflammatory effects of environmental pollutants. Tg(lysC:DsRED2) larvae aged 7-day-postfertilization (7 dpf) were treated with selected environmental chemicals for 24 h (24 h) and the number of neutrophils were quantified using both image analysis and fluorescence activated cell sorting (FACS). We found that the numbers of neutrophils in the Tg(lysC:DsRED2) larvae were significantly increased by most of the organic chemicals tested, including E2 (17β-estradiol), BPA (Bisphenol-A), NDEA (N-nitrosodiethylamine), 4-NP (4-Nitrophenol) and Lindane (γ-hexachlorocyclohexane). Neutrophil numbers were also increased by all the metals tested (Na2HAsO4· 7H2O, Pb(NO3)2, HgCl2, CdCl2, CuSO4·5H2O, ZnSO4, and K2Cr2O7). The only exception was TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), which significantly reduced the number of neutrophils after exposure. Additionally, the transcription of genes (lyz, mpo, tnfα and il8) related to fish immune system were significantly modulated upon exposure to some of the selected chemicals such as E2, TCDD, Cu and Cd. This study revealed that representatives of major categories of environmental pollutants could cause an acute inflammatory response in zebrafish larvae as shown by alterations in the neutrophils, which may imply a common immunotoxicity mechanism for most environmental pollutants. This study has also demonstrated that Tg(lyz:DsRed2) transgenic zebrafish is an excellent tool for screening environmental chemicals with potential inflammatory effects through FACS-facilitated neutrophil counting.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 1 Xingyu Road, Liwan District, Guangzhou 510380, China; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Xiaoyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore; School of Life Science, Yunnan University, No.2 North Cuihu Road, Kunming, Yunnan Province, 650091, China
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiao-Jing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Li-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Esser C, Haarmann-Stemmann T, Hochrath K, Schikowski T, Krutmann J. AHR and the issue of immunotoxicity. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Jin GB, Winans B, Martin KC, Paige Lawrence B. New insights into the role of the aryl hydrocarbon receptor in the function of CD11c⁺ cells during respiratory viral infection. Eur J Immunol 2014; 44:1685-1698. [PMID: 24519489 DOI: 10.1002/eji.201343980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has garnered considerable attention as a modulator of CD4(+) cell lineage development and function. It also regulates antiviral CD8(+) T-cell responses, but via indirect mechanisms that have yet to be determined. Here, we show that during acute influenza virus infection, AHR activation skews dendritic-cell (DC) subsets in the lung-draining lymph nodes, such that there are fewer conventional CD103(+) DCs and CD11b(+) DCs. Sorting DC subsets reveals AHR activation reduces immunostimulatory function of CD103(+) DCs in the mediastinal lymph nodes, and decreases their frequency in the lung. DNA-binding domain Ahr mutants demonstrate that alterations in DC subsets require the ligand-activated AHR to contain its inherent DNA-binding domain. To evaluate the intrinsic role of AHR in DCs, conditional knockouts were created using Cre-LoxP technology, which revealed that AHR in CD11c(+) cells plays a key role in controlling the acquisition of effector CD8(+) T cells in the infected lung. However, AHR within other leukocyte lineages contributes to diminished naïve CD8(+) T-cell activation in the draining lymphoid nodes. These findings indicate DCs are among the direct targets of AHR ligands in vivo, and AHR signaling modifies host responses to a common respiratory pathogen by affecting the complex interplay of multiple cell types.
Collapse
Affiliation(s)
- Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kyle C Martin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Liu H, Ramachandran I, Gabrilovich DI. Regulation of plasmacytoid dendritic cell development in mice by aryl hydrocarbon receptor. Immunol Cell Biol 2014; 92:200-3. [PMID: 24165981 PMCID: PMC3945671 DOI: 10.1038/icb.2013.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022]
Abstract
Aryl hydrocarbon receptor (AhR) has an important role in the regulation of cell responses to different environmental stimuli, as well as to various endogenous ligands. Although AhR was previously implicated in the regulation of dendritic cell (DC) activation, very little is known about its potential role in the development of these cells. Here we report our unexpected findings that AhR may regulate the differentiation of plasmacytoid DCs (pDCs). Agonist of AhR markedly decreased the generation of pDCs in vitro, whereas the AhR antagonist had an opposite effect. The differentiation of conventional DCs (cDCs) was not affected. AhR-knockout mice had a substantial accumulation of pDCs in peripheral lymphoid organs; whereas no changes in cDCs were seen. Thus, this study has identified AhR as a transcription factor involved in the development of one population of DCs-pDCs.
Collapse
Affiliation(s)
- Hao Liu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | |
Collapse
|
22
|
Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. BIOMED RESEARCH INTERNATIONAL 2014; 2014:520763. [PMID: 24527450 PMCID: PMC3914515 DOI: 10.1155/2014/520763] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023]
Abstract
The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.
Collapse
|
23
|
Beamer CA, Shepherd DM. Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Semin Immunopathol 2013; 35:693-704. [PMID: 23963493 PMCID: PMC3821999 DOI: 10.1007/s00281-013-0391-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
Abstract
Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the AhR in regulating inflammation during acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, Skaggs School of Pharmacy and Allied Health Sciences, The University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA
| | | |
Collapse
|
24
|
Schulz V, van Roest M, Bol-Schoenmakers M, van Duursen M, van den Berg M, Pieters R, Smit J. Aryl hydrocarbon receptor activation affects the dendritic cell phenotype and function during allergic sensitization. Immunobiology 2013; 218:1055-62. [DOI: 10.1016/j.imbio.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
|
25
|
Schulz VJ, Smit JJ, Pieters RHH. The aryl hydrocarbon receptor and food allergy. Vet Q 2013; 33:94-107. [PMID: 23745732 DOI: 10.1080/01652176.2013.804229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune system is important for protection against pathogens and malignant cells. However, malfunction of the immune system can also result in detrimental auto-immune diseases, inflammatory diseases, cancers and allergies. The aryl hydrocarbon receptor (AhR), present in numerous tissues and cell subsets, including cells of the immune system, plays an important role in the functioning of the immune system. Activation of the AhR is for example associated with various effects on dendritic cells (DCs), regulatory T cells and the Th1/Th2 cell balance. These cells play a major role in the development of food allergy. Food allergy is an increasing health problem in both humans and animals. Despite the knowledge in risk factors and cellular mechanisms for food allergy, no approved treatments are available yet. Recently, it has been shown that activation of the AhR by dioxin-like compounds suppresses allergic sensitization by suppressing the absolute number of precursor and effector T cells, by preserving CD4(+)CD25(+)Foxp3(+) Treg cells and by affecting DCs and their interaction with effector T cells. Future research should elucidate whether and how AhR activation can be used to interfere in food allergic responses in humans and in animals. This may lead to new prevention strategies and therapeutic possibilities for food allergy.
Collapse
Affiliation(s)
- V J Schulz
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
26
|
Beamer CA, Seaver BP, Shepherd DM. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but not fibrosis. Toxicol Sci 2012; 126:554-68. [PMID: 22273745 DOI: 10.1093/toxsci/kfs024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO(2))-induced inflammation and fibrosis, C57Bl/6 and AhR(-/)(-) mice were exposed to SiO(2) or vehicle. Similarly, C57Bl/6 mice were exposed to SiO(2) and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO(2)-induced acute lung inflammation was more severe in AhR(-)(/-) mice; however, the fibrotic response of AhR(-)(/-) mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO(2) exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow-derived macrophages (BMM) from AhR(-)(/-) mice also produced higher levels of cytokines and chemokines in response to SiO(2). Analysis of gene expression revealed that BMM derived from AhR(-)(/-) mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO(2).
Collapse
Affiliation(s)
- Celine A Beamer
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
27
|
Schulz VJ, Smit JJ, Willemsen KJ, Fiechter D, Hassing I, Bleumink R, Boon L, van den Berg M, van Duursen MBM, Pieters RHH. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci 2011; 123:491-500. [PMID: 21804081 DOI: 10.1093/toxsci/kfr175] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Food allergy is an increasing health problem in Western countries. Previously, it has been shown that the intensity of food allergic reactions can be regulated by regulatory T (T(reg)) cells. In addition, it has been shown that activation of the aryl hydrocarbon receptor (AhR) regulates T-cell responses by induction of T(reg) cells. Therefore, we hypothesized that activation of the AhR pathway can suppress development of food allergic responses through the induction of T(reg) cells. This was investigated by using a mouse model for peanut allergy. C3H/HeOuJ mice (AhR(b)(-2)) were sensitized to peanut by administering peanut extract (PE) by gavage in the presence of cholera toxin and were treated with the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.6, 1.7, 5, and 15 μg/kg body weight) on days 3 and 11 orally. The functional role of CD4(+)CD25(+)Foxp3(+) T(reg) cells was investigated by depleting these cells with anti-CD25 mAb during sensitization to PE. TCDD treatment dose dependently suppressed sensitization to peanut (PE-specific IgE, IgG1, and IgG2a and PE-induced IL-5, IL-10, and IL-13, respectively). The percentage, but not the number, of CD4(+)CD25(+)Foxp3(+) T(reg) cells dose dependently increased by AhR activation in both spleen and mesenteric lymph nodes. Depletion of CD4(+)CD25(+)Foxp3(+) T(reg) cells markedly reversed the suppressive effect of TCDD on PE-specific antibody levels and PE-induced IL-5, IL-10, and IL-13 cytokine production. Present data demonstrate for the first time that activation of the AhR by TCDD suppressed the development of Th2-mediated food allergic responses. A functional shift within the CD4(+) cell population toward CD4(+)CD25(+)Foxp3(+) T(reg) cells appeared to underlie this effect. This suggests that the AhR pathway might provide potential therapeutic targets to treat food allergic diseases.
Collapse
Affiliation(s)
- V J Schulz
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Veldhoen M, Duarte JH. The aryl hydrocarbon receptor: fine-tuning the immune-response. Curr Opin Immunol 2011; 22:747-52. [PMID: 20926270 DOI: 10.1016/j.coi.2010.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
Abstract
Triggers involved in the development of an autoimmune disease, and those that are part of determining its level of severity, are a major focus of current investigative efforts. However, factors that increase the risk to disease may not be similar to those that determine its severity or its pace of progression. The aryl hydrocarbon receptor (AhR) has been highlighted as having a potential regulatory role in these processes. Here we describe the recent findings of the possible involvement of AhR in the initiation and inhibition of immune responses.
Collapse
Affiliation(s)
- Marc Veldhoen
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
| | | |
Collapse
|
29
|
Benson JM, Shepherd DM. Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn's disease. Toxicol Sci 2011; 120:68-78. [PMID: 21131560 PMCID: PMC3044199 DOI: 10.1093/toxsci/kfq360] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease results from a combination of genetic and environmental factors that trigger an inappropriate immune response to commensal gut bacteria. The aryl hydrocarbon receptor (AhR) is well known for its involvement in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant that affects people primarily through the diet. Recently, TCDD was shown to suppress immune responses by generating regulatory T cells (Tregs). We hypothesized that AhR activation dampens inflammation associated with Crohn's disease. To test this hypothesis, we utilized the 2,4,6-trinitrobenzenesulfonic acid (TNBS) murine model of colitis. Mice were gavaged with TCDD prior to colitis induction with TNBS. Several parameters were examined including colonic inflammation via histological and flow cytometric analyses. TCDD-treated mice recovered body weight faster and experienced significantly less colonic damage. Reduced levels of interleukin (IL) 6, IL-12, interferon-gamma, and tumor necrosis factor-α demonstrated suppression of inflammation in the gut following TCDD exposure. Forkhead box P3 (Foxp3)(egfp) mice revealed that TCDD increased the Foxp3+ Treg population in gut immune tissue following TNBS exposure. Collectively, these results suggest that activation of the AhR by TCDD decreases colonic inflammation in a murine model of colitis in part by generating regulatory immune cells. Ultimately, this work may lead to the development of more effective therapeutics for the treatment of Crohn's disease.
Collapse
Affiliation(s)
| | - David M. Shepherd
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, Montana 59812
| |
Collapse
|
30
|
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 2011; 41:292-320. [PMID: 21323611 DOI: 10.3109/10408444.2010.524635] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous ligands of the aryl hydrocarbon receptor (AhR) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are highly toxic pollutants ubiquitously present in the environment. They cause a variety of toxic effects to different organs and tissues. Among other effects, TCDD exposure to laboratory animals leads to thymus atrophy and immunosuppression on the one hand, and to tumor formation on the other. Apoptosis appears to be involved in both these toxic effects: AhR activation by TCDD was discussed to induce apoptosis of immune cells, leading to the depletion of thymocytes and ultimately immunosuppression. This mechanism could help to explain the highly immunotoxic actions of TCDD but it is nevertheless under debate whether this is the mode of action for immunosuppression by this class of chemical substances. In other cell types, especially liver cells, TCDD inhibits apoptosis induced by genotoxic treatment. In initiation-promotion studies, TCDD was shown to be a potent liver tumor promoter. Among other theories it was hypothesized that TCDD acts as a tumor promoter by preventing initiated cells from undergoing apoptosis. The exact mechanisms of apoptosis inhibition by TCDD are not fully understood, but both in vivo and in vitro studies consistently showed an involvement of the tumor suppressor p53 in this effect. Various strings of evidence have been established linking apoptosis to the detrimental effects of exogenous activation of the AhR. Within this article, studies elucidating the effects of TCDD and related substances on apoptosis signaling, be it inducing or repressing, is to be reviewed.
Collapse
Affiliation(s)
- Martin Chopra
- Institute of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
31
|
Simones T, Shepherd DM. Consequences of AhR activation in steady-state dendritic cells. Toxicol Sci 2011; 119:293-307. [PMID: 21097750 PMCID: PMC3023567 DOI: 10.1093/toxsci/kfq354] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical aryl hydrocarbon receptor (AhR) ligand and a potent immunotoxicant. However, the mechanisms underlying TCDD-induced immunomodulation remain to be defined. Dendritic cells are professional antigen-presenting cells that constitutively express the AhR and are sensitive to TCDD-induced AhR activation. We hypothesized that AhR activation alters the differentiation and function of steady-state bone marrow-derived dendritic cells (BMDCs). To test this hypothesis, steady-state BMDCs from C57BL/6 mice were grown in the presence of TCDD or vehicle. TCDD-treated steady-state BMDCs (TCDD-BMDCs) displayed decreased expression of CD11c and CD11a, whereas increasing the frequency of major histocompatibility complex class II, CD86, CD80, and CD54. Similar phenotypic alterations were observed with the AhR ligands 6-formylindolo[3,2-b]carbazole and 2-(1H-indole-3'-carbonyl)-thiazole-4-carboxylic acid (ITE). TCDD-BMDCs from AhR(-/-) mice were refractory to TCDD-induced surface marker alterations, whereas TCDD-BMDCs from AhR(dbd/dbd) mice displayed similar phenotypic alterations as AhR(+/+) TCDD-BMDCs. Following lipopolysaccharide (LPS), cytosine-phosphate-guanine (CpG), or Imiquimod stimulation, TCDD-BMDCs secreted less interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. TCDD also altered NF-κB family member-binding activity in unstimulated and LPS- or CpG-stimulated steady-state BMDCs. The internalization of the soluble antigens, ovalbumin, and acetylated low-density lipoprotein was decreased, whereas internalization of latex beads was increased in TCDD-BMDCs when compared with vehicle-BMDCs. TCDD-BMDCs displayed increased messenger RNA expression of the regulatory gene IDO2 and following LPS stimulation upregulated IDO1, IDO2, TGFβ1, and TGFβ3 gene expression. Additionally, TCDD-BMDCs increased the generation of CD4(+) CD25(+) FoxP3(+) Tregs in vitro in an IDO-dependent fashion. However, TCDD-treated BMDCs did not alter antigen-specific T-cell activation in vivo. Overall, TCDD-induced AhR activation alters the differentiation, activation, innate, and immunoregulatory function but not the T cell-activating capacity of steady-state BMDCs.
Collapse
Affiliation(s)
- Tom Simones
- Department of Biomedical and Pharmaceutical Sciences
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana 59812
| | - David M. Shepherd
- Department of Biomedical and Pharmaceutical Sciences
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana 59812
| |
Collapse
|
32
|
Jin GB, Moore AJ, Head JL, Neumiller JJ, Lawrence BP. Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol Sci 2010; 116:514-22. [PMID: 20498003 DOI: 10.1093/toxsci/kfq153] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell-dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus-specific CD8(+) T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8(+) T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8(+) T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8(+) T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection.
Collapse
Affiliation(s)
- Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|