1
|
Abstract
Acute liver injury (ALI), that is, the development of reduced liver function in patients without preexisting liver disease, can result from a wide range of causes, such as viral or bacterial infection, autoimmune disease, or adverse reaction to prescription and over-the-counter medications. ALI patients present with a complex coagulopathy, characterized by both hypercoagulable and hypocoagulable features. Similarly, ALI patients display a profound dysregulation of the fibrinolytic system with the vast majority of patients presenting with a hypofibrinolytic phenotype. Decades of research in experimental acute liver injury in mice suggest that fibrinolytic proteins, including plasmin(ogen), plasminogen activators, fibrinolysis inhibitors, and fibrin(ogen), can contribute to initial hepatotoxicity and/or stimulate liver repair. This review summarizes major experimental findings regarding the role of fibrinolytic factors in ALI from the last approximately 30 years and identifies unanswered questions, as well as highlighting areas for future research.
Collapse
Affiliation(s)
- Gina E Capece
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
2
|
Poole LG, Fournier AK, Cline-Fedewa HM, Kopec AK, Luyendyk JP, Groeneveld DJ. Von Willebrand factor exerts hepatoprotective effects in acute but not chronic cholestatic liver injury in mice. Toxicology 2021; 463:152968. [PMID: 34619301 PMCID: PMC8585719 DOI: 10.1016/j.tox.2021.152968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver disease are associated with substantial alterations in the hemostatic system, including elevated levels of the platelet-adhesive protein von Willebrand factor (VWF). Carbon tetrachloride-induced liver fibrosis is reduced in VWF-deficient mice, but it is unclear if VWF plays a pathologic role in all settings of liver fibrosis. Indeed, several studies suggest an anti-fibrotic role for components of the hemostatic system, including platelets, in experimental settings of bile duct fibrosis. However, the role of VWF in this specific pathology has not been examined. We tested the hypothesis that VWF exerts hepatoprotective effects in experimental bile duct injury. Wild-type and VWF-deficient (VWF-/-) mice were challenged with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) and the impact of VWF deficiency on acute cholestatic liver injury and chronic liver fibrosis was determined. Acute ANIT (60 mg/kg, po)-induced cholestatic liver injury was associated with increased VWF plasma antigen and activity levels. VWF deficiency enhanced ANIT-induced hepatocellular injury, evidenced by increased plasma ALT activity and area of hepatocellular necrosis. Surprisingly, platelet accumulation within necrotic areas was increased in ANIT-challenged VWF-/- mice compared to wild-type mice. Compared to acute ANIT challenge, hepatic platelet accumulation was modest and appeared to be VWF-dependent in mice exposed to ANIT diet (0.05 %) for 6 weeks. However, contrasting the role of VWF after acute ANIT challenge, VWF deficiency did not impact biliary fibrosis induced by chronic ANIT exposure. The results suggest that VWF plays dichotomous roles in experimental acute and chronic ANIT-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anna-Katherine Fournier
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Holly M. Cline-Fedewa
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Dafna J. Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Enoxaparin prevents CXCL16/ADAM10-mediated cisplatin renal toxicity: Role of the coagulation system and the transcriptional factor NF-κB. Life Sci 2021; 270:119120. [PMID: 33545204 DOI: 10.1016/j.lfs.2021.119120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS C-X-C ligand 16 (CXCL16) is an exceptional chemokine that is expressed as transmembrane and soluble forms. Our aim is to shed lights on the role of CXCL16/ADAM10 (a disintegrin and metalloproteinase) in cisplatin (CP)-induced renal toxicity as well as possible protective effect of enoxaparin. MAIN METHODS Male albino mice were injected with CP (30 mg/kg, i.p.) in the presence or absence of enoxaparin (ENOX) (5 mg/kg, i.p.). Renal toxicity markers, serum level of cystatin-c, complete blood count (CBC), prothrombin time (Pt) and tissue expression of CXCL16, ADAM10, cluster of differentiation 3 (CD3), fibrinogen, tissue factor (TF), nuclear factor-κB (NF-κB) and tumour necrosis factor α (TNF-α) were measured. Besides, serum CXCL16 and histopathology were also analyzed. KEY FINDINGS CP increased renal toxicity markers, renal expression of CXCL16/ADAM10, fibrinogen, TF and CD3 tissue expression in a time-dependent manner, and elevated serum cystatin-c, CXCL16 and tissue TNF-α, NF-κB. Alternatively, ENOX restored the deteriorated parameters and reduced tissue level of NF-κB. SIGNIFICANCE This report, for the first time, showed that soluble CXCL16 resulting from ADAM10 cleavage may recruit T-cells to the renal glomeruli and tubules in CP toxicity. Furthermore, TF and fibrin, have similar expression and location pattern like CXCL16 and ADAM10 suggesting their possible interrelation. ENOX successfully restored the deteriorated parameters suggesting it may be an effective nephroprotective adjuvant therapy.
Collapse
|
4
|
Mahmoud NI, Messiha BA, Salehc IG, Abo-Saif AA, Abdel-Bakky MS. Interruption of platelets and thrombin function as a new approach against liver fibrosis induced experimentally in rats. Life Sci 2019; 231:116522. [DOI: 10.1016/j.lfs.2019.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
|
5
|
Ewees MG, Abdelghany TM, Abdel-Aziz AAH, Abdelbakky MS. Enoxaparin prevents fibrin accumulation in liver tissues and attenuates methotrexate-induced liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:623-631. [PMID: 30693382 DOI: 10.1007/s00210-019-01618-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
Abstract
Methotrexate (MTX) is a widely used drug for treatment of many malignant, rheumatic, and autoimmune diseases. However, hepatotoxicity remains one of the most serious side effects of MTX. The extrinsic coagulation pathway is activated after tissue injury through the release of tissue factor (TF) which activates a cascade of clotting factors including prothrombin and fibrinogen. Liver sinusoidal endothelial cells express endothelial nitric oxide synthase (eNOS) as a source for nitric oxide (NO) that serves as vasodilator and antithrombotic factor. In the current study, we tested the possible role of coagulation system activation in MTX-induced hepatotoxicity. Our results showed that single-dose administration of MTX significantly altered rat liver functions with concurrent turbulence in redox status. Immunofluorescence staining showed accumulation of fibrin in the periportal hepatocytes and downregulation of eNOS expression in hepatic endothelial and sinusoidal cells following MTX treatment. Moreover, MTX administration increased the expression of inducible nitric oxide synthase (iNOS) and NOSTRIN (eNOS traffic inducer) in the hepatic sinusoids. On the other hand, pre-treatment with enoxaparin rescued against MTX-induced liver injury with subsequent amelioration of liver redox status. Furthermore, it significantly prevented the effect of MTX on the expression of fibrin, iNOS, eNOS, and NOSTRIN. We concluded that liver tissue aggregation of the coagulation product, fibrin, may play a crucial role in the pathogenesis of MTX-induced liver injury.
Collapse
Affiliation(s)
| | | | | | - Mohamed S Abdelbakky
- Faculty of pharmacy, Al-Azhar University, Cairo, Egypt
- Faculty of pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Lisman T. Crosslinked clots formed independently of factor XIII and without fibrinogen-to-fibrin conversion - is this a liver-specific phenomenon? J Thromb Haemost 2019; 17:110-112. [PMID: 30412653 PMCID: PMC7379741 DOI: 10.1111/jth.14328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- T. Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
7
|
Nault R, Fader KA, Kopec AK, Harkema JR, Zacharewski TR, Luyendyk JP. From the Cover: Coagulation-Driven Hepatic Fibrosis Requires Protease Activated Receptor-1 (PAR-1) in a Mouse Model of TCDD-Elicited Steatohepatitis. Toxicol Sci 2016; 154:381-391. [PMID: 27613713 DOI: 10.1093/toxsci/kfw175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence supports a role for environmental chemical exposure in the pathology of non-alcoholic fatty liver disease (NAFLD), a disease process tightly linked to increased activity of the blood coagulation cascade. Exposure of C57BL/6 mice to the persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) recapitulates features of the NAFLD spectrum, including steatosis, hepatic injury, inflammation, and fibrosis. We assessed coagulation cascade activation, and determined the role of the thrombin receptor protease activated receptor-1 (PAR-1) in experimental TCDD-elicited NAFLD. Chronic exposure to TCDD (30 µg/kg every 4 days for 28 days) was associated with intrahepatic coagulation, indicated by increased plasma thrombin-antithrombin levels and hepatic fibrin(ogen) deposition. PAR-1 deficiency diminished TCDD-elicited body weight loss and relative liver weight was reduced in TCDD-exposed PAR-1-/- mice compared with TCDD-exposed wild-type mice. PAR-1 deficiency did not affect TCDD-induced hepatic steatosis or hepatocellular injury, as indicated by serum alanine aminotransferase activity. Despite a lack of effect on these 2 features of NAFLD pathology, PAR-1 deficiency was associated with a reduction in hepatic inflammation evident in liver histopathology, and reflected by a reduction in serum levels of the proinflammatory cytokine interleukin-6. Moreover, TCDD-driven hepatic collagen deposition was markedly reduced in PAR-1-deficient mice. These results indicate that experimental TCDD-elicited steatohepatitis is associated with coagulation cascade activation and PAR-1-driven hepatic inflammation and fibrosis.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Kelly A Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Anna K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan.,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Jack R Harkema
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Timothy R Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan; .,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
|
9
|
Kopec AK, Luyendyk JP. Role of Fibrin(ogen) in Progression of Liver Disease: Guilt by Association? Semin Thromb Hemost 2016; 42:397-407. [PMID: 27144445 DOI: 10.1055/s-0036-1579655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong experimental evidence indicates that components of the hemostatic system, including thrombin, exacerbate diverse features of experimental liver disease. Clinical studies have also begun to address this connection and some studies have suggested that anticoagulants can improve outcome in patients with liver disease. Among the evidence of coagulation cascade activation in models of liver injury and disease is the frequent observation of thrombin-driven hepatic fibrin(ogen) deposition. Indeed, hepatic fibrin(ogen) deposition has long been recognized as a consequence of hepatic injury. Although commonly inferred as pathologic due to protective effects of anticoagulants in mouse models, the role of fibrin(ogen) in acute liver injury and chronic liver disease may not be universally detrimental. The localization of hepatic fibrin(ogen) deposits within the liver is connected to the disease stimulus and in animal models of liver toxicity and chronic disease, fibrin(ogen) deposition may not always be synonymous with large vessel thrombosis. Here, we provide a balanced review of the experimental evidence supporting a direct connection between fibrin(ogen) and liver injury/disease pathogenesis, and suggest a path forward bridging experimental and clinical research to improve our knowledge on the nature and function of fibrin(ogen) in liver disease.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Lisman T. Platelets and fibrin in progression of liver disease: friends or foes? J Thromb Haemost 2015; 13:54-6. [PMID: 25393399 DOI: 10.1111/jth.12783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
- T Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Joshi N, Kopec AK, O'Brien KM, Towery KL, Cline-Fedewa H, Williams KJ, Copple BL, Flick MJ, Luyendyk JP. Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice. J Thromb Haemost 2015; 13:57-71. [PMID: 25353084 PMCID: PMC4487795 DOI: 10.1111/jth.12770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/17/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND The coagulation cascade has been shown to participate in chronic liver injury and fibrosis, but the contribution of various thrombin targets, such as protease activated receptors (PARs) and fibrin(ogen), has not been fully described. Emerging evidence suggests that in some experimental settings of chronic liver injury, platelets can promote liver repair and inhibit liver fibrosis. However, the precise mechanisms linking coagulation and platelet function to hepatic tissue changes following injury remain poorly defined. OBJECTIVES To determine the role of PAR-4, a key thrombin receptor on mouse platelets, and fibrin(ogen) engagement of the platelet αII b β3 integrin (αIIb β3 ) in a model of cholestatic liver injury and fibrosis. METHODS Biliary and hepatic injury was characterized following 4 week administration of the bile duct toxicant α-naphthylisothiocyanate (ANIT) (0.025%) in PAR-4-deficient mice, mice expressing a mutant form of fibrin(ogen) incapable of binding integrin αII b β3 (Fibγ(Δ5) ), and wild-type mice. RESULTS Elevated plasma thrombin-antithrombin and serotonin levels, hepatic fibrin deposition, and platelet accumulation in liver accompanied hepatocellular injury and fibrosis in ANIT-treated wild-type mice. PAR-4 deficiency reduced plasma serotonin levels, increased serum bile acid concentration, and exacerbated ANIT-induced hepatocellular injury and peribiliary fibrosis. Compared with PAR-4-deficient mice, ANIT-treated Fibγ(Δ5) mice displayed more widespread hepatocellular necrosis accompanied by marked inflammation, robust fibroblast activation, and extensive liver fibrosis. CONCLUSIONS Collectively, the results indicate that PAR-4 and fibrin-αII b β3 integrin engagement, pathways coupling coagulation to platelet activation, each exert hepatoprotective effects during chronic cholestasis.
Collapse
MESH Headings
- 1-Naphthylisothiocyanate
- Animals
- Antithrombin III
- Bile Acids and Salts/blood
- Blood Coagulation/genetics
- Blood Platelets/metabolism
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Cholestasis/blood
- Cholestasis/chemically induced
- Cholestasis/genetics
- Cholestasis/pathology
- Cholestasis/prevention & control
- Fibrinogens, Abnormal/genetics
- Fibrinogens, Abnormal/metabolism
- Genotype
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Experimental/blood
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Necrosis
- Peptide Hydrolases/blood
- Phenotype
- Platelet Activation/genetics
- Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
- Receptors, Thrombin/deficiency
- Receptors, Thrombin/genetics
- Serotonin/blood
- Signal Transduction
Collapse
Affiliation(s)
- N Joshi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Garcia-Irigoyen O, Carotti S, Latasa MU, Uriarte I, Fernández-Barrena MG, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Banales JM, Parks WC, Rodriguez JA, Orbe J, Prieto J, Páramo JA, Berasain C, Ávila MA. Matrix metalloproteinase-10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver Int 2014; 34:e257-e270. [PMID: 24119197 DOI: 10.1111/liv.12337] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases (MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration. METHODS The hepatic expression of MMP10 was examined in two murine models: liver regeneration after two-thirds partial hepatectomy (PH) and bile duct ligation (BDL). MMP10 was detected in liver tissues by qPCR, western blotting and immunohistochemistry. The effect of growth factors and toll-like receptor 4 (TLR4) agonists on MMP10 expression was studied in cultured parenchymal and biliary epithelial cells and macrophages respectively. The role of MMP10 was evaluated by comparing the response of Mmp10+/+ and Mmp10-/- mice to PH and BDL. The intrahepatic turnover of the extracellular matrix proteins fibrin (ogen) and fibronectin was examined. RESULTS MMP10 mRNA was readily induced after PH and BDL. MMP10 protein was detected in hepatocytes, cholangiocytes and macrophages. In cultured liver epithelial cells, MMP10 expression was additively induced by transforming growth factor-β and epidermal growth factor receptor ligands. TLR4 ligands also stimulated MMP10 expression in macrophages. Lack of MMP10 resulted in increased liver injury upon PH and BDL. Resolution of necrotic areas was impaired, and Mmp10-/- mice showed increased fibrogenesis and defective turnover of fibrin (ogen) and fibronectin. CONCLUSIONS MMP10 expression is induced during mouse liver injury and participates in the hepatic wound healing response. The profibrinolytic activity of MMP10 may be essential in this novel hepatoprotective role.
Collapse
Affiliation(s)
- Oihane Garcia-Irigoyen
- Centro de Investigación Médica Aplicada (CIMA), Division of Hepatology and Gene Therapy, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Steinberg JD, Raju A, Chandrasekharan P, Yang CT, Khoo K, Abastado JP, Robins EG, Townsend DW. Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride. EJNMMI Res 2014; 4:15. [PMID: 24606872 PMCID: PMC3974015 DOI: 10.1186/2191-219x-4-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/21/2014] [Indexed: 01/14/2023] Open
Abstract
Background Cerenkov luminescence imaging (CLI) is an emerging imaging technique where visible light emitted from injected beta-emitting radionuclides is detected with an optical imaging device. CLI research has mostly been focused on positive contrast imaging for ascertaining the distribution of the radiotracer in a way similar to other nuclear medicine techniques. Rather than using the conventional technique of measuring radiotracer distribution, we present a new approach of negative contrast imaging, where blood vessel attenuation of Cerenkov light emitted by [68Ga]GaCl3 is used to image vasculature. Methods BALB/c nude mice were injected subcutaneously in the right flank with HT-1080 fibrosarcoma cells 14 to 21 days prior to imaging. On the imaging day, [68Ga]GaCl3 was injected and the mice were imaged from 45 to 90 min after injection using an IVIS Spectrum in vivo imaging system. The mice were imaged one at a time, and manual focus was used to bring the skin into focus. The smallest view with pixel size around 83 μm was used to achieve a sufficiently high image resolution for blood vessel imaging. Results The blood vessels in the tumor were clearly visible, attenuating 7% to 18% of the light. Non-tumor side blood vessels had significantly reduced attenuation of 2% to 4%. The difference between the attenuation of light of tumor vessels (10% ± 4%) and the non-tumor vessels (3% ± 1%) was significant. Moreover, a necrotic core confirmed by histology was clearly visible in one of the tumors with a 21% reduction in radiance. Conclusions The negative contrast CLI technique is capable of imaging vasculature using [68Ga]GaCl3. Since blood vessels smaller than 50 μm in diameter could be imaged, CLI is able to image structures that conventional nuclear medicine techniques cannot. Thus, the negative contrast imaging technique shows the feasibility of using CLI to perform angiography on superficial blood vessels, demonstrating an advantage over conventional nuclear medicine techniques.
Collapse
Affiliation(s)
- Jeffrey D Steinberg
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lalor PF, Herbert J, Bicknell R, Adams DH. Hepatic sinusoidal endothelium avidly binds platelets in an integrin-dependent manner, leading to platelet and endothelial activation and leukocyte recruitment. Am J Physiol Gastrointest Liver Physiol 2013; 304:G469-78. [PMID: 23257923 PMCID: PMC3602682 DOI: 10.1152/ajpgi.00407.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelets have recently been shown to drive liver injury in murine models of viral hepatitis and promote liver regeneration through the release of serotonin. Despite their emerging role in inflammatory liver disease, little is known about the mechanisms by which platelets bind to the hepatic vasculature. Therefore, we referenced public expression data to determine the profile of potential adhesive receptors expressed by hepatic endothelium. We then used a combination of tissue-binding and flow-based endothelial-binding adhesion assays to show that resting platelets bind to human hepatic sinusoidal endothelial cells and that the magnitude of adhesion is greatly enhanced by thrombin-induced platelet activation. Adhesion was mediated by the integrins Gp1b, αIIbβIII, and αvβ3, as well as immobilized fibrinogen. Platelet binding to hepatic endothelial cells resulted in NF-κB activation and increased chemokine secretion. The functional relevance of platelet binding was confirmed by experiments that showed markedly increased binding of neutrophils and lymphocytes to hepatic endothelial cells under shear conditions replicating those found in the hepatic sinusoid, which was in part dependent on P-selectin expression. Thus the ability of platelets to activate endothelium and promote leukocyte adhesion may reflect an additional mechanism through which they promote liver injury.
Collapse
Affiliation(s)
| | - John Herbert
- 2CRUK Angiogenesis Research Group, Immunity and Infection, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Roy Bicknell
- 2CRUK Angiogenesis Research Group, Immunity and Infection, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | - David H. Adams
- 1Centre for Liver Research and NIHR Biomedical Research Unit, and
| |
Collapse
|
15
|
Sullivan BP, Kassel KM, Jone A, Flick MJ, Luyendyk JP. Fibrin(ogen)-independent role of plasminogen activators in acetaminophen-induced liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2321-9. [PMID: 22507835 DOI: 10.1016/j.ajpath.2012.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/19/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Hepatic fibrin(ogen) has been noted to occur after acetaminophen (APAP)-induced liver injury in mice. Deficiency in plasminogen activator inhibitor-1 (PAI-1), an endogenous inhibitor of fibrinolysis, increases APAP-induced liver injury in mice. However, the roles of fibrinogen and fibrinolysis in APAP-induced liver injury are not known. We tested the hypothesis that hepatic fibrin(ogen) deposition reduces severity of APAP-induced liver injury. APAP-induced (300 mg/kg) liver injury in mice was accompanied by thrombin generation, consumption of plasma fibrinogen, and deposition of hepatic fibrin. Neither fibrinogen depletion with ancrod nor complete fibrinogen deficiency [via knockout of the fibrinogen alpha chain gene (Fbg(-/-))] affected APAP-induced liver injury. PAI-1 deficiency (PAI-1(-/-)) increased APAP-induced liver injury and hepatic fibrin deposition 6 hours after APAP administration, which was followed by marked hemorrhage at 24 hours. As in PAI-1(-/-) mice, administration of recombinant tissue plasminogen activator (tenecteplase, 5 mg/kg) worsened APAP-induced liver injury and hemorrhage in wild-type mice. In contrast, APAP-induced liver injury was reduced in both plasminogen-deficient mice and in wild-type mice treated with tranexamic acid, an inhibitor of plasminogen activation. Activation of matrix metalloproteinase 9 (MMP-9) paralleled injury, but MMP-9 deficiency did not affect APAP-induced liver injury. The results indicate that fibrin(ogen) does not contribute to development of APAP-induced liver injury and suggest rather that plasminogen activation contributes to APAP-induced liver injury.
Collapse
Affiliation(s)
- Bradley P Sullivan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|
16
|
Luyendyk JP, Kassel KM, Allen K, Guo GL, Li G, Cantor GH, Copple BL. Fibrinogen deficiency increases liver injury and early growth response-1 (Egr-1) expression in a model of chronic xenobiotic-induced cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1117-25. [PMID: 21356363 DOI: 10.1016/j.ajpath.2010.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 01/26/2023]
Abstract
Chronic cholestatic liver injury induced by cholestasis in rodents is associated with hepatic fibrin deposition, and we found evidence of fibrin deposition in livers of patients with cholestasis. Key components of the fibrinolytic pathway modulate cholestatic liver injury by regulating activation of hepatocyte growth factor. However, the exact role of hepatic fibrin deposition in chronic cholestasis is not known. We tested the hypothesis that fibrinogen (Fbg) deficiency worsens liver injury induced by cholestasis. Fbg-deficient mice (Fbgα(-/-) mice) and heterozygous control mice (Fbgα(+/-) mice) were fed either the control diet or a diet containing 0.025% α-naphthylisothiocyanate (ANIT), which selectively injures bile duct epithelial cells in the liver, for 2 weeks. Hepatic fibrin and collagen deposits were evident in livers of heterozygous control mice fed the ANIT diet. Complete Fbg deficiency was associated with elevated serum bile acids, periportal necrosis, and increased serum alanine aminotransferase activity in mice fed the ANIT diet. Fbg deficiency was associated with enhanced hepatic expression of the transcription factor early growth response-1 (Egr-1) and enhanced induction of genes encoding the Egr-1-regulated proinflammatory chemokines monocyte chemotactic protein-1, KC growth-regulated protein, and macrophage inflammatory protein-2. Interestingly, peribiliary collagen deposition was not evident near necrotic areas in Fbg-deficient mice. The results suggest that in this model of chronic cholestasis, fibrin constrains the release of bile constituents from injured intrahepatic bile ducts, thereby limiting the progression of hepatic inflammation and hepatocellular injury.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Luyendyk JP, Flanagan KC, Williams CD, Jaeschke H, Slusser JG, Mackman N, Cantor GH. Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice. Toxicol Appl Pharmacol 2010; 250:256-62. [PMID: 21070799 DOI: 10.1016/j.taap.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 12/13/2022]
Abstract
Cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) is provoked by injury to intrahepatic bile ducts and the progression of hepatic necrosis requires the procoagulant protein tissue factor (TF) and extrahepatic cells including neutrophils. Recent studies have shown that myeloid cell TF contributes to neutrophil activation. We tested the hypothesis that myeloid cell TF contributes to neutrophil activation in ANIT-treated mice. TF activity in liver homogenates increased significantly in TF(flox/flox) mice treated with ANIT, but not in TF(flox/flox)/LysMCre mice (TF(ΔMyeloid) mice), which have reduced TF expression in monocytes/macrophages and neutrophils. Myeloid cell-specific TF deficiency did not alter expression of the chemokines KC or MIP-2 but reduced hepatic neutrophil accumulation in ANIT-treated mice at 48 h as indicated by tissue myeloperoxidase (MPO) activity. Myeloid cell TF deficiency significantly reduced CD11b expression by blood neutrophils in ANIT-treated mice, and this was associated with reduced plasma MPO protein levels, an index of neutrophil degranulation. However, myeloid cell-specific TF deficiency had no effect on ANIT-induced coagulation cascade activation. The increase in serum ALT and ALP activities in ANIT-treated mice was reduced by myeloid cell TF deficiency (p<0.05), but the myeloid cell TF deficiency did not reduce hepatic necrosis at 48 h, as determined by histopathology and morphometry. The results suggest that myeloid cell TF contributes to neutrophil CD11b expression during cholestasis by a coagulation-independent pathway. However, the resultant reduction in neutrophil accumulation/activation is insufficient to substantially reduce ANIT hepatotoxicity, suggesting that myeloid cell TF is only one of many factors modulating hepatic necrosis during cholestasis.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd, MS-1018, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | |
Collapse
|