1
|
Xu C, Huang H, Zou H, Zhao Y, Liu L, Chai R, Zhang J. The miR-9-5p/KLF5/IL-1β Axis Regulates Airway Smooth Muscle Cell Proliferation and Apoptosis to Aggravate Airway Remodeling and Inflammation in Asthma. Biochem Genet 2024; 62:3996-4010. [PMID: 38267617 DOI: 10.1007/s10528-023-10640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The aim of this study was to investigate the underlying mechanism of miR-9-5p in airway smooth muscle cells (ASMCs) of asthmatic mice. An asthmatic mouse model was established through the intraperitoneal injection of ovalbumin. Histopathological changes in lung tissues of asthmatic mice were observed using HE staining. ASMCs was identified using immunofluorescence staining and cell morphology. The mRNA expressions of miR-9-5p, KLF5, and IL-1β were measured using RT-qPCR. Additionally, CCK8 assay and flow cytometry were applied for ASMC proliferation and apoptosis, respectively. The protein levels of OPN, KLF5, and IL-1β were assessed using western blotting. The results showed that miR-9-5p was abnormally downregulated in lung tissues and ASMCs of asthmatic mice. Dual-Luciferase Reporter Assay and Chromatin immunoprecipitation confirmed that miR-9-5p targeted KLF5 that bounds to IL-1β promoter. Besides, miR-9-5p negatively regulated IL-1β mRNA and protein level via KLF5. Moreover, miR-9-5p was found to positively regulate ASMC apoptosis, negatively regulate ASMC proliferation and OPN protein expression, albeit with partial reversal by KLF5. Mechanistically, the regulation of ASMC proliferation and apoptosis by miR-9-5p is achieved by targeting KLF5/IL-1β axis.
Collapse
Affiliation(s)
- Chong Xu
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Hehua Huang
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Hongmei Zou
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Yumeng Zhao
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China
| | - Lu Liu
- Department of Respiration, Xinmi Traditional Chinese Medicine Hospital, Xinmi, 452370, China
| | - Ruonan Chai
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China.
| | - Junli Zhang
- Department of Respiration, General Hospital of Northern Theater Command, No 83 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
2
|
Ramakrishnan RK, Bajbouj K, Guimei M, Rawat SS, Kalaji Z, Hachim MY, Mahboub B, Ibrahim SM, Hamoudi R, Halwani R, Hamid Q. Bcl10 Regulates Lipopolysaccharide-Induced Pro-Fibrotic Signaling in Bronchial Fibroblasts from Severe Asthma Patients. Biomedicines 2022; 10:1716. [PMID: 35885021 PMCID: PMC9312497 DOI: 10.3390/biomedicines10071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-β1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Surendra Singh Rawat
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Zaina Kalaji
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Rashid Hospital, Dubai Health Authority, Dubai P.O. Box 4545, United Arab Emirates
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Immunology Research Lab, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Meakins-Christie Laboratories, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
3
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
4
|
Huang CH, Geng JH, Wu DW, Chen SC, Hung CH, Kuo CH. Betel Nut Chewing Was Associated with Obstructive Lung Disease in a Large Taiwanese Population Study. J Pers Med 2021; 11:jpm11100973. [PMID: 34683114 PMCID: PMC8537851 DOI: 10.3390/jpm11100973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of betel nut chewing in Taiwan is high at approximately 7%, however, few studies have evaluated the relationship between betel nut chewing and lung disease. Therefore, the aim of this study was to investigate associations between betel nut chewing and lung function in 80,877 participants in the Taiwan Biobank (TWB). We further investigated correlations between betel nut chewing characteristics such as years of use, frequency, daily amount, and accumulative dose, with obstructive lung disease. We used data from the TWB. Lung function was assessed using spirometry measurements of forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). The participants were classified into normal lung function and obstructive lung function (FEV1/FVC < 70%) groups. The participants were asked questions about betel nut chewing, including years of use, frequency, and daily amount. After multivariable analysis, betel nut chewing (odds ratio [OR] = 1.159; p < 0.001) was significantly associated with FEV1/FVC < 70% in all participants (n = 80,877). Further, in the participants who chewed betel nut (n = 5135), a long duration of betel nut chewing (per 1 year; OR = 1.008; p = 0.012), betel nut use every day (vs. 1–3 days/month; OR = 1.793; p = 0.036), 10–20 quids a day (vs. <10 quids; OR = 1.404; p = 0.019), 21–30 quids a day (vs. <10 quids; OR = 1.662; p = 0.010), ≥31 quids a day (vs. <10 quids; OR = 1.717; p = 0.003), and high cumulative dose (per 1 year × frequency × daily score; OR = 1.001; p = 0.002) were significantly associated with FEV1/FVC < 70%. In this large population-based cohort study, chewing betel nut was associated with obstructive lung disease. Furthermore, a long duration of betel nut chewing, more frequent use, higher daily amount, and high cumulative dose were associated with obstructive lung disease. This suggests that preventing betel nut chewing should be considered to reduce obstructive lung disease in Taiwan.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Correspondence: ; Tel.: +886-7-8036-783 (ext. 3440); Fax: +886-7-8063-346
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 482, Shan-Ming Road, Hsiao-Kang District, Kaohsiung 812, Taiwan; (D.-W.W.); (C.-H.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Sun L, Zhou X, Li Y, Chen W, Wu S, Zhang B, Yao J, Xu A. KLF5 regulates epithelial-mesenchymal transition of liver cancer cells in the context of p53 loss through miR-192 targeting of ZEB2. Cell Adh Migr 2021; 14:182-194. [PMID: 32965165 PMCID: PMC7553557 DOI: 10.1080/19336918.2020.1826216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) can both promote and suppress cell migration, but the underlying mechanisms have not been elucidated. In this study, we show that the function of KLF5 in epithelial-mesenchymal transition (EMT) and migration of liver cancer cells depends on the status of the cellular tumor antigen p53 (p53). Furthermore, zinc finger E-box-binding homeobox 2 (ZEB2) is the main regulator of KLF5 in EMT in liver cancer cells in the context of p53 loss. Most importantly, the regulation of ZEB2 by p53 and KLF5 is indirect and that miR-192 mediates this regulation. Finally, we find that in invasive liver cancer, KLF5 is absent in the context of p53 loss or mutation.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
6
|
Wei W, Chen W, He N. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation. J Transl Med 2021; 19:258. [PMID: 34118928 PMCID: PMC8199843 DOI: 10.1186/s12967-021-02812-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Asthma is a frequently occurring respiratory disease with an increasing incidence around the world. Airway inflammation and remodeling are important contributors to the occurrence of asthma. We conducted this study aiming at exploring the effect of Histone deacetylase 4 (HDAC4)-mediated Kruppel-like factor 5 (KLF5)/Slug/CXC chemokine ligand-12 (CXCL12) axis on the development of asthma in regulation of airway inflammation and remodeling. Methods An asthmatic rat model was induced by ovalbumin (OVA) irrigation, and determined HDAC4, KLF5, Slug, and CXCL12 expression in the lung tissues by RT-qPCR and Western blot assay. OVA was also used to induce a cell model of asthma in human BEAS-2B and HBE135-E6E7bronchial epithelial cells. The airway hyperresponsiveness (AHR), and expression of inflammatory cytokines in model mice were examined using methacholine challenge test and ELISA. The biological behaviors were measured in asthma model bronchial smooth muscle cells (BSMCs) following loss- and gain- function approaches. The interactions between HDAC4, KLF5, Slug, and CXCL12 were also detected by IP assay, dual luciferase gene reporter assay, and ChIP. Results HDAC4 was upregulated in lung tissues of OVA-induced asthmatic mice, and inhibition of HDAC4 alleviated the airway inflammation and remodeling. HDAC4 increased KLF5 transcriptional activity through deacetylation; deacetylated KLF5 bound to the promoter of Slug and transcriptionally upregulated Slug expression, which in turn increased the expression of CXCL12 to promote the inflammation in bronchial epithelial cells and thus induce the proliferation and migration of BSMCs. Conclusion Collectively, HDAC4 deacetylates KLF5 to upregulate Slug and CXCL12, thereby causing airway remodeling and facilitating progression of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02812-7.
Collapse
Affiliation(s)
- Wendi Wei
- Department of Hepatology, Taian Hospital of Traditional Chinese Medicine, Taian, 271000, People's Republic of China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Naifeng He
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Salehi B, Konovalov DA, Fru P, Kapewangolo P, Peron G, Ksenija MS, Cardoso SM, Pereira OR, Nigam M, Nicola S, Pignata G, Rapposelli S, Sestito S, Anil Kumar NV, de la Luz Cádiz-Gurrea M, Segura-Carretero A, P Mishra A, Sharifi-Rad M, Cho WC, Taheri Y, Setzer WN, Sharifi-Rad J. Areca catechu-From farm to food and biomedical applications. Phytother Res 2020; 34:2140-2158. [PMID: 32159263 DOI: 10.1002/ptr.6665] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/29/2023]
Abstract
The family Arecaceae includes 181 genera and 2,600 species with a high diversity in physical characteristics. Areca plants, commonly palms, which are able to grow in nearly every type of habitat, prefer tropical and subtropical climates. The most studied species Areca catechu L. contains phytochemicals as phenolics and alkaloids with biological properties. The phenolics are mainly distributed in roots followed by fresh unripe fruits, leaves, spikes, and veins, while the contents of alkaloids are in the order of roots, fresh unripe fruits, spikes, leaves, and veins. This species has been reputed to provide health effects on the cardiovascular, respiratory, nervous, metabolic, gastrointestinal, and reproductive systems. However, in many developing countries, quid from this species has been associated with side effects, which include the destruction of the teeth, impairment of oral hygiene, bronchial asthma, or oral cancer. Despite these side effects, which are also mentioned in this work, the present review collects the main results of biological properties of the phytochemicals in A. catechu. This study emphasizes the in vitro and in vivo antioxidant, antimicrobial, anticancer, and clinical effectiveness in humans. In this sense, A. catechu have demonstrated effectiveness in several reports through in vitro and in vivo experiments on disorders such as antimicrobial, antioxidant, or anticancer. Moreover, our findings demonstrate that this species presents clinical effectiveness on neurological disorders. Hence, A. catechu extracts could be used as a bioactive ingredient for functional food, nutraceuticals, or cosmeceuticals. However, further studies, especially extensive and comprehensive clinical trials, are recommended for the use of Areca in the treatment of diseases.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Dmitry A Konovalov
- Department of Pharmacognozy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A branch of Volgograd State Medical University Ministry of Health of the Russian Federation, Pyatigorsk, Russia
| | - Pascaline Fru
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Petrina Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mileski S Ksenija
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Olivia R Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, USA
- Aromatic Plant Research Center, Lehi, Utah, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
8
|
Feng FM, Zhang L. Analysis of KLF5 expression and its prognostic significance in gastric cancer based on Oncomine and Kaplan-Meier Plotter. Shijie Huaren Xiaohua Zazhi 2019; 27:734-741. [DOI: 10.11569/wcjd.v27.i12.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy of the digestive system. Most patients with advanced GC have a poor prognosis and lack of prognostic predictors.
AIM To analyze the expression of Kruppel-like factor 5 (KLF5) in GC and its correlation with patient prognosis by using Oncomie and Kaplan-Meier Plotter databases.
METHODS The data sets of KLF5 gene expression in Oncomie and Kaplan-Meier Plotter databases were collected. The differential expression of KLF5 gene in GC tissues was deeply mined. According to the median expression level of KLF5, the patients were divided into a high-expression group and low-expression group. Survival curves were drawn and log-rank test was used to compare the overall survival and disease-free survival of the two groups. Meanwhile, the clinical data of 41 patients with GC treated at our hospital were retrospectively analyzed. The expression of KLF5 in the 41 patients with GC was detected by immunohistochemistry, and the relationship between the expression of KLF5 and the clinicopathological characteristics of patients was analyzed.
RESULTS A total of 424 studies on KLF5 gene expression were collected in Oncomine database, of which 35 showed differential expression of KLF5 in normal vs cancer tissues. Compared with normal tissues, 8 datasets showed that KLF5 was highly expressed in cancer tissues and 27 datasets showed low expression in cancer tissues. Cluster analysis showed that KLF5 was co-expressed with 20 genes such as ST14 and TMEM125 (co-down-regulated or up-regulated), suggesting that these co-expressed genes might be functionally related. The differential expression of KLF5 gene in GC tissues was analyzed by using 10 data sets of KLF5 expression chips from Oncomine database. Four of them indicated that the expression level of KLF5 in GC tissues was significantly increased. In the Kaplan-Meier Plotter database, two related gene chips were used to analyze the relationship between the expression of KLF5 and the prognosis of GC patients. The long-rank test showed that the overall survival and disease-free survival of patients with high expression of KLF5 were less than those of patients with low expression (P < 0.05). Immunohistochemical analysis showed that 29 (70.7%) of 41 patients with GC were KLF5 positive. There was no significant correlation between KLF5 positive expression and clinicopathological features such as gender, age, tumor stage, or tumor grade (P > 0.05).
CONCLUSION The high expression of KLF5 in GC is associated with a poor prognosis, although the expression of KLF5 is not related to the clinicopathological characteristics of GC patients.
Collapse
Affiliation(s)
- Fu-Mei Feng
- Department of Gastrointestinal Surgery, Tianjin Baodi District People's Hospital, Tianjin 301800, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi District People's Hospital, Tianjin 301800, China
| |
Collapse
|
9
|
Pan HH, Hsiao YP, Chen PJ, Kang YT, Chao YH, Sheu JN, Lue KH, Ko JL. Epithelial growth factor receptor tyrosine kinase inhibitors alleviate house dust mite allergen Der p2-induced IL-6 and IL-8. ENVIRONMENTAL TOXICOLOGY 2019; 34:476-485. [PMID: 30623574 DOI: 10.1002/tox.22701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Steroid-insensitive asthma-related airway inflammation is associated with the expression of epidermal growth factor receptor (EGFR) tyrosine kinase in asthmatic bronchial epithelium. Proinflammatory cytokines IL-6 and IL-8 are related to steroid-insensitive asthma. It is currently unknown how EGFR-tyrosine kinase inhibitors (EGFR-TKIs) affects house dust mite (HDM)-induced asthma in terms of inflammatory cytokines related to steroid-resistant asthma and further signaling pathway. Cytokine expressions and EGFR signaling pathway were performed by ELISA, reverse transcriptase PCR, real-time PCR, and Western blot in cell-line models. AMP-activated protein kinase (AMPK) pathway-related inhibitors were applied to confirm the association between EGFR-TKI and AMPK pathway. HDM induced IL-6 and IL-8 in a dose-dependent manner. Both Erlotinib (Tarceva) and Osimertinib (AZD-9291) reduced the levels of HDM-stimulated IL-6 and IL-8 levels in BEAS-2B cells. AZD-9291 was more effective than Erlotinib in inhibiting phospho-EGFR, and downstream phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and phopho-signal transducer and activator of transcription 3 (p-STAT3) pathway signaling. In addition, AMPK pathway-related inhibitor, Calcium-/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor, down-regulated IL-8, but EGFR-TKI had no effect on AMPK pathway. Our findings highlight EGFR-TKIs, Tarceva, and AZD-9291, attenuate HDM-induced inflammatory IL-6 and IL-8 cytokines via EGFR signaling axis pathway, but not AMPK signaling pathway.
Collapse
Affiliation(s)
- Hui-Hsien Pan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Institute of Allergy, Immunology, and Rheumatology, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ping-Ju Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hua Chao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ji-Nan Sheu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Institute of Allergy, Immunology, and Rheumatology, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Institute of Allergy, Immunology, and Rheumatology, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Gu L, Xie C, Peng Q, Zhang J, Li J, Tang Z. Arecoline suppresses epithelial cell viability through the Akt/mTOR signaling pathway via upregulation of PHLPP2. Toxicology 2019; 419:32-39. [PMID: 30910432 DOI: 10.1016/j.tox.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Arecoline, the major active ingredient of the betel nut, is involved in the pathogenesis of oral submucous fibrosis. However, the underlying mechanism of this pathogenesis remains unclear. In this study, we found that arecoline suppresses the cell proliferation of the HaCaT epithelial cell and induces cell cycle arrest at the G1/S phase with an IC50 of 50 μg/mL. Furthermore, we found that arecoline reduces the protein level of cyclin D1, but it has no effect on its mRNA level and protein stability, implying that arecoline may modulate the translation of cyclin D1. We also observed the downregulation of the Akt/mTOR signaling pathway after treatment with arecoline, which may be related to the translation of cyclin D1. RNA-seq analysis identified that PHLPP2, the direct upstream target of Akt, is significantly upregulated after arecoline treatment. siRNA-mediated knockdown of PHLPP2 recovered the phosphorylation state of Akt, as well as attenuated the effect of arecoline on cell viability. Thus, our study revealed the crucial role of PHLPP2 in arecoline-induced cell viability suppression.
Collapse
Affiliation(s)
- Liqun Gu
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Changqing Xie
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qian Peng
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Jiaming Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Zhangui Tang
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
11
|
Jo KM, Lim HK, Sull JW, Choi E, Lee JS, Cheong MA, Hong MH, Kim Y, Kim IS. Thymus and activation-regulated chemokine (TARC)/CCL17 and IgE are associated with elderly asthmatics. IMMUNITY & AGEING 2018; 15:13. [PMID: 29755573 PMCID: PMC5936629 DOI: 10.1186/s12979-018-0118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Background The pathogenesis of asthma, which is an allergic lung disease, is associated with a variety of allergens such as house dust mite, pollen, and mould, IgE containing serum IgE and allergen-specific-IgE, and inflammatory cytokines including thymus and activation-regulated chemokine (TARC)/CCL17. Because aging is an essential factor in the pathogenesis of asthma, we examined biomarkers related to asthmatic subjects depending on age. Results Physiological indices such as FEV1(forced expiratory capacity in 1 s), FEV1 (% predicted), and FEV1/FVC(forced vital capacity) (%) in asthmatic subjects were lower than those in normal subjects. Total IgE, Der p1 specific IgE, and Der f1 specific IgE were elevated in serum of asthmatics relative to normal individuals. Regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5 in serum and interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein (MCP)-1/CCL2, RANTES, and macrophage inflammatory protein (MIP)-1α/CCL3 in bronchoalveolar lavage fluid (BALF) of asthmatic subjects were higher than in normal individuals. Upon classification of experimental groups depending on age, physiological indices and Der p1-specific IgE (class) were decreased in middle aged adult and elderly adult groups relative to the young adult group. TARC levels in serum were strongly elevated in the elderly adult group relative to the young adult and the middle aged adult groups. TARC in serum was related to total IgE in serum in the elderly adult group. Conclusions Taken together, although TARC in serum and BALF is not different between normal and asthmatic individuals, TARC increases in serum of elderly asthmatic subjects. The level of TARC has a positive effect on the level of IgE in the elderly adult group. These findings may help us better understand the relationship of pathogenesis of allergic diseases and aging. Electronic supplementary material The online version of this article (10.1186/s12979-018-0118-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung Mi Jo
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea
| | - Hyo Kyung Lim
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryoung-ro 771 beon-gil, Jung-Gu, Daejeon, 34824 Republic of Korea
| | - Jae Woong Sull
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea.,3Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, 13135 Korea
| | - Eugene Choi
- 4Department of Respiratory Internal Medicine, College of Medicine, Konyang University, Daejeon, 35365 Korea
| | - Ji-Sook Lee
- 5Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 54538 Republic of Korea
| | - Mee Ae Cheong
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea
| | - Min Hwa Hong
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea
| | - Yoori Kim
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea
| | - In Sik Kim
- 1Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon, 34824 Korea.,2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryoung-ro 771 beon-gil, Jung-Gu, Daejeon, 34824 Republic of Korea
| |
Collapse
|
12
|
Wu YC, Shen YC, Chang JWC, Hsieh JJ, Chu Y, Wang CH. Autocrine CCL5 promotes tumor progression in esophageal squamous cell carcinoma in vitro. Cytokine 2018; 110:94-103. [PMID: 29705397 DOI: 10.1016/j.cyto.2018.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
The pro-tumoral effects of CCL5 have been identified in numerous cancer types. We successfully cultivated 4 esophageal squamous cell carcinoma (ESCC) cell lines, including TWES-1, TWES-3 and a pair of cell lines derived from primary lesion (TWES-4PT) and metastatic lymph node (TWES-4LN) of the same patient. Whole genome screening showed that TWES-4LN expressed higher levels of CCL5 compared to that of TWES-4PT; quantification of protein secretion displayed comparable results, suggesting that CCL5 could be associated with lymph node metastasis in ESCC. CCL5 knockdown by siRNA significantly reduced basal growth rate, tumor migration and invasiveness in the paired cell lines; whereas this treatment induced cell apoptosis in TWES-1 and TWES-3. CCR5 antagonist maraviroc significantly inhibited tumor migration and invasion in the paired cell lines without affecting tumor growth. Collectively, these results suggest that CCL5 autocrine loop may promote ESCC progression; targeting the CCL5/CCR5 axis could be a potential therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yung-Chi Shen
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Jia-Juan Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yen Chu
- Department of Medical Research and Development, Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
| | - Cheng-Hsu Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan.
| |
Collapse
|
13
|
Kiatsurayanon C, Niyonsaba F, Chieosilapatham P, Okumura K, Ikeda S, Ogawa H. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors. J Dermatol Sci 2016; 83:190-9. [PMID: 27237787 DOI: 10.1016/j.jdermsci.2016.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/24/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND In addition to their antimicrobial activities, antimicrobial peptides, also known as host defense peptides (HDPs) activate keratinocytes; promote wound healing; and improve the skin barrier. AG-30/5C is a novel angiogenic HDP that activates various functions of fibroblasts and endothelial cells, including cytokine/chemokine production and wound healing. OBJECTIVES To investigate whether AG-30/5C activates human keratinocytes and to examine the underlying mechanisms. METHODS Production of cytokines/chemokines was assessed by ELISA. Expression of Mas-related G-protein coupled receptors X (MrgXs) in keratinocytes was determined by real-time PCR and Western blot. MAPK and NF-κB activation was analysed by Western blot. Cell migration was assessed by chemotaxis microchamber and in vitro wound closure assay, whereas cell proliferation was analysed using an XTT assay. RESULTS We found that AG-30/5C was more efficient than its parent peptide AG-30 in increasing the production of various cytokines/chemokines and promoting keratinocyte migration and proliferation. Furthermore, MrgX3 and MrgX4 receptors were constitutively expressed in keratinocytes at higher levels than MrgX1 and MrgX2, and were up-regulated upon stimulation with TLR ligands. Because MrgX3 and MrgX4 siRNAs suppressed AG-30/5C-mediated cytokine/chemokine production, keratinocyte migration and proliferation, we propose that AG-30/5C utilizes these MrgXs to stimulate keratinocytes. In addition, AG-30/5C-induced activation of keratinocytes was controlled by MAPK and NF-κB pathways, as evidenced by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors. Indeed, we confirmed that AG-30/5C enhanced phosphorylation of MAPKs and IκB. CONCLUSIONS Our findings provide novel evidence that AG-30/5C may be a useful therapeutic agent for wound healing by activating human keratinocytes.
Collapse
Affiliation(s)
- Chanisa Kiatsurayanon
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| | - Panjit Chieosilapatham
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
14
|
Wang Q, Li H, Yao Y, Lu G, Wang Y, Xia D, Zhou J. HB-EGF-Promoted Airway Smooth Muscle Cells and Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse. THE JOURNAL OF IMMUNOLOGY 2016; 196:2361-7. [PMID: 26826248 DOI: 10.4049/jimmunol.1402126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/03/2016] [Indexed: 01/09/2023]
Abstract
The airway smooth muscle (ASM) cells' proliferation, migration, and their progenitor's migration are currently regarded as causative factors for ASM remodeling in asthma. Heparin-binding epidermal growth factor (HB-EGF), a potent mitogen and chemotactic factor, could promote ASM cell proliferation through MAPK pathways. In this study, we obtained primary ASM cells and their progenitors from C57BL/6 mice and went on to explore the role of HB-EGF in these cells migration and the underlying mechanisms. We found that recombinant HB-EGF (rHB-EGF) intratracheal instillation accelerated ASM layer thickening in an OVA-induced asthmatic mouse. Modified Boyden chamber assay revealed that rHB-EGF facilitate ASM cell migration in a dose-dependent manner and ASM cells from asthmatic mice had a greater migration ability than that from normal counterparts. rHB-EGF could stimulate the phosphorylation of ERK1/2 and p38 in ASM cells but further migration assay showed that only epidermal growth factor receptor inhibitor (AG1478) or p38 inhibitor (SB203580), but not ERK1/2 inhibitor (PD98059), could inhibit rHB-EGF-mediated ASM cells migration. Actin cytoskeleton experiments exhibited that rHB-EGF could cause actin stress fibers disassembly and focal adhesions formation of ASM cells through the activation of p38. Finally, airway instillation of rHB-EGF promoted the recruitment of bone marrow-derived smooth muscle progenitor cells, which were transferred via caudal vein, migrating into the airway from the circulation. These observations demonstrated that ASM remodeling in asthma might have resulted from HB-EGF-mediated ASM cells and their progenitor cells migration, via p38 MAPK-dependent actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China
| | - Hequan Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China;
| | - Yinan Yao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China
| | - Guohua Lu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China
| | - Yuehong Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou 310027, China; and Institute of Immunology, Zhejiang University, Hangzhou 310027, China
| | - Jianying Zhou
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang 310003, People's Republic of China;
| |
Collapse
|
15
|
Aguilera-Aguirre L, Hosoki K, Bacsi A, Radák Z, Sur S, Hegde ML, Tian B, Saavedra-Molina A, Brasier AR, Ba X, Boldogh I. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling. Free Radic Biol Med 2015; 89:20-33. [PMID: 26187872 PMCID: PMC4924473 DOI: 10.1016/j.freeradbiomed.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER by-product 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, ≥ 3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling.
Collapse
Affiliation(s)
- Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zsolt Radák
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo Saavedra-Molina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
16
|
Kallistatin ameliorates influenza virus pathogenesis by inhibition of kallikrein-related peptidase 1-mediated cleavage of viral hemagglutinin. Antimicrob Agents Chemother 2015; 59:5619-30. [PMID: 26149981 DOI: 10.1128/aac.00065-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022] Open
Abstract
Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses.
Collapse
|
17
|
Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically Identifies IL-8 Levels as the Only Cytokine that Distinguishes Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely with FEV1. PLoS One 2015; 10:e0126035. [PMID: 26011707 PMCID: PMC4444276 DOI: 10.1371/journal.pone.0126035] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/27/2015] [Indexed: 01/09/2023] Open
Abstract
We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distinguish asthma from healthy control subjects and those that distinguish controlled asthma from uncontrolled asthma. Following informed consent, 36 human subjects were recruited for this study. These included 11 healthy control subjects, 15 subjects with controlled asthma with FEV1≥80% predicted and 10 subjects with uncontrolled asthma with FEV1 <80% predicted. BAL fluid was obtained from all subjects. The numbers of different cell types and the levels of 48 cytokines were measured in these fluids. Compared to healthy control subjects, patients with asthma had significantly more percentages of eosinophils and neutrophils, IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, GROα (CXCL1), MIP-1β (CCL4), MIG (CXCL9), RANTES (CCL5) and TRAIL in their BAL fluids. The only inflammatory markers that distinguished controlled asthma from uncontrolled asthma were neutrophil percentage and IL-8 levels, and both were inversely correlated with FEV1. We examined whether grouping asthma subjects on the basis of BAL eosinophil % or neutrophil % could identify specific cytokine profiles. The only differences between neutrophil-normal asthma (neutrophil≤2.4%) and neutrophil-high asthma (neutrophils%>2.4%) were a higher BAL fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-normal asthma (eosinophils≤0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1. Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely with FEV1.
Collapse
|
18
|
Hung JY, Chiang SR, Tsai MJ, Tsai YM, Chong IW, Shieh JM, Hsu YL. LIGHT Is a Crucial Mediator of Airway Remodeling. J Cell Physiol 2015; 230:1042-53. [DOI: 10.1002/jcp.24832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Jen-Yu Hung
- School of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Division of Pulmonary and Critical Care Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Shyh-Ren Chiang
- Department of Internal Medicine; Chi Mei Medical Center; Tainan Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
- Graduate Institute of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine; Department of Internal Medicine; Kaohsiung Medical University Hospital; Kaohsiung Taiwan
- Department of Respiratory Therapy; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Jiunn-Min Shieh
- Department of Internal Medicine; Chi Mei Medical Center; Tainan Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
19
|
Ullah M, Cox S, Kelly E, Moore MAS, Zoellner H. Arecoline increases basic fibroblast growth factor but reduces expression of IL-1, IL-6, G-CSF and GM-CSF in human umbilical vein endothelium. J Oral Pathol Med 2014; 44:591-601. [PMID: 25529330 DOI: 10.1111/jop.12276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Areca nut chewing is associated with oral submucous fibrosis (OSF). Raised vascular basic fibroblast growth factor may induce fibrosis. Arecoline is a muscarinic alkaloid in areca nut, which we earlier reported causes injury and necrosis of human endothelium. MATERIALS AND METHODS Human umbilical vein endothelial cells were exposed to arecoline with or without tumor necrosis factor-α, and separately to acetylcholine, muscarine, or nicotine. Protein levels of basic fibroblast growth factor, as well as the inflammatory cytokines: granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor, and Interleukins-6, 1-α and 1-β, were determined by enzyme-linked immunosorbent assay. mRNA levels were established by real-time reverse transcription polymerase chain reaction. RESULTS Basic fibroblast growth factor was released into the culture medium at arecoline levels causing necrosis (P < 0.05). This contrasted with an opposite effect of arecoline on levels of the inflammatory cytokines (P < 0.05). Tumor necrosis factor-α increased IL-6 and granulocyte-macrophage colony stimulated factor, but arecoline reduced this stimulated expression (P < 0.05). Arecoline had no effect on mRNA for basic fibroblast growth factor, although there was reduced mRNA for the separate inflammatory cytokines studied. The effect of acetylcholine, muscarine, and nicotine was minimal and dissimilar to that of arecoline. CONCLUSIONS Data raise the possibility that arecoline-induced, vascular basic fibroblast growth factor contributes to OSF, by combining increased growth factor expression with endothelial necrosis, and thus driving fibroblast proliferation.
Collapse
Affiliation(s)
- Mafaz Ullah
- The Cellular and Molecular Pathology Research Unit, The Faculty of Dentistry, Westmead Centre for Oral Health, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | - Stephen Cox
- The Department of Oral Surgery, The Faculty of Dentistry, Westmead Centre for Oral Health, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | - Elizabeth Kelly
- The Cellular and Molecular Pathology Research Unit, The Faculty of Dentistry, Westmead Centre for Oral Health, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | | | - Hans Zoellner
- The Cellular and Molecular Pathology Research Unit, The Faculty of Dentistry, Westmead Centre for Oral Health, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia.,The Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol 2013; 33:4919-35. [PMID: 24126055 DOI: 10.1128/mcb.00787-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KLF5 is an essential basic transcriptional factor that regulates a number of physiopathological processes. In this study, we tested whether and how KLF5 modulates the epithelial-mesenchymal transition (EMT). Using transforming growth factor β (TGF-β)- and epidermal growth factor (EGF)-treated epithelial cells as an established model of EMT, we found that KLF5 was downregulated during EMT and that knockdown of KLF5 induced EMT even in the absence of TGF-β and EGF treatment, as indicated by phenotypic and molecular EMT properties. Array-based screening suggested and biochemical analyses confirmed that the microRNA 200 (miR-200) microRNAs, a group of well-established EMT repressors, were transcriptionally activated by KLF5 via its direct binding to the GC boxes in miR-200 gene promoters. Functionally, overexpression of miR-200 prevented the EMT induced by KLF5 knockdown or by TGF-β and EGF treatment, and ectopic expression of KLF5 attenuated TGF-β- and EGF-induced EMT by rescuing the expression of miR-200. In mouse prostates, knockout of Klf5 downregulated the miR-200 family and induced molecular changes indicative of EMT. These findings indicate that KLF5 maintains epithelial characteristics and prevents EMT by transcriptionally activating the miR-200 family in epithelial cells.
Collapse
|
21
|
Tseng H, Gage JA, Raphael RM, Moore RH, Killian TC, Grande-Allen KJ, Souza GR. Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 2013; 19:665-75. [PMID: 23301612 DOI: 10.1089/ten.tec.2012.0157] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A longstanding goal in biomedical research has been to create organotypic cocultures that faithfully represent native tissue environments. There is presently great interest in representative culture models of the lung, which is a particularly challenging tissue to recreate in vitro. This study used magnetic levitation in conjunction with magnetic nanoparticles as a means of creating an organized three-dimensional (3D) coculture of the bronchiole that sequentially layers cells in a manner similar to native tissue architecture. The 3D coculture model was assembled from four human cell types in the bronchiole: endothelial cells, smooth muscle cells (SMCs), fibroblasts, and epithelial cells (EpiCs). This study represents the first effort to combine these particular cell types into an organized bronchiole coculture. These cell layers were first cultured in 3D by magnetic levitation, and then manipulated into contact with a custom-made magnetic pen, and again cultured for 48 h. Hematoxylin and eosin staining of the resulting coculture showed four distinct layers within the 3D coculture. Immunohistochemistry confirmed the phenotype of each of the four cell types and showed organized extracellular matrix formation, particularly, with collagen type I. Positive stains for CD31, von Willebrand factor, smooth muscle α-actin, vimentin, and fibronectin demonstrate the maintenance of the phenotype for endothelial cells, SMCs, and fibroblasts. Positive stains for mucin-5AC, cytokeratin, and E-cadherin after 7 days with and without 1% fetal bovine serum showed that EpiCs maintained the phenotype and function. This study validates magnetic levitation as a method for the rapid creation of organized 3D cocultures that maintain the phenotype and induce extracellular matrix formation.
Collapse
Affiliation(s)
- Hubert Tseng
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Anti-inflammatory dimethylfumarate: a potential new therapy for asthma? Mediators Inflamm 2013; 2013:875403. [PMID: 23606796 PMCID: PMC3625606 DOI: 10.1155/2013/875403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC) bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the disease—only symptoms are controlled. Dimethylfumarate (DMF) is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs.
Collapse
|
23
|
Gallos G, Townsend E, Yim P, Virag L, Zhang Y, Xu D, Bacchetta M, Emala CW. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204068 DOI: 10.1152/ajplung.00274.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the absence of epithelium-derived GABA contributes to greater airway smooth muscle force. Messenger RNA encoding glutamic acid decarboxylase (GAD) 65/67 was quantitatively measured in human airway epithelium and smooth muscle. HPLC quantified GABA levels in guinea pig tracheal ring segments under basal or stimulated conditions with or without epithelium. The role of endogenous GABA in the maintenance of an acetylcholine contraction in human airway and guinea pig airway smooth muscle was assessed in organ baths. A 37.5-fold greater amount of mRNA encoding GAD 67 was detected in human epithelium vs. airway smooth muscle cells. HPLC confirmed that guinea pig airways with intact epithelium have a higher constitutive elution of GABA under basal or KCl-depolarized conditions compared with epithelium-denuded airway rings. Inhibition of GABA transporters significantly suppressed KCl-mediated release of GABA from epithelium-intact airways, but tetrodotoxin was without effect. The presence of intact epithelium had a significant GABAergic-mediated prorelaxant effect on the maintenance of contractile tone. Airway epithelium is a predominant cellular source of endogenous GABA in the airway and contributes significant prorelaxant GABA effects on airway smooth muscle force.
Collapse
Affiliation(s)
- George Gallos
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 622 W. 168 St., P&S Box 46, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q, Li B. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197259 DOI: 10.4049/jimmunol.1201827] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, the serum levels of YKL-40, a chitinase-like glycoprotein, have been shown to be significantly elevated in asthmatics and are associated with asthma severity. Although these studies raise the possibility that YKL-40 may influence asthma, the mechanisms remain unknown. This study firstly investigated the mechanisms involved in YKL-40-mediated inflammation in human bronchial epithelial cells (HBECs) and analyzed the soluble factors secreted by bronchial epithelial cells exposed to YKL-40 that were responsible for increasing proliferation and migration of primary normal human bronchial smooth muscle cells (BSMCs). YKL-40-induced inflammation was assayed in two HBECs (BEAS-2B cell line and primary HBECs). In addition, we treated BEAS-2B cells and HBECs with YKL-40 and added the conditioned culture media to BSMCs. The proliferation and migration of BSMCs were determined by premixed WST-1 cell proliferation reagent (Clontech Laboratories) and QCM chemotaxis migration assay (Millipore), respectively. Bronchial epithelial cells treated with YKL-40 resulted in a significant increase of IL-8 production, which was dependent on MAPK (JNK and ERK) and NF-κB pathways activation. YKL-40-induced IL-8 was found to further stimulate proliferation and migration of BSMCs, and the effects were inhibited after neutralizing IL-8. Through investigating the interaction of airway epithelium and smooth muscle, our findings implicate that YKL-40 may be involved in the inflammation of asthma by induction of IL-8 from epithelium, subsequently contributing to BSMC proliferation and migration. Moreover, inhibition of IL-8 signaling is a potential therapeutic target for YKL-40-induced inflammation and remodeling of asthma.
Collapse
Affiliation(s)
- Hao Tang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rydell-Törmänen K, Risse PA, Kanabar V, Bagchi R, Czubryt MP, Johnson JR. Smooth muscle in tissue remodeling and hyper-reactivity: airways and arteries. Pulm Pharmacol Ther 2012; 26:13-23. [PMID: 22561160 DOI: 10.1016/j.pupt.2012.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023]
Abstract
Smooth muscle comprises a key functional component of both the airways and their supporting vasculature. Dysfunction of smooth muscle contributes to and exacerbates a host of breathing-associated pathologies such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. These diseases may be marked by airway and/or vascular smooth muscle hypertrophy, proliferation and hyper-reactivity, and related conditions such as fibrosis and extracellular matrix remodeling. This review will focus on the contribution of airway or vascular smooth dysfunction to common airway diseases.
Collapse
|