1
|
Lapehn S, Colacino JA, Harris C. Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid. Neurotoxicol Teratol 2023; 99:107286. [PMID: 37442398 PMCID: PMC10697214 DOI: 10.1016/j.ntt.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Samrani LMM, Dumont F, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Nervous system development related gene expression regulation in the zebrafish embryo after exposure to valproic acid and retinoic acid: A genome wide approach. Toxicol Lett 2023; 384:96-104. [PMID: 37451652 DOI: 10.1016/j.toxlet.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The evaluation of chemical and pharmaceutical safety for humans is moving from animal studies to New Approach Methodologies (NAM), reducing animal use and focusing on mechanism of action, whilst enhancing human relevance. In developmental toxicology, the mechanistic approach is facilitated by the assessment of predictive biomarkers, which allow mechanistic pathways perturbation monitoring at the basis of human hazard assessment. In our search for biomarkers of maldevelopment, we focused on chemically-induced perturbation of the retinoic acid signaling pathway (RA-SP), a major pathway implicated in a plethora of developmental processes. A genome-wide expression screening was performed on zebrafish embryos treated with two teratogens, all-trans retinoic acid (ATRA) and valproic acid (VPA), and a non-teratogen reference compound, folic acid (FA). Each compound was found to have a specific mRNA expression profile with 248 genes commonly dysregulated by both teratogenic compounds but not by FA. These genes were implicated in several developmental processes (e.g., the circulatory and nervous system). Given the prominent response of neurodevelopmental gene sets, and the crucial need to better understand developmental neurotoxicity, our study then focused on nervous system development. We found 62 genes that are potential early neurodevelopmental toxicity biomarker candidates. These results advance NAM-based safety assessment evaluation by highlighting the usefulness of the RA-SP in providing early toxicity biomarker candidates.
Collapse
Affiliation(s)
- Laura M M Samrani
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands.
| | | | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France
| | - Aldert H Piersma
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
3
|
Wu S, Ellison C, Naciff J, Karb M, Obringer C, Yan G, Shan Y, Smith A, Wang X, Daston GP. Structure-activity relationship read-across and transcriptomics for branched carboxylic acids. Toxicol Sci 2023; 191:343-356. [PMID: 36583546 DOI: 10.1093/toxsci/kfac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data, and physiologically based pharmacokinetic (PBPK) models to support read-across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid, 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid, 2-hexyldecanoic acid, 2-propylnonanoic acid (PNA), dipentyl acetic acid or 2-pentylheptanoic acid, octanoic acid (a straight chain alkyl acid), and 2-ethylhexanol. Transcriptomics was evaluated in 4 cell types (A549, HepG2, MCF7, and iCell cardiomyocytes) 6 h after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that 2- or 3-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read-across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provide a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data were utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read-across.
Collapse
Affiliation(s)
- Shengde Wu
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Corie Ellison
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Jorge Naciff
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Michael Karb
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Cindy Obringer
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Gang Yan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Yuqing Shan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Alex Smith
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Xiaohong Wang
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - George P Daston
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
4
|
Parodi C, Di Fede E, Peron A, Viganò I, Grazioli P, Castiglioni S, Finnell RH, Gervasini C, Vignoli A, Massa V. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Front Cell Dev Biol 2021; 9:654467. [PMID: 33959609 PMCID: PMC8093873 DOI: 10.3389/fcell.2021.654467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Viganò
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Chaudhary S, Sahu U, Parvez S. Melatonin attenuates branch chain fatty acid induced apoptosis mediated neurodegeneration. ENVIRONMENTAL TOXICOLOGY 2021; 36:491-505. [PMID: 33219756 DOI: 10.1002/tox.23055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Valproic acid (VPA)-a short branched chain fatty acid (BCFA), is widely recognized as an anticonvulsant and a mood-stabilizing drug, but various adverse effects of VPA have also been investigated. However, the impact of BCFAs aggregation on brain cells, in the pathogenesis of neurodegeneration remains elusive. The objective of this study is to understand the cellular mechanisms underlying VPA-induced neuronal cell death mediated by oxidative stress, and the neuroprotective role of exogenous melatonin treatment on VPA-induced cell death. Neurotoxicity of VPA and protective role exerted by melatonin were assessed in vitro in SH-SY5Y cells and in vivo in the cerebral cortex and cerebellum regions of Wistar rat brain. The results show that melatonin pre-treatment protects the cells from VPA-induced toxicity by exerting an anti-apoptotic and anti-inflammatory effect by regulating apoptotic proteins and pro-inflammatory cytokines. The findings of the present study emphasize novel insights of melatonin as a supplement for the prevention and treatment of neuronal dysfunction induced by VPA.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Upasana Sahu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Shafique S, Winn LM. Gestational valproic acid exposure induces epigenetic modifications in murine decidua. Placenta 2021; 107:31-40. [PMID: 33735658 DOI: 10.1016/j.placenta.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Valproic acid (VPA), a widely prescribed antiepileptic drug and an effective treatment for bipolar disorder and neuropathic pain, results in multiple developmental defects following in utero exposure. Uterine decidua provides nutritional and physical support during implantation and early embryonic development. Perturbations in the molecular mechanisms within decidual tissue during early pregnancy might affect early embryonic growth, result in early pregnancy loss or cause complications in the later gestational stage. VPA is a known histone deacetylase inhibitor and epigenetic changes such as histone hyperacetylation and methylation have been proposed as a mechanism of VPA-induced teratogenesis. METHODS This study investigated the effects of in utero VPA exposure on histone modifications in murine decidual tissue. Pregnant CD-1 mice were exposed to 400 mg/kg VPA or saline on GD9 via subcutaneous injection. Decidual tissue from each gestational sac was harvested at 1, 3 and 6 h following exposure. Levels of acetylated histones H3, H4 and H3K56, as well as methylated histones H3K9 and H3K27 were acid extracted and assessed by western blotting followed by acid histone extraction. RESULTS VPA exposure induced a significant increase (p < 0.05) in the levels of acetylated H3 at 1, 3 h; acetylated H4 at 1, 3 and 6 h and trimethylated H3K9 at 6 h. In contrast, no significant perturbations were noted in the levels of monomethylated H3K9, trimethylated H3K27 and acetylated H3K56. DISCUSSION The results from this study suggest that VPA-induced decidual histone modifications might play an important role as a mechanism of VPA-induced teratogenesis during early embryonic growth.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
7
|
Krasic J, Skara L, Ulamec M, Katusic Bojanac A, Dabelic S, Bulic-Jakus F, Jezek D, Sincic N. Teratoma Growth Retardation by HDACi Treatment of the Tumor Embryonal Source. Cancers (Basel) 2020; 12:cancers12113416. [PMID: 33217978 PMCID: PMC7698704 DOI: 10.3390/cancers12113416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Testicular germ cell tumors are the most common neoplasms in young male populations, with a rising incidence. Among them, teratomas may often be very aggressive and resistant to therapy. Our aim was to investigate the impact of two potential anti-tumor epigenetic drugs (Valproate and Trichostatin A) in a mammalian model of teratoma development from an early trilaminar mouse embryo. Both drugs applied to the embryonic tissue had a significant negative impact on the teratoma growth in a three-dimensional in vitro culture. However, Trichostatin A did not diminish some potentially dangerous features of teratomas in contrast to Valproate. This research is an original contribution to the basic knowledge of the origin and development of teratomas. Such knowledge is necessary for envisioning therapeutic strategies against human testicular tumors. Abstract Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10 000 Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Floriana Bulic-Jakus
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia; (J.K.); (L.S.); (A.K.B.); (F.B.-J.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-45-66-806; Fax: +385-45-960-199
| |
Collapse
|
8
|
Shafique S, Winn LM. Gestational exposure to valproic acid upregulates total Stat3 protein expression while downregulating phosphorylated Stat3 in CD-1 mouse embryos with neural tube defects. Birth Defects Res 2020; 112:555-568. [PMID: 32134217 DOI: 10.1002/bdr2.1666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Valproic acid (VPA), a widely prescribed antiepileptic drug and an effective treatment for psychiatric disorders, is teratogenic causing neural tube defects (NTDs) and other defects in the exposed embryo. Signal transducer and activator of transcription 3 (Stat3) is a transcription factor that is activated via tyrosine phosphorylation. Stat3, as well as its active form (pYStat3), is expressed during neural tube closure in murine development. This study investigated the effects of in utero VPA exposure on embryonic Stat3 mRNA and protein expression during the critical period of neural tube closure in CD-1 mouse embryos. Following the exposure of CD-1 pregnant mice to the teratogenic dose of 400 mg/kg VPA or saline on gestational day (GD) 9, embryos were harvested at 1, 3, 6, or 24 hr and on GD13. Stat3 mRNA levels remained unchanged at all time points. Total Stat3 protein levels were significantly (p < .05) increased in GD9 embryos at 1 and 6 hr post-exposure and in GD13 exposed nonexencephalic and exencephalic embryo heads. In contrast, phosphorylated Stat3 levels were significantly (p < .05) downregulated in GD9 embryos at the 3 and 6 hr time points with an overall trend of downregulation in the GD10 and GD13 groups. Total and phosphorylated Stat3 protein levels remained unchanged in nuclear extracts of the exposed nonexencephalic and exencephalic GD13 embryo heads. The reported significant downregulation of phosphorylated Stat3 levels suggests its possible role in VPA-induced NTDs in mouse embryos.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
9
|
Zhao Q, Ji K, Wang T, Li G, Lu W, Ji J. Effect of the Histone Deacetylases Inhibitors on the Differentiation of Stem Cells in Bone Damage Repairing and Regeneration. Curr Stem Cell Res Ther 2019; 15:24-31. [PMID: 31486757 DOI: 10.2174/1574888x14666190905155516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
Tissue damage repairing and regeneration is a research hot topic. Tissue engineering arises at the historic moment which is a defect repair compound composed of seed cells, tissue engineering scaffolds, and inducing factors. Stem cells have a limited growth period in vitro culture, and they have a pattern of replicating ageing, and these disadvantages are limiting the applications of stem cells in basic research and clinical treatment. The enhancement of stem cell differentiation ability is a difficult problem to overcome, and it is possible to enhance the differentiation ability of stem cells through histone modification so as to provide a more robust foundation for damage repairing and regeneration. Studies have shown that Histone Deacetylases (HDAC) inhibitors can improve mesenchymal stem cells in vitro induced in different directions, conversion efficiency, increasing the feasibility and safety of stem cell therapy and tissue engineering, to offer reference to promote the stem cell therapy in clinical application. Therefore, this paper mainly focusing on the usage and achievements of the deacetylase inhibitors in stem cell differentiation studies and their use and prospects in repair of bone tissue defects.
Collapse
Affiliation(s)
- Qing Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kun Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tiancong Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guifeng Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Lu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Mennen RHG, Pennings JLAJ, Piersma AHA. Neural crest related gene transcript regulation by valproic acid analogues in the cardiac embryonic stem cell test. Reprod Toxicol 2019; 90:44-52. [PMID: 31445079 DOI: 10.1016/j.reprotox.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022]
Abstract
In vivo, neural crest (NC) cells contribute critically to heart formation. The embryonic stem cells in the cardiac Embryonic Stem cell Test (ESTc) differentiate into a heterogeneous cell population including non-cardiomyocyte cells. The use of molecular biomarkers from different mechanistic pathways can refine quantitative embryotoxicity assessment. Gene expression levels representing different signalling pathways that could relate to beating cardiomyocyte formation were analysed at different time-points. Immunocytochemistry showed NC cells were present in the ESTc and RT-qPCR showed upregulation of NC related gene expression levels in a time-dependent manner. NC related genes were sensitive to VPA and its analogues 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EHOL) and indicated VPA as the most potent one. STITCH ('search tool for interactions of chemicals') analysis showed relationships between the examined signalling pathways and suggested additional candidate marker genes. Biomarkers from dedicated mechanistic pathways, e.g. NC differentiation, provide promising tools for monitoring specific effects in ESTc.
Collapse
Affiliation(s)
- R H Gina Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - J L A Jeroen Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A H Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
11
|
Wang Y, Li Z. RNA-seq analysis of blood of valproic acid-responsive and non-responsive pediatric patients with epilepsy. Exp Ther Med 2019; 18:373-383. [PMID: 31258675 PMCID: PMC6566089 DOI: 10.3892/etm.2019.7538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is the most common chronic neurological disorder, affecting ~70 million individuals worldwide. However, approximately one-third of the patients are refractory to epilepsy medication. Of note, 100% of patients with genetic epilepsy who are resistant to the traditional drug, valproic acid (VPA), are also refractory to the other anti-epileptic drugs. The aim of the present study was to compare the transcriptomes in VPA responders and non-responders, to explore the mechanism of action of VPA and identify possible biomarkers to predict VPA resistance. Thus, RNA-seq was employed for transcriptomic analysis, differentially expressed genes (DEGs) were analyzed using Cuffdiff software and the DAVID database was used to infer the functions of the DEGs. A protein-protein interaction network was obtained using STRING and visualized with Cytoscape. A total of 389 DEGs between VPA-responsive and non-responsive pediatric patients were identified. Of these genes, 227 were upregulated and 162 were downregulated. The upregulated DEGs were largely associated with cytokines, chemokines and chemokine receptor-binding factors, whereas the downregulated DEGs were associated with cation channels, iron ion binding proteins, and immunoglobulin E receptors. In the pathway analysis, the toll-like receptor signaling pathway, pathways in cancer, and cytokine-cytokine receptor interaction were mostly enriched by the DEGs. Furthermore, three modules were identified by protein-protein interaction analysis, and the potential hub genes, chemokine (C-C motif) ligand 3 and 4, chemokine (C-X-C motif) ligand 9, tumor necrosis factor-α and interleukin-1β, which are known to be closely associated with epilepsy, were identified. These specific chemokines may participate in processes associated with VPA resistance and may be potential biomarkers for monitoring the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Hainan Provincial Key Lab of R&D of Tropical Herbs, College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
12
|
Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci 2019; 20:ijms20071616. [PMID: 30939743 PMCID: PMC6480157 DOI: 10.3390/ijms20071616] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.
Collapse
|
13
|
Yasin H, Gibson WT, Langlois S, Stowe RM, Tsang ES, Lee L, Poon J, Tran G, Tyson C, Wong CK, Marra MA, Friedman JM, Zahir FR. A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8. J Hum Genet 2019; 64:271-280. [PMID: 30670789 DOI: 10.1038/s10038-019-0561-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 11/09/2022]
Abstract
A decade ago, we described novel de novo submicroscopic deletions of chromosome 14q11.2 in three children with developmental delay, cognitive impairment, and similar dysmorphic features, including widely-spaced eyes, short nose with flat nasal bridge, long philtrum, prominent Cupid's bow of the upper lip, full lower lip, and auricular anomalies. We suggested that this constituted a new multiple congenital anomaly-intellectual disability syndrome due to defects in CHD8 and/or SUPT16H. The three patients in our original cohort were between 2 years and 3 years of age at the time. Here we present a fourth patient and clinical updates on our previous patients. To document the longitudinal course more fully, we integrate published reports of other patients and describe genotype-phenotype correlations among them. Children with the disorder present with developmental delay, intellectual disability, and/or autism spectrum disorder in addition to characteristic facies. Gastrointestinal and sleep problems are notable. The identification of multiple patients with the same genetic defect and characteristic clinical phenotype, confirms our suggestion that this is a syndromic disorder caused by haploinsufficiency or heterozygous loss of function of CHD8.
Collapse
Affiliation(s)
- Heba Yasin
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Departments of Psychiatry and Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Erica S Tsang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Leora Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jenny Poon
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Grant Tran
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christine Tyson
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Cytogenetics Laboratory, Royal Columbian Hospital, Coquitlam, BC, Canada
| | - Chi Kin Wong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Farah R Zahir
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Abstract
Developmental toxicity associated with exposure to exogenous compounds such as drugs and environmental chemicals can be assessed using a variety of different in vitro models, each with their own advantages and disadvantages. These models include cultured cells (Chapters 3 - 6 ), organ and tissue cultures (Chapters 7 and 8 ), and whole embryo cultures (Chapters 13 - 15 ) and typically support the guiding principles of the three Rs: replace, reduce, and refine. These models can be used in early chemical screens and have helped further our understanding into the mechanisms associated with developmental toxicity following exposure to many chemicals.
Collapse
|
15
|
de Leeuw VC, Hessel EVS, Piersma AH. Look-alikes may not act alike: Gene expression regulation and cell-type-specific responses of three valproic acid analogues in the neural embryonic stem cell test (ESTn). Toxicol Lett 2018; 303:28-37. [PMID: 30578912 DOI: 10.1016/j.toxlet.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/20/2022]
Abstract
In vitro assays to assess developmental neurotoxicity of chemicals are highly desirable. The murine neural embryonic stem cell test (ESTn) can mimic parts of early differentiation of embryonic brain and may therefore be useful for this purpose. The aim of this study was to investigate whether this test is able to rank the toxic potencies of three valproic acid analogues and to study their mode of action by investigating their individual effects on four cell types: stem cells, neurons, astrocytes and neural crest cells. Using immunocytochemical read-outs and qPCR for cell type-specific genes, the effects of valproic acid (VPA), 2-ethylhexanoic acid (EHA) and 2-ethyl-4-methylpentanoic (EMPA) were assessed. VPA and EHA but not EMPA downregulated cell type-specific differentiation makers and upregulated stem cell related markers (Fut4, Cdh1) at different time points during differentiation. Expression of Gfap, a marker for astrocytes, was dramatically downregulated by VPA and EHA, but not by EMPA. This finding was verified using immunostainings. Based on the number and extent of genes regulated by the three compounds, relative potencies were determined as VPA > EHA > EMPA, which is consistent with in vivo developmental toxicity potency ranking of these compounds. Thus, ESTn using a combination of morphology, gene and protein expression readouts, may provide a medium-throughput system for monitoring the effects of compounds on differentiation of cell types in early brain development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
Contis-Montes de Oca A, Rodarte-Valle E, Rosales-Hernández MC, Abarca-Rojano E, Rojas-Hernández S, Fragoso-Vázquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Vázquez-Moctezuma I, Correa-Basurto J. N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA), a histone deacetylase inhibitor, induces the release of nuclear HMGB1 and modifies ROS levels in HeLa cells. Oncotarget 2018; 9:33368-33381. [PMID: 30279967 PMCID: PMC6161798 DOI: 10.18632/oncotarget.26077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA) is a valproic acid (VPA) derivative with improved antiproliferative activity toward breast cancer (MCF-7, MDA-MB-231, and SKBr3) and human cervical cancer cell lines (HeLa) compared to that of VPA. However, the pharmacological mechanism of OH-VPA activity remains unknown. High-mobility group box 1 (HMGB1) is an important enzyme that is highly expressed in tumor cells and has a subcellular localization that is dependent on its acetylation or oxidative state. Therefore, in this study, we analyzed changes in HMGB1 sub-cellular localization and reactive oxygen species (ROS) as well as changes in HeLa cell viability in response to treatment with various concentrations of OH-VPA. This compound is formed by the covalent bond coupling VPA to a phenol group, which is capable of acting as a free radical scavenger due to its chemical similarities to quercetin. Our results show that OH-VPA induces nuclear to cytoplasmic translocation of HMGB1, as demonstrated by confocal microscopy observations and infrared spectra that revealed high quantities of acetylated HMGB1 in HeLa cells. Cells treated with 0.8 mM OH-VA exhibited decreased viability and increased ROS levels compared with the lower OH-VPA concentrations tested. Therefore, the antiproliferative mechanism of OH-VPA may be related to histone deacetylase (HDAC) inhibition, as is the case for VPA, which promotes high HMBG1 acetylation, which alters its subcellular localization. In addition, OH-VPA generates an imbalance in cellular ROS levels due to its biochemical activity.
Collapse
Affiliation(s)
- Arturo Contis-Montes de Oca
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Estefanía Rodarte-Valle
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Edgar Abarca-Rojano
- Laboratorio de Respiración Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Manuel Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jessica Elena Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ana María Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ismael Vázquez-Moctezuma
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Bioinformática y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
17
|
Miranda CC, Fernandes TG, Pinto SN, Prieto M, Diogo MM, Cabral JM. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol Lett 2018; 294:51-60. [DOI: 10.1016/j.toxlet.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
|
18
|
Kostrouchová M, Kostrouchová V, Yilma P, Benda A, Mandys V, Kostrouchová M. Valproic Acid Decreases the Nuclear Localization of MDT-28, the Nematode Orthologue of MED28. Folia Biol (Praha) 2018; 64:1-9. [PMID: 29871732 DOI: 10.14712/fb2018064010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mediator is a multiprotein complex that connects regulation mediated by transcription factors with RNA polymerase II transcriptional machinery and integrates signals from the cell regulatory cascades with gene expression. One of the Mediator subunits, Mediator complex subunit 28 (MED28), has a dual nuclear and cytoplasmic localization and function. In the nucleus, MED28 functions as part of Mediator and in the cytoplasm, it interacts with cytoskeletal proteins and is part of the regulatory cascades including that of Grb2. MED28 thus has the potential to bring cytoplasmic regulatory interactions towards the centre of gene expression regulation. In this study, we identified MDT-28, the nematode orthologue of MED28, as a likely target of lysine acetylation using bioinformatic prediction of posttranslational modifications. Lysine acetylation was experimentally confirmed using anti-acetyl lysine antibody on immunoprecipitated GFP::MDT-28 expressed in synchronized C. elegans. Valproic acid (VPA), a known inhibitor of lysine deacetylases, enhanced the lysine acetylation of GFP::MDT-28. At the subcellular level, VPA decreased the nuclear localization of GFP::MDT-28 detected by fluorescencelifetime imaging microscopy (FLIM). This indicates that the nuclear pool of MDT-28 is regulated by a mechanism sensitive to VPA and provides an indirect support for a variable relative proportion of MED28 orthologues with other Mediator subunits.
Collapse
Affiliation(s)
- M Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Yilma
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Benda
- Imaging Methods Core Facility, Biocev, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Segar KP, Chandrawanshi V, Mehra S. Activation of unfolded protein response pathway is important for valproic acid mediated increase in immunoglobulin G productivity in recombinant Chinese hamster ovary cells. J Biosci Bioeng 2017; 124:459-468. [DOI: 10.1016/j.jbiosc.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
|
20
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
21
|
Herteleer L, Zwarts L, Hens K, Forero D, Del-Favero J, Callaerts P. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology (Berl) 2016; 233:1751-62. [PMID: 26852229 DOI: 10.1007/s00213-016-4223-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. OBJECTIVES We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. METHODS Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. RESULTS Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. CONCLUSIONS (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.
Collapse
Affiliation(s)
- L Herteleer
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - L Zwarts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - K Hens
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Centre for Neural Circuits and Behavior, Oxford University, Oxford, UK
| | - D Forero
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium
- KULeuven Department of Human Genetics, Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
- Laboratory of Neuropsychiatric Genetics, School of Medicine, Antonio Narino University, Bogota, Colombia
| | - J Del-Favero
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, Leuven, Belgium
- University of Antwerp, Antwerp, Belgium
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, VIB-KULeuven, Herestraat 49 bus 602, 3000, Leuven, Belgium.
- KULeuven Department of Human Genetics, Leuven, Belgium.
- VIB Center for the Biology of Disease, Leuven, Belgium.
| |
Collapse
|
22
|
Romero AC, Del Río E, Vilanova E, Sogorb MA. RNA transcripts for the quantification of differentiation allow marked improvements in the performance of embryonic stem cell test (EST). Toxicol Lett 2015; 238:60-9. [PMID: 26272751 DOI: 10.1016/j.toxlet.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Embryonic stem cell test (EST) is an in vitro validated assay for testing embryotoxicity. The EST needs improvements before being used for regulatory purposes, but also needs technical simplification for use in high throughput screenings. We propose the quantification in alterations of the differentiation of D3 monolayer cells cultures through the expression of biomarker genes in a shorter (5-day) and technically simpler (we use only monolayer cultures) test. We have defined a set of sixteen different genes biomarkers of ectoderm (Nrcam, Nes, Shh and Pnpla6), endoderm formation (Flk1 and Afp), mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7) and general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3). These, together with alterations in the viability of D3 and 3T3 cells and the prediction model of a classic EST, enhance the features of EST determinations to 100% concordance between in vivo-in vitro predictions with a set of seven different chemicals used in the validation of a classic EST. In conclusion, the proposed changes implemented in the classic EST confer it more reliability, speed and technical simplicity, which brings the EST closer to high throughput processes and regulatory purposes.
Collapse
Affiliation(s)
- Andrea C Romero
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Eva Del Río
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Eugenio Vilanova
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Miguel A Sogorb
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain.
| |
Collapse
|
23
|
Ehashi T, Suzuki N, Ando S, Sumida K, Saito K. Effects of valproic acid on gene expression during human embryonic stem cell differentiation into neurons. J Toxicol Sci 2014; 39:383-90. [PMID: 24849673 DOI: 10.2131/jts.39.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The widely used antiepileptic drug valproic acid (VPA) is known to exhibit teratogenicity in the form of a failure of the neural tube in humans. Embryonic stem cells (ESCs) are reported to be a promising cell source for evaluating chemical teratogenicity, because they are capable of reproducing embryonic developmental model and enable reduction in the number of experimental animals used. We previously investigated 22 genes for which expressions are altered by teratogens, specifically focusing on neural differentiation of mouse ESCs. In the present study, expressions of the investigated genes were evaluated by quantitative real-time PCR and compared during differentiation of human ESCs into neurons with or without VPA. Under the conditions, almost all gene expressions significantly changed in VPA-containing culture. Specifically, in neural development-related genes such as DCX, ARX, MAP2, and NNAT, more than 2-fold expression was observed. The findings suggest that the genes focused on in this study may help to elucidate the teratogenic effects of VPA and might be a useful tool to analyze embryotoxic potential of chemicals in humans.
Collapse
Affiliation(s)
- Tomo Ehashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | | | | | | |
Collapse
|
24
|
Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Zagoura D, Bremer S, Sachinidis A, Lazzari G. A comparative transcriptomic study on the effects of valproic acid on two different hESCs lines in a neural teratogenicity test system. Toxicol Lett 2014; 231:38-44. [DOI: 10.1016/j.toxlet.2014.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
25
|
Tonk ECM, Pennings JLA, Piersma AH. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 2014; 55:104-13. [PMID: 25461899 DOI: 10.1016/j.reprotox.2014.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Gao X, Yourick JJ, Sprando RL. Transcriptomic characterization of C57BL/6 mouse embryonic stem cell differentiation and its modulation by developmental toxicants. PLoS One 2014; 9:e108510. [PMID: 25247782 PMCID: PMC4172731 DOI: 10.1371/journal.pone.0108510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023] Open
Abstract
The Tox21 program calls for transforming toxicology testing from traditional in vivo tests to less expensive and higher throughput in vitro methods. In developmental toxicology, a spectrum of alternative methods including cell line based tests has been developed. In particular, embryonic stem cells (ESCs) have received widespread attention as a promising alternative model for developmental toxicity assessment. Here, we characterized gene expression changes during mouse ESC differentiation and their modulation by developmental toxicants. C57BL/6 ESCs were allowed to differentiate spontaneously and RNA of vehicle controls was collected at 0, 24, 48, 72, 96, 120 and 168 h after embryoid body (EB) formation; RNA of compound-exposed EBs were collected at 24 h. Samples were hybridized to Affymetrix Mouse Gene 2.0 ST Array; using stringent cut-off criteria of Bonferroni-adjusted p<0.05 and fold change >2.0, a total of 1996 genes were found differentially expressed among the vehicle controls at different time points. Gene ontology (GO) analysis showed these regulated genes were mostly involved in differentiation-related processes such as development, morphogenesis, metabolism, cell differentiation, cell organization and biogenesis, embryonic development, and reproduction. Biomarkers of all three germ layers or of their derivative early cell types were identified in the gene list. Principal component analysis (PCA) based on these genes showed that the unexposed vehicle controls appeared in chronological order in the PCA plot, and formed a differentiation track when connected. Cultures exposed to thalidomide, monobutyl phthalate, or valproic acid deviated significantly from the differentiation track, manifesting the capacity of the differentiation track to identify the modulating effects of diverse developmental toxicants. The differentiation track defined in this study may be further exploited as a baseline for developmental toxicity testing, with compounds causing significant deviation from the differentiation track being predicted as potential developmental toxicants.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Jeffrey J. Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Robert L. Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| |
Collapse
|
27
|
Estevan C, Fuster E, Del Río E, Pamies D, Vilanova E, Sogorb MA. Organophosphorus pesticide chlorpyrifos and its metabolites alter the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells in a comparable way to other model neurodevelopmental toxicants. Chem Res Toxicol 2014; 27:1487-95. [PMID: 25137620 DOI: 10.1021/tx500051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are discrepancies about whether chlorpyrifos is able to induce neurodevelopmental toxicity or not. We previously reported alterations in the pattern of expression of biomarker genes of differentiation in D3 mouse embryonic stem cells caused by chlorpyrifos and its metabolites chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol. Now, we reanalyze these data comparing the effects on these genes with those caused in the same genes by retinoic acid, valproic acid, and penicillin-G (model compounds considered as strong, weak, and non-neurodevelopmental toxicants, respectively). We also compare the effects of chlorpyrifos and its metabolites on the cell viability of D3 cells and 3T3 mouse fibroblasts with the effects caused in the same cells by the three model compounds. We conclude that chlorpyrifos and its metabolites act, regarding these end-points, as the weak neurodevelopmental toxicant valproic acid, and consequently, a principle of caution should be applied avoiding occupational exposures in pregnant women. A second independent experiment run with different cellular batches coming from the same clone obtained the same result as the first one.
Collapse
Affiliation(s)
- Carmen Estevan
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche , Avenida de la Universidad s/n, 03202-Elche, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR, Hengstler JG, Rahnenführer J, Waldmann T, Leist M. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 2014; 88:1451-68. [PMID: 24935251 PMCID: PMC4067541 DOI: 10.1007/s00204-014-1279-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 01/17/2023]
Abstract
The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.
Collapse
Affiliation(s)
- Nina V. Balmer
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Stefanie Klima
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Eugen Rempel
- Department of Statistics, TU Dortmund, Dortmund, Germany
| | - Violeta N. Ivanova
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | | | - Matthias K. Weng
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Kesavan Meganathan
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Michael R. Berthold
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
29
|
Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AEM, Luch A. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 2014; 9:e98892. [PMID: 24896083 PMCID: PMC4045889 DOI: 10.1371/journal.pone.0098892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 01/10/2023] Open
Abstract
Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA.
Collapse
Affiliation(s)
- Lena Smirnova
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | - Katharina Block
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
30
|
Comparative modeling and virtual screening for the identification of novel inhibitors for myo-inositol-1-phosphate synthase. Mol Biol Rep 2014; 41:5039-52. [PMID: 24752405 DOI: 10.1007/s11033-014-3370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 04/05/2014] [Indexed: 12/20/2022]
Abstract
Myo-inositol-1-phosphate (MIP) synthase is a key enzyme in the myo-inositol biosynthesis pathway. Disruption of the inositol signaling pathway is associated with bipolar disorders. Previous work suggested that MIP synthase could be an attractive target for the development of anti-bipolar drugs. Inhibition of this enzyme could possibly help in reducing the risk of a disease in patients. With this objective, three dimensional structure of the protein was modeled followed by the active site prediction. For the first time, computational studies were carried out to obtain structural insights into the interactive behavior of this enzyme with ligands. Virtual screening was carried out using FILTER, ROCS and EON modules of the OpenEye scientific software. Natural products from the ZINC database were used for the screening process. Resulting compounds were docked into active site of the target protein using FRED (Fast Rigid Exhaustive Docking) and GOLD (Genetic Optimization for Ligand Docking) docking programs. The analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in ligand binding. Four compounds are shortlisted and their binding assay analysis is underway.
Collapse
|
31
|
Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Franci G, Casalino L, Petraglia F, Miceli M, Menafra R, Radic B, Tarallo V, Vitale M, Scarfò M, Pocsfalvi G, Baldi A, Ambrosino C, Zambrano N, Patriarca E, De Falco S, Minchiotti G, Stunnenberg HG, Altucci L. The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biol Open 2013; 2:1070-7. [PMID: 24167717 PMCID: PMC3798190 DOI: 10.1242/bio.20135587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/08/2023] Open
Abstract
Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS-275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.
Collapse
Affiliation(s)
- Gianluigi Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli , Vico L. De Crecchio 7, 80138 Napoli , Italy ; Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences , 6500 HB Nijmegen , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Go HS, Kim KC, Choi CS, Jeon SJ, Kwon KJ, Han SH, Lee J, Cheong JH, Ryu JH, Kim CH, Ko KH, Shin CY. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology 2012; 63:1028-41. [PMID: 22841957 DOI: 10.1016/j.neuropharm.2012.07.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 12/01/2022]
Abstract
Autism is a spectrum of neurodevelopmental disorders characterized by social isolation and lack of interaction. Anatomically, autism patients often show macrocephaly and high neuronal density. To investigate the mechanism underlying the higher neuronal populations seen in ASD, we subcutaneously injected VPA (400 mg/kg) into pregnant Sprague-Dawley rats on E12, an animal model often used in ASD study. Alternatively, cultured rat neural progenitor cells were treated with VPA. Until E18, VPA induced NPC proliferation and delayed neurogenesis in fetal brain, but the subsequent differentiation of NPCs to neurons increased brain neuronal density afterward. Similar findings were observed with NPCs treated with VPA in vitro. At a molecular level, VPA enhanced Wnt1 expression and activated the GSK-3β/β-catenin pathway. Furthermore, inhibition of this pathway attenuated the effects of VPA. The findings of this study suggest that an altered developmental process underlies the macrocephaly and abnormal brain structure observed in the autistic brain.
Collapse
Affiliation(s)
- Hyo Sang Go
- Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 2012; 21:4104-14. [DOI: 10.1093/hmg/dds239] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Chen H, Dzitoyeva S, Manev H. Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 2012; 690:51-9. [PMID: 22728245 DOI: 10.1016/j.ejphar.2012.06.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/24/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
Valproic acid (valproate), an anticonvulsant and a mood stabilizer, is a potent histone deacetylase inhibitor and a widely utilized pharmacological tool for neuroepigenetic research including DNA methylation. However, only nuclear but not mitochondrial DNA (mtDNA) has been investigated for the effects of valproate on the formation of 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). Using mouse 3T3-L1 cells, we investigated the effects of short (1 day) and prolonged (3 days) valproate treatment on global mtDNA 5 mC content, global and mtDNA sequence-specific 5 hmC content, mRNA levels for ten-eleven-translocation (TET) enzymes involved in 5 hmC formation, and the mitochondrial content of TET proteins. Only 5 hmC but not 5 mC content in mtDNA was affected (decreased) by valproate, and only after the prolonged treatment. This action of valproate was mimicked by MS-275, a class I histone deacetylase inhibitor. The prolonged but not the short valproate treatment decreased the expression of Tet1 mRNA and reduced the mitochondrial content of the TET1 protein. Hence, a likely scenario for a valproate-induced 5 hmC decrease in mtDNA may involve nuclear histone deacetylase inhibition (mitochondria do not contain histones) causing the initial increase of Tet1 transcription, which is followed by a delayed compensatory decrease of Tet1 expression and a reduced presence of TET1 protein in mitochondria. Further research is needed to elucidate the functional implications of epigenetic modifications of mtDNA. The observed effects of valproate on mitochondrial epigenetics may have implications for a better understanding of both therapeutic and unwanted effects of this drug and possibly other histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Hu Chen
- The Psychiatric Institute, University of Illinois at Chicago, Department of Psychiatry, 1601 West Taylor Street, M/C912, Chicago, IL60612, USA
| | | | | |
Collapse
|
36
|
Felisbino MB, Tamashiro WMSC, Mello MLS. Chromatin remodeling, cell proliferation and cell death in valproic acid-treated HeLa cells. PLoS One 2011; 6:e29144. [PMID: 22206001 PMCID: PMC3242782 DOI: 10.1371/journal.pone.0029144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells. Methodology/Principal Findings Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA. Conclusions/Significance The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death.
Collapse
Affiliation(s)
- Marina Barreto Felisbino
- Department of Structural and Physiological Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wirla M. S. C. Tamashiro
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Physiological Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Louisse J, Verwei M, Woutersen RA, Blaauboer BJ, Rietjens IMCM. Towardin vitrobiomarkers for developmental toxicity and their extrapolation to thein vivosituation. Expert Opin Drug Metab Toxicol 2011; 8:11-27. [DOI: 10.1517/17425255.2012.639762] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Karén J, Rodriguez A, Friman T, Dencker L, Sundberg C, Scholz B. Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro. PLoS One 2011; 6:e24954. [PMID: 21966390 PMCID: PMC3178576 DOI: 10.1371/journal.pone.0024954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels.
Collapse
Affiliation(s)
- Jakob Karén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Rodriguez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tomas Friman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lennart Dencker
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Christian Sundberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Women and Children's Health, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| | - Birger Scholz
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|