1
|
Parham F, Eccles KM, Rider CV, Sakamuru S, Xia M, Huang R, Tice RR, Dinse GE, DeVito MJ. Lessons learned from evaluating defined chemical mixtures in a high-throughput estrogen receptor assay system. Toxicol Sci 2025; 205:191-204. [PMID: 39972627 PMCID: PMC12038247 DOI: 10.1093/toxsci/kfaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
In this article, we provide a proof of concept evaluating the utility of the U.S. Tox21 high-throughput screening approach to assess the hazard of chemical mixtures using 2 estrogen receptor (ER) assays. A subset of chemicals identified in Phase I of the Tox21 program as active in the ER agonist assay were used to design mixtures for testing in Phase II. Individual chemicals and mixtures were evaluated in 2 cell-based ER alpha (ERα) activation assays: One incorporating a transfected ligand-binding domain in an ERα β-lactamase reporter cell line (ER-bla) and the full-length endogenous receptor in the MCF7 cell line with a luciferase reporter gene (ER-luc). Concentration-response data from individual chemicals were used to predict the joint effect based on mixtures modeling methods and were compared with observed mixtures data to assess model fit. The models tended to overpredict mixture responses in the ER-bla assay, whereas predictions were closer to observed responses in the ER-luc assay, indicating that a full-length endogenous ER is a preferred model for high-throughput mixture analysis. Lessons learned from this research include the importance of analyzing the individual chemicals used for predictions and the mixtures in the same experimental paradigm to minimize variation, developing methods for imputing missing values from incomplete concentration-response curves, and establishing criteria to determine when inactive chemicals should be omitted from mixture predictions.
Collapse
Affiliation(s)
- Fred Parham
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Kristin M Eccles
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Cynthia V Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, Bethesda, MD 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, Bethesda, MD 20850, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, Bethesda, MD 20850, USA
| | | | | | - Michael J DeVito
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Spataro F, Rauseo J, Øverjordet IB, Casoli E, Pescatore T, Franco F, Patrolecco L. Man-made emerging contaminants in the High-Arctic fjord Kongsfjorden (Svalbard Archipelago, Norway): Occurrence, sources and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178936. [PMID: 40020589 DOI: 10.1016/j.scitotenv.2025.178936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study provides the first quantitative data on the presence of 17 pharmaceuticals and personal care products (PPCPs) from various therapeutical classes in surface seawater from Kongsfjorden (KF, Svalbard Archipelago, Norway, 79°00'N, 11°40'E), collected over five summers (2018-2022). The PPCPs (ciprofloxacin-CIP, enrofloxacin-ENR, amoxicillin-AMX, erythromycin-ERY, sulfamethoxazole-SMX, N4-acetylsulfamethoxazole-N4-SMX, carbamazepine-CBZ, diclofenac-DCF, ibuprofen-IBU, acetylsalicylic acid-ASP, paracetamol-PAR, caffeine-CFF, triclosan-TCL, N,N-diethyl-meta-toluamide-DEET, estrone-E1, 17β-estradiol-E2 and 17α-ethinyl estradiol-EE2) were also analysed in sewage from the wastewater treatment plant, serving Ny-Ålesund, located on KF's southern shore. Samples were processed using solid phase extraction and liquid chromatography with high-resolution mass-spectrometry. An environmental risk assessment (ERA) was conducted to evaluate ecological and antimicrobial resistance (AMR) risks and the cumulative risk from the chemical mixture. PPCPs detected in sewage were also found in seawater, with the highest concentrations in sewage for CFF (151.9 ± 8.7 ng/L) and ASP (122.5 ± 9.4 ng/L). In seawater, the main contributors were ASP (39.2 ± 12.9 ng/L) and EE2 (32.5 ± 11.9 ng/L), suggesting influences from local emissions, fjord circulation, and broader oceanic and atmospheric transport. The ERA identified CIP, DCF, IBU, CFF, TCL, E1, E2 and EE2 as potentially harmful to the Arctic marine ecosystem. When evaluated as a mixture, all compounds contributed additively to the overall risk. The AMR risk from the antibiotic ciprofloxacin was found to be low. These findings emphasize the need for enhanced monitoring of PPCPs and comprehensive ERAs of chemical mixtures to guide management strategies and protect sensitive Arctic ecosystems.
Collapse
Affiliation(s)
- Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Ida Beathe Øverjordet
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17 C, Trondheim, Norway.
| | - Edoardo Casoli
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy.
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy.
| | - Federica Franco
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| |
Collapse
|
3
|
Zhu Y, Zhang R, Xie H, Mo L, Chen J, Kadokami K, Li X. Joint probabilistic risk of organic micropollutants in the aquaculture seawater around Liaodong Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176331. [PMID: 39299315 DOI: 10.1016/j.scitotenv.2024.176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The limited number of organic micropollutants (OMPs) investigated in aquaculture seawater may underestimate the risk to marine organisms. It is critical to comprehensively investigate the occurrence of diverse OMPs in mariculture area and assess their joint risks to coastal marine organisms. Herein, the joint risks caused by multiple substances were assessed based on the screened results of approximately 1300 non-polar to polar OMPs in the seawater of mariculture ponds and raft culture areas around Liaodong Peninsula. In this study, 48 out of 886 non-polar to low-polar OMPs were detected at least once in 36 seawater samples, including 16 alkanes, 6 phthalate esters, 6 pesticides, 5 polycyclic aromatic hydrocarbons, etc. For 99 detected OMPs from both this study and our previously reported study, their aquatic toxicity data were comprehensively collected to assess the probabilistic risk. For 14 OMPs with sufficient toxicity data, their species sensitivity distribution curves were established. The results show that only three pollutants - ametryn, atrazine and diuron - alone adversely affect >5 % of coastal marine organisms. However, for the joint risks, up to 15.2 % of coastal marine organisms were affected by 14 OMPs under long-term exposure, suggesting that the OMP mixtures could enhance adverse effects. Although the ecological risks for most of compounds were acceptable, the joint risks of co-pollution by various OMPs cannot be ignored. The findings could support risk management of pollutants in aquaculture seawater, thereby contributing to the conservation of coastal marine biodiversity.
Collapse
Affiliation(s)
- Yongle Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruohan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kiwao Kadokami
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Rauseo J, Spataro F, Pescatore T, Patrolecco L. Multiresidue determination and predicted risk assessment of emerging contaminants in sediments from Kongsfjorden, Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171156. [PMID: 38417527 DOI: 10.1016/j.scitotenv.2024.171156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17β-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.
Collapse
Affiliation(s)
- Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy.
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy
| |
Collapse
|
5
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Gomes S, Baltazar F, Silva E, Preto A. Microbiota-Derived Short-Chain Fatty Acids: New Road in Colorectal Cancer Therapy. Pharmaceutics 2022; 14:2359. [PMID: 36365177 PMCID: PMC9698921 DOI: 10.3390/pharmaceutics14112359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
The colon microbiota is an important player in colorectal cancer (CRC) development, which is responsible for most of the cancer-related deaths worldwide. During carcinogenesis, the colon microbiota composition changes from a normobiosis profile to dysbiosis, interfering with the production of short-chain fatty acids (SCFAs). Each SCFA is known to play a role in several biological processes but, despite their reported individual effects, colon cells are exposed to these compounds simultaneously and the combined effect of SCFAs in colon cells is still unknown. Our aim was to explore the effects of SCFAs, alone or in combination, unveiling their biological impact on CRC cell phenotypes. We used a mathematical model for the prediction of the expected SCFA mixture effects and found that, when in mixture, SCFAs exhibit a concentration addition behavior. All SCFAs, alone or combined at the physiological proportions founded in the human colon, revealed to have a selective and anticancer effect by inhibiting colony formation and cell proliferation, increasing apoptosis, disturbing the energetic metabolism, inducing lysosomal membrane permeabilization, and decreasing cytosolic pH. We showed for the first time that SCFAs are specific towards colon cancer cells, showing promising therapeutic effects. These findings open a new road for the development of alternatives for CRC therapy based on the increase in SCFA levels through the modulation of the colon microbiota composition.
Collapse
Affiliation(s)
- Sara Gomes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, 4710-054 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-054 Braga, Portugal
- Department of Life Sciences, Brunel University (BU), London UB8 3PH, UK
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-054 Braga, Portugal
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Elisabete Silva
- Department of Life Sciences, Brunel University (BU), London UB8 3PH, UK
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, 4710-054 Braga, Portugal
| |
Collapse
|
7
|
Li X, Zhang R, Tian T, Shang X, Du X, He Y, Matsuura N, Luo T, Wang Y, Chen J, Kadokami K. Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. WATER RESEARCH 2021; 201:117341. [PMID: 34171645 DOI: 10.1016/j.watres.2021.117341] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The Yangtze River, the third largest river in the world, has been polluted by various organic chemicals. In 2018, China decided to implement ecological restoration of the Yangtze River to protect the river. However, except for some conventional pollution indices such as COD (Chemical Oxygen Demand) and NH4+-N, the overall levels and risks of a wide variety of organic micropollutants (OMPs) in the Yangtze Estuary is not clear. Herein, results from a wide-range screening on levels and risks of OMPs in the Yangtze Estuary water were reported. 36 water samples were collected at 9 sites in the Yangtze Estuary in 2012 and 2013. Approximately 1200 OMPs were screened. A total of 131 OMPs were detected with total concentrations ranging from 1.8×103 to 9.7×103 ng/L. A tiered strategy was proposed to simplify the assessment of multi-substance ecological risks. Results showed that risk quotient (RQ) for 77% of the OMPs was less than 0.1. For 20 OMPs with RQ ≥ 0.1, joint probabilistic risks were assessed by species sensitivity distribution models. The joint risks as expressed by multi-substance potentially affected fractions are > 5%, and are not insignificant. The results may serve as a benchmark for protecting biodiversity in the Yangtze Estuary, as China motivated to have a fundamental improvement on the environmental quality by 2035.
Collapse
Affiliation(s)
- Xuehua Li
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ruohan Zhang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiaochen Shang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xu Du
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yingying He
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Naoki Matsuura
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Tianlie Luo
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ya Wang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
8
|
Wang J, Huang Y, Wang S, Yang Y, He J, Li C, Zhao YH, Martyniuk CJ. Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112114. [PMID: 33711575 DOI: 10.1016/j.ecoenv.2021.112114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting chemicals can mimic, block, or interfere with hormones in organisms and subsequently affect their development and reproduction, which has raised significant public concern over the past several decades. To investigate (quantitative) structure-activity relationship, 8280 compounds were compiled from the Tox21 10K compound library. The results show that 50% activity concentrations of agonists are poorly related to that of antagonists because many compounds have considerably different activity concentrations between the agonists and antagonists. Analysis on the chemical classes based on mode of action (MOA) reveals that estrogen receptor (ER) is not the main target site in the acute toxicity to aquatic organisms. Binomial analysis of active and inactive ER agonists/antagonists reveals that ER activity of compounds is dominated by octanol/water partition coefficient and excess molar refraction. The binomial equation developed from the two descriptors can classify well active and inactive ER chemicals with an overall prediction accuracy of 73%. The classification equation developed from the molecular descriptors indicates that estrogens react with the receptor through hydrophobic and π-n electron interactions. At the same time, molecular ionization, polarity, and hydrogen bonding ability can also affect the chemical ER activity. A decision tree developed from chemical structures and their applications reveals that many hormones, proton pump inhibitors, PAHs, progestin, insecticides, fungicides, steroid and chemotherapy medications are active ER agonists/antagonists. On the other hand, many monocyclic/nonaromatic chain compounds and herbicides are inactive ER compounds. The decision tree and binomial equation developed here are valuable tools to predict active and inactive ER compounds.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Suvorov A, Salemme V, McGaunn J, Poluyanoff A, Teffera M, Amir S. Unbiased approach for the identification of molecular mechanisms sensitive to chemical exposures. CHEMOSPHERE 2021; 262:128362. [PMID: 33182146 DOI: 10.1016/j.chemosphere.2020.128362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Targeted methods that dominated toxicological research until recently did not allow for screening of all molecular changes involved in toxic response. Therefore, it is difficult to infer if all major mechanisms of toxicity have already been discovered, or if some of them are still overlooked. We used data on 591,084 unique chemical-gene interactions to identify genes and molecular pathways most sensitive to chemical exposures. The list of identified pathways did not change significantly when analyses were done on different subsets of data with non-overlapping lists of chemical compounds indicative that our dataset is saturated enough to provide unbiased results. One of the most important findings of this study is that almost every known molecular mechanism may be affected by chemical exposures. Predictably, xenobiotic metabolism pathways, and mechanisms of cellular response to stress and damage were among the most sensitive. Additionally, we identified highly sensitive molecular pathways, which are not widely recognized as major targets of toxicants, including lipid metabolism pathways, longevity regulation cascade, and cytokine-mediated signaling. These mechanisms are relevant to significant public health problems, such as aging, cancer, metabolic and autoimmune disease. Thus, public health field will benefit from future focus of toxicological research on identified sensitive mechanisms.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Joseph McGaunn
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Anthony Poluyanoff
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Menna Teffera
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Saira Amir
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA; Current Affiliation: Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
10
|
Sun H, Pan Y, Chen X, Jiang W, Lin Z, Yin C. Regular time-dependent cross-phenomena induced by hormesis: A case study of binary antibacterial mixtures to Aliivibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109823. [PMID: 31639641 DOI: 10.1016/j.ecoenv.2019.109823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Time-dependent cross-phenomenon in which the cross between the actual concentration-response curve (CRC) for mixture crosses the CRCs for reference model varies with time has been frequently reported in previous studies, expressed as a heterogeneous pattern of joint toxic action. However, the variation tendency of time-dependent cross-phenomenon is rarely addressed. In this study, the joint toxic actions of binary antibacterial mixtures (i.e., two quorum sensing inhibitors, tetracycline hydrochloride, erythromycin, and chloramphenicol with sulfonamides) were judged using independent action (IA) model to find the variation tendency of time-dependent cross-phenomenon. The results show that the time-dependent cross-phenomena of the test binary antibacterial mixtures follow a unified variation tendency and the corresponding joint toxic actions change regularly with an increase of both concentration and time. Through investigating the relationship between the stimulatory and inhibitory modes of action for the single agents and the time-dependent cross-phenomena of binary mixtures, the regular time-dependent cross-phenomena is speculated to be derived from the hormetic effects of the components in the mixtures. This study offers an advance for the variation tendency and mechanistic explanation of time-dependent cross-phenomenon, which will provide a support for the future development in the exploration of time-dependent cross-phenomenon and environmental risk assessment of pollutant mixtures.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Yongzheng Pan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Chen
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai, 200135, China
| | - Wei Jiang
- Shanghai Customs Inspection Center of Industrial Products & Raw Material, Shanghai, 200135, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Chunsheng Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Yuan S, Huang C, Ji X, Ma M, Rao K, Wang Z. Prediction of the combined effects of multiple estrogenic chemicals on MCF-7 human breast cancer cells and a preliminary molecular exploration of the estrogenic proliferative effects and related gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:1-9. [PMID: 29783106 DOI: 10.1016/j.ecoenv.2018.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
The environmental risks of environmental estrogens (EEs) are often assessed via the same mode of action in the concentration addition (CA) model, neglecting the complex combined mechanisms at the genetic level. In this study, the cell proliferation effects of estrone, 17α-ethinylestradiol, 17β-estradiol, estriol, diethylstilbestrol, estradiol valerate, bisphenol A, 4-tert-octylphenol and 4-nonylphenol were determined individually using the CCK-8 method, and the proliferation effects of a multicomponent mixture of estrogenic chemicals mixed at equipotent concentrations using a fixed-ratio design were studied using estrogen-sensitive MCF-7 cells. Furthermore, transcription factors related to cell proliferation were analyzed using RT-PCR assays to explore the potential molecular mechanisms related to the estrogenic proliferative effects. The results showed that the estrogenic chemicals act together in an additive mode, and the combined proliferative effects could be predicted more accurately by the response addition model than the CA model with regard to their adverse outcomes. Furthermore, different signaling pathways were involved depending on the different mixtures. The RT-PCR analyses showed that different estrogens have distinct avidities and preferences for different estrogen receptors at the gene level. Furthermore, the results indicated that estrogenic mixtures increased ERα, PIK3CA, GPER, and PTEN levels and reduced Akt1 level to display combined estrogenicity. These findings indicated that the potential combined environmental risks were greater than those found in some specific assessment procedures based on a similar mode of action due to the diversity of environmental pollutions and their multiple unknown modes of action. Thus, more efforts are needed for mode-of-action-driven analyses at the molecular level. Furthermore, to more accurately predict and assess the individual responses in vivo from the cellular effects in vitro, more parameters and correction factors should be taken into consideration in the addition model.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Sun H, Pan Y, Gu Y, Lin Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:11-19. [PMID: 29471187 DOI: 10.1016/j.scitotenv.2018.02.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic investigation of time-dependent cross-phenomenon, benefitting the environmental risk assessment of mixtures.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongzheng Pan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Gu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
13
|
EDCs Mixtures: A Stealthy Hazard for Human Health? TOXICS 2017; 5:toxics5010005. [PMID: 29051438 PMCID: PMC5606671 DOI: 10.3390/toxics5010005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.
Collapse
|
14
|
Sun H, Ge H, Zheng M, Lin Z, Liu Y. Mechanism Underlying Time-dependent Cross-phenomenon between Concentration-response Curves and Concentration Addition Curves: A Case Study of Sulfonamides-Erythromycin mixtures on Escherichia coli. Sci Rep 2016; 6:33718. [PMID: 27644411 PMCID: PMC5028747 DOI: 10.1038/srep33718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
Previous studies have identified a phenomenon in which the concentration-response curves (CRCs) for mixtures cross the curves for concentration addition model when predicting or judging joint toxic actions. However, mechanistic investigations of this phenomenon are extremely limited. In this study, a similar phenomenon was observed when we determined the joint toxic actions of sulfonamides (SAs) and erythromycin (ERY) on Escherichia coli (E. coli), which we named the "cross-phenomenon", and it was characterized by antagonism in the low-concentration range, addition in the medium-concentration range, and synergism in the high-concentration range. The mechanistic investigation of the cross-phenomenon was as follows: SAs and ERY could form a double block to inhibit the bacterial growth by exhibiting a synergistic effect; however, the hormetic effect of SAs on E. coli led to antagonism in the low-concentration range, resulting from the stimulation of sdiA mRNA expression by SAs, which increased the expression of the efflux pump (AcrAB-TolC) to discharge ERY. Furthermore, this cross-phenomenon was observed to be a time-dependent process induced by the increase of both the concentration and extent of stimulation of sdiA mRNA with exposure time. This work explains the dose-dependent and time-dependent cross-phenomenon and provides evidence regarding the interaction between hormesis and cross-phenomenon.
Collapse
Affiliation(s)
- Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongming Ge
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Min Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Collaborative Innovation Center for Regional Environmental Quality, China
| | - Ying Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai, China
| |
Collapse
|
15
|
Ezechiáš M, Cajthaml T. Novel full logistic model for estimation of the estrogenic activity of chemical mixtures. Toxicology 2016; 359-360:58-70. [DOI: 10.1016/j.tox.2016.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
|
16
|
Prediction of the metabolic clearance of benzophenone-2, and its interaction with isoeugenol and coumarin using cryopreserved human hepatocytes in primary culture. Food Chem Toxicol 2016; 90:55-63. [DOI: 10.1016/j.fct.2016.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/27/2015] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
|
17
|
Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology 2015; 156:4458-73. [PMID: 26465197 DOI: 10.1210/en.2015-1375] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Danh C Vu
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chung-Ho Lin
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Cynthia L Besch-Williford
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Lisa Pinatti
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Erma Z Drobnis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Michelle A Williams
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
18
|
Dreier DA, Connors KA, Brooks BW. Comparative endpoint sensitivity of in vitro estrogen agonist assays. Regul Toxicol Pharmacol 2015; 72:185-93. [PMID: 25896097 DOI: 10.1016/j.yrtph.2015.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Environmental and human health implications of endocrine disrupting chemicals (EDCs), particularly xenoestrogens, have received extensive study. In vitro assays are increasingly employed as diagnostic tools to comparatively evaluate chemicals, whole effluent toxicity and surface water quality, and to identify causative EDCs during toxicity identification evaluations. Recently, the U.S. Environmental Protection Agency (USEPA) initiated ToxCast under the Tox21 program to generate novel bioactivity data through high throughput screening. This information is useful for prioritizing chemicals requiring additional hazard information, including endocrine active chemicals. Though multiple in vitro and in vivo techniques have been developed to assess estrogen agonist activity, the relative endpoint sensitivity of these approaches and agreement of their conclusions remain unclear during environmental diagnostic applications. Probabilistic hazard assessment (PHA) approaches, including chemical toxicity distributions (CTD), are useful for understanding the relative sensitivity of endpoints associated with in vitro and in vivo toxicity assays by predicting the likelihood of chemicals eliciting undesirable outcomes at or above environmentally relevant concentrations. In the present study, PHAs were employed to examine the comparative endpoint sensitivity of 16 in vitro assays for estrogen agonist activity using a diverse group of compounds from the USEPA ToxCast dataset. Reporter gene assays were generally observed to possess greater endpoint sensitivity than other assay types, and the Tox21 ERa LUC BG1 Agonist assay was identified as the most sensitive in vitro endpoint for detecting an estrogenic response. When the sensitivity of this most sensitive ToxCast in vitro endpoint was compared to the human MCF-7 cell proliferation assay, a common in vitro model for biomedical and environmental monitoring applications, the ERa LUC BG1 assay was several orders of magnitude less sensitive than MCF-7. These observations highlight the importance of employing multiple assays with various molecular initiation and signaling events to inform selection, application, and interpretation of in vitro endpoint responses during future environmental diagnostic applications.
Collapse
Affiliation(s)
- David A Dreier
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Kristin A Connors
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Environmental Health Science Program, Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
19
|
Peng C, Lee JW, Sichani HT, Ng JC. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:10-8. [PMID: 25463212 DOI: 10.1016/j.jhazmat.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 05/26/2023]
Abstract
BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 μM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia
| | - Jong-Wha Lee
- Department of Environmental Health, Soonchunhyang University, Asan-si, Chungcheongnam-do 336-745, Republic of Korea
| | - Homa Teimouri Sichani
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia.
| |
Collapse
|
20
|
Heintz MM, Brander SM, White JW. Endocrine Disrupting Compounds Alter Risk-Taking Behavior in Guppies (Poecilia reticulata). Ethology 2015. [DOI: 10.1111/eth.12362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Melissa M. Heintz
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington NC USA
| | - Susanne M. Brander
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington NC USA
| | - James W. White
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington NC USA
| |
Collapse
|
21
|
Real M, Molina-Molina JM, Jiménez-Díaz I, Arrebola JP, Sáenz JM, Fernández MF, Olea N. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays. ENVIRONMENT INTERNATIONAL 2015; 74:125-35. [PMID: 25454229 DOI: 10.1016/j.envint.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs.
Collapse
Affiliation(s)
- Macarena Real
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain
| | - José-Manuel Molina-Molina
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Granada, E-18071, Spain.
| | - Inmaculada Jiménez-Díaz
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain
| | - Juan Pedro Arrebola
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain
| | - José-María Sáenz
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain
| | - Mariana F Fernández
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Granada, E-18071, Spain
| | - Nicolás Olea
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Granada, E-18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, E-18012, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Granada, E-18071, Spain
| |
Collapse
|
22
|
Yang R, Li N, Ma M, Wang Z. Combined effects of estrogenic chemicals with the same mode of action using an estrogen receptor binding bioassay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:829-837. [PMID: 25461542 DOI: 10.1016/j.etap.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
The increasing amounts of various estrogenic chemicals coexisting in the aquatic environment may pose environmental risks. While the concept of estradiol equivalent (EEQ) has been frequently applied in studying estrogenic mixtures, few experiments have been done to prove its reliability. In this study, the reliability of EEQ and the related model concentration addition (CA) was verified based on the two-hybrid recombinant yeast bioassay when all mixture components had the same mode of action and target of action. Our results showed that the measured estrogenic effects could be well predicted by CA and EEQ for all laboratory-made mixtures using two designs, despite the varying estrogenic activity, concentration levels and ratios of the test chemicals. This suggests that when an appropriate endpoint and its relevant bioassay are chosen, CA should be valid and the application of EEQ in predicting the effect of non-equi-effect mixtures is feasible.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
García-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One 2014; 9:e100214. [PMID: 24959901 PMCID: PMC4069068 DOI: 10.1371/journal.pone.0100214] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Collapse
Affiliation(s)
- Marta García-Arevalo
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Paloma Alonso-Magdalena
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Junia Rebelo Dos Santos
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Everardo M. Carneiro
- Departamento de Biologia Estructural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
- * E-mail:
| |
Collapse
|
24
|
Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method. PLoS One 2014; 9:e88808. [PMID: 24533151 PMCID: PMC3923049 DOI: 10.1371/journal.pone.0088808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past.
Collapse
|
25
|
Chen F, Liu SS, Duan XT, Xiao QF. Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling. RSC Adv 2014. [DOI: 10.1039/c4ra02698e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular simulation techniques are used to identify the mode of inhibition of chemicals at the ligand–receptor level.
Collapse
Affiliation(s)
- Fu Chen
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education, College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education, College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092, PR China
- State Key Laboratory of Pollution Control and Resource Reuse
| | - Xin-Tian Duan
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education, College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092, PR China
| | - Qian-Fen Xiao
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education, College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092, PR China
- State Key Laboratory of Pollution Control and Resource Reuse
| |
Collapse
|
26
|
da Silva DD, Silva E, Carmo H. Combination effects of amphetamines under hyperthermia - the role played by oxidative stress. J Appl Toxicol 2013; 34:637-50. [PMID: 23765447 DOI: 10.1002/jat.2889] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
Rise in body temperature is a life-threatening consequence of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) abuse. We evaluated the impact of hyperthermia on the cytotoxicity of combinations of MDMA and three other amphetamines, often co-ingested. For this, Hep G2 cells were exposed to MDMA, d-amphetamine, methamphetamine and 4-methylthioamphetamine, individually or combined, at 40.5 °C. The results were compared with normothermia data (37.0 °C). Mixture additivity expectations were calculated by independent action and concentration addition (CA) models. To delineate the mechanism(s) underlying the elicited effects, a range of stress endpoints was evaluated, including quantification of reactive oxygen/nitrogen species (ROS/RNS), lipid peroxidation, reduced/oxidized glutathione (GSH/GSSG), ATP and mitochondrial membrane potential (Δψm) changes. Our data show that, in hyperthermia, amphetamines acted additively and mixture effects were accurately predicted by CA. At 40.5 °C, even slight increases in the concentrations of each drug/mixture promoted significant rises in cytotoxicity, which quickly shifted from roughly undetectable to maximal mortality. Additionally, the increase of RNS/ROS production, decrease of GSH, ATP depletion and mitochondrial impairment were exacerbated under hyperthermia. Importantly, when equieffective cytotoxic concentrations of the mixture and individual amphetamines were compared for all tested stress endpoints, mixture effects did not deviate from those elicited by individual treatments, suggesting that these amphetamines have a similar mode of action, which is not altered in combination. Concluding, our data indicate that amphetamine mixtures produce deleterious effects, even when individual drugs are combined at negligible concentrations. These effects are strongly exacerbated in hyperthermia, emphasizing the potential increased risks of ecstasy intake, especially when hyperthermia occurs concurrently with polydrug abuse.
Collapse
Affiliation(s)
- Diana Dias da Silva
- Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK; REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
27
|
Crawford BR, Decatanzaro D. Disruption of blastocyst implantation by triclosan in mice: impacts of repeated and acute doses and combination with bisphenol-A. Reprod Toxicol 2012; 34:607-13. [PMID: 23059059 DOI: 10.1016/j.reprotox.2012.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/20/2012] [Accepted: 09/11/2012] [Indexed: 01/31/2023]
Abstract
Triclosan is an antimicrobial additive in many personal care and household products, and evidence indicates that it can be estrogenic. As estrogen elevations can disrupt blastocyst implantation, we examined the influence of triclosan on implantation in inseminated mice. Doses of 18 and 27 mg/animal/day (about 523 and 785 mg/kg/day) on gestational days (GD) 1-3 reduced the number of implantation sites on GD 6. Single doses on GD 2 or 3 also reduced implantation sites. Subsequently, we examined triclosan in combination with bisphenol-A (BPA), which also can disrupt implantation. Although doses of 4 mg BPA (122 mg/kg) and 9 mg triclosan (262 mg/kg) on GD 1-3 were individually ineffective, in combination they reduced the number of implantation sites and also increased gestation length. All of these effects mimicked stronger effects of 17β-estradiol. These data are consistent with potential estrogenic properties of triclosan, and show that it can act together with BPA.
Collapse
Affiliation(s)
- Brent R Crawford
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
28
|
The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines? Arch Toxicol 2012; 87:111-22. [DOI: 10.1007/s00204-012-0929-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
29
|
Lampa E, Lind L, Hermansson AB, Salihovic S, van Bavel B, Lind PM. An investigation of the co-variation in circulating levels of a large number of environmental contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:476-82. [PMID: 22692364 DOI: 10.1038/jes.2012.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We are daily exposed to many different environmental contaminants. Mixtures of these contaminants could act together to induce more pronounced effects than the sum of the individual contaminants. To evaluate the effects of such mixtures, it is of importance to assess the co-variance amongst the contaminants. Thirty-seven environmental contaminants representing different classes were measured in blood samples from 1016 individuals aged 70 years. Hierarchical cluster analysis and principal component analysis were used to assess the co-variation among the contaminants. Within each identified cluster, possible marker contaminants were sought for. We validated our findings using data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 study. Two large clusters could be identified, one representing low/medium chlorinated polychlorinated biphenyls (PCBs) (≤6 chlorine atoms), as well as two pesticides and one representing medium/high chlorinated PCBs (≥6 chlorine atoms). PCBs 118 and 153 could be used as markers for the low/medium chlorinated cluster and PCBs 170 and 209 could be used as markers for the medium/high chlorinated cluster. This pattern was similar to data from the NHANES study. Apart from the PCBs, little co-variation was seen among the contaminants. Thus, a large number of chemicals have to be measured to adequately identify mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Erik Lampa
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Evans RM, Scholze M, Kortenkamp A. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles. PLoS One 2012; 7:e43606. [PMID: 22912892 PMCID: PMC3422259 DOI: 10.1371/journal.pone.0043606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/26/2012] [Indexed: 12/18/2022] Open
Abstract
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Collapse
Affiliation(s)
- Richard Mark Evans
- Institute for the Environment, Brunel University, Uxbridge, Middlesex, United Kingdom.
| | | | | |
Collapse
|