1
|
Bolatimi OE, Hua Y, Ekuban FA, Gripshover TC, Ekuban A, Luulay B, Watson WH, Hardesty JE, Wahlang B. Low dose exposure to dioxins alters hepatic energy metabolism and steatotic liver disease development in a sex-specific manner. ENVIRONMENT INTERNATIONAL 2024; 194:109152. [PMID: 39577358 PMCID: PMC11700233 DOI: 10.1016/j.envint.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
"Dioxins" are persistent organic pollutants (POPs) that are continuously present in the environment at appreciable levels and have been associated with increased risk of steatotic liver disease (SLD). However, current understanding of the role of sex and effects of mixtures of dioxins in SLD development is limited. Additionally, there exists debates on the levels of dioxins required to be considered dangerous as emphasis has shifted from high level exposure events to the steady state of lower-level exposures. We therefore investigated sex-dependent effects of low-level exposures to a mixture of dioxins: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and Polychlorinated biphenyl 126 (PCB126), in the context of SLD and associated metabolic dysfunction. Male and female C57BL/6J mice were fed a low-fat diet and weekly administered either vehicle control or TCDD (10 ng/kg), PeCDF (80 ng/kg) and PCB 126 (140 ng/kg) over a two-week period. Female mice generally demonstrated higher hepatic fat content compared to males. However, exposure to dioxins further elevated hepatic cholesterol levels in females, and this was accompanied by increased lipogenic gene expression (Acaca, Fasn) in the liver. In contrast, exposed males but not females displayed higher white adipose tissue weights. Furthermore, TCDD + PeCDF + PCB126 activated the AHR (hepatic Cyp1a1, Cyp1a2 induction); with Cyp1a1 induction observed only in exposed females. Notably, gene expression of hepatic albumin (Alb) was also reduced only in exposed females. Overall, exposure to the low dose dioxin mixture compromised hepatic homeostasis via metabolic perturbations, and hepatic dysregulation was more accelerated in female livers.
Collapse
Affiliation(s)
- Oluwanifemi E Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Hua
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Frederick A Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tyler C Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Abigail Ekuban
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Bana Luulay
- College of Arts and Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
2
|
Graelmann FJ, Gondorf F, Majlesain Y, Niemann B, Klepac K, Gosejacob D, Gottschalk M, Mayer M, Iriady I, Hatzfeld P, Lindenberg SK, Wunderling K, Thiele C, Abdullah Z, He W, Hiller K, Händler K, Beyer MD, Ulas T, Pfeifer A, Esser C, Weighardt H, Förster I, Reverte-Salisa L. Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis. Mol Metab 2024; 85:101963. [PMID: 38821174 PMCID: PMC11214421 DOI: 10.1016/j.molmet.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.
Collapse
Affiliation(s)
- Frederike J Graelmann
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Katarina Klepac
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Irina Iriady
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Philip Hatzfeld
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Sophie K Lindenberg
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Klaus Wunderling
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph Thiele
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Germany
| | - Wei He
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Händler
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562 Lübeck, Germany
| | - Marc D Beyer
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| | - Laia Reverte-Salisa
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| |
Collapse
|
3
|
Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14174245. [PMID: 36077780 PMCID: PMC9454859 DOI: 10.3390/cancers14174245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer cells undergo metabolic modifications in order to meet their high energetic demand. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor primarily known as a xenobiotic sensor. However, this receptor seems to have a wide range of physiological roles in many processes including cell proliferation, migration or control of immune responses. AhR is often overexpressed in tumor cells of various tissue origin, and several studies have indicated that AhR may also contribute to regulation of cellular metabolism, including synthesis of fatty acids (FA), one of the major steps in metabolic transition. Potential links between the AhR and the control of tumor cell proliferation and metabolism thus deserve more attention. Abstract The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.
Collapse
|
4
|
Guo J, Zhang S, Fang L, Huang J, Wang Q, Wang C, Chen M. In utero exposure to phenanthrene induces hepatic steatosis in F1 adult female mice. CHEMOSPHERE 2020; 258:127360. [PMID: 32554016 DOI: 10.1016/j.chemosphere.2020.127360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants are thought to be a risk factor for the prevalence of hepatic steatosis. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, and human exposure is inevitable. In the present study, phenanthrene (Phe) was used as a representative PAH to investigate the effects of in utero exposure to PAH on hepatic lipid metabolism and the toxicological mechanism involved. Pregnant mice (C57BL/6J) were orally administered Phe (0, 60, 600 and 6000 μg kg-1 body weight) once every 3 days with 6 doses in total. F1 female mice aged 125 days showed significantly elevated hepatic lipid levels in the liver. The protein expression of hepatic peroxisome proliferator-activated receptors (PPARβ and PPARγ) and retinoid X receptors (RXRs) was upregulated; the transcription of genes related to lipogenesis, such as srebp1 (encoding sterol regulatory element binding proteins), acca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and pcsk9 (proprotein convertase subtilisin/kexin type 9), showed an upregulation, while the mRNA levels of the lipolysis gene lcat (encoding lecithin cholesterol acyl transferase) were downregulated. These results could be responsible for lipid accumulation. The promoter methylation levels of pparγ were reduced and were the lowest in the 600 μg kg-1 group, and the promoter methylation levels of lcat were significantly increased in all the Phe treatments. These changes were matched with the alterations in their mRNA levels, suggesting that prenatal Phe exposure could induce abnormal lipid metabolism in later life via epigenetic modification.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- College of Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, PR China.
| |
Collapse
|
5
|
Asghari S, Nouri M, Darabi M, Valizadeh A. Steroid-depleted endometriosis serum improves oocyte maturation in IVM systems. J Cell Physiol 2020; 236:205-214. [PMID: 32537756 DOI: 10.1002/jcp.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022]
Abstract
In vitro maturation (IVM) is a novel approach to overcome the adverse effects of human in vitro fertilization (IVF). The aim of the present study is to evaluate the effect of total and steroid-depleted serum obtained from patients with endometriosis on IVM outcome as supplementation for this system. To this purpose, patients with endometriosis were selected according to in/excluding criteria. Germinal vesicles (GVs) and cumulus cells were treated with 10% of each serum. The expression levels of stearoyl CoA desaturase 1 (SCD 1) and cyclooxygenase-2 (COX-2) genes were evaluated by RT-qPCR. Gas-liquid chromatography and flow cytometry were performed to analyze fatty acids composition and apoptosis. The mRNA expression levels of SCD1 (2.47 fold) and COX-2 (6.4 fold), and also the synthesis of oleate, linoleate, and arachidonate were increased (1.19, 1.06, and 2.37 folds, respectively) in cumulus cells treated with steroid-depleted serum (p < .05). The synthesis of palmitate, palmitoleate, and stearate (0.995, 0.67, and 0.7 folds, respectively) and also the rate of apoptosis were significantly decreased in these cells (p < .05). Moreover, GVs cultured in steroid-depleted group showed a significantly higher rate of maturation (p < .001). Overall, our findings imply a new insight into the expansion of IVM system in oocytes development.
Collapse
Affiliation(s)
- Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Rojas IY, Moyer BJ, Ringelberg CS, Tomlinson CR. Reversal of obesity and liver steatosis in mice via inhibition of aryl hydrocarbon receptor and altered gene expression of CYP1B1, PPARα, SCD1, and osteopontin. Int J Obes (Lond) 2020; 44:948-963. [PMID: 31911663 PMCID: PMC7103522 DOI: 10.1038/s41366-019-0512-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a global epidemic and the underlying basis for numerous comorbidities. We report that the aryl hydrocarbon receptor (AHR) plays a key role in the metabolism of obesity. The AHR is a promiscuous, ligand-activated nuclear receptor primarily known for regulating genes involved in xenobiotic metabolism and T cell polarization. The aims of the work reported here were to understand the underlying mechanism of AHR-based obesity and to determine whether inhibition of AHR activity would reverse obesity. METHODS Mice were fed control (low fat) and Western (high fat) diets with and without the AHR antagonist alpha-naphthoflavone (aNF). Gene expression of identified AHR-regulated genes from liver and adipose tissue was characterized. To determine the role of the AHR in obesity reversal, selected mice in control and Western diet regimens were switched at midpoint to the respective control and Western diets containing aNF, and the identified AHR-regulated genes characterized. RESULTS AHR inhibition prevented obesity in mice on a 40-week diet regimen. The likely AHR-regulated and cross-regulated downstream effectors of AHR-based obesity were shown to be CYP1B1, PPARα-target genes, SCD1, and SPP1 (osteopontin). Western diet caused an increase of mRNA and protein expression of the Cyp1b1, Scd1, and Spp1, and PPARα-target genes in the liver, and inhibition of the AHR maintained expression of these genes near control levels. The body weight of obese mice on Western diet switched to Western diet containing aNF decreased to that of mice on control diet concurrently with a reduction in the expression of liver CYP1B1, PPARα-target genes, SCD1, and SPP1. AHR inhibition prevented hypertrophy and hyperplasia in visceral adipose tissue and limited expression levels of CYP1B1 and SPP1 to that of mice on control diet. CONCLUSIONS AHR inhibition prevents and reverses obesity by likely reducing liver expression of the Cyp1b1, Scd1, Spp1, and PPARα-target genes; and the AHR is a potentially potent therapeutic target for the treatment and prevention of obesity and linked diseases.
Collapse
Affiliation(s)
- Itzel Y Rojas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Tufts University School of Medicine, 711 Washington Street, Boston, MA, 02111, USA
| | - Benjamin J Moyer
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Carol S Ringelberg
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
7
|
Eyvaznejad E, Nouri M, Ghasemzadeh A, Mehdizadeh A, Shahnazi V, Asghari S, Mardomi A, Darabi M. Steroid-depleted polycystic ovarian syndrome serum promotes in vitro oocyte maturation and embryo development. Gynecol Endocrinol 2018; 34:698-703. [PMID: 29378439 DOI: 10.1080/09513590.2018.1431770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In vitro maturation (IVM) of immature oocytes obtained from patients with polycystic ovarian syndrome (PCOS) is considered as a novel strategy in order to reduce clinical side effects and cost of in vitro fertilization (IVF) technique. The aim of this study was to evaluate the effects of PCOS whole and steroid-depleted serums on in vitro oocyte maturation indices. Patients with PCOS were selected according to the Rotterdam criteria. Cumulus-oocyte complexes and blood serums were collected and pooled. Cumulus cells and immature oocytes were treated with 10% whole or steroid-depleted serums. Stearoyl-CoA desaturase-1 (SCD1) and cyclooxygenase-2 (COX2) expression levels in cumulus cells were evaluated by quantitative PCR. Fatty acid composition of cumulus cells was analyzed using gas-liquid chromatography. Polar body observation was considered as the oocyte maturation index. Oleate (1.28-fold, p = .006), SCD1 expression (450-fold, p = .001), and COX2 expression (35-fold, p = .02) in cumulus cell, as well as oocyte maturation (p < .001) and in vitro embryo development (p < .05) were significantly higher in treatment with steroid-depleted serum compared to that of whole serum. Steroid depletion of PCOS serum improved its capacity to increase success rate of oocyte maturation, intra-cytoplasmic sperm injection and early embryo development.
Collapse
Affiliation(s)
- Elham Eyvaznejad
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Nouri
- b Stem Cell and Regenerative Medicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliyeh Ghasemzadeh
- c Women's Reproductive Health Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amir Mehdizadeh
- d Endocrine Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahideh Shahnazi
- e Department of Reproductive Biology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Samira Asghari
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Alireza Mardomi
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
- f Department of Microbiology and Immunology , Mazandaran University of Medical Sciences , Sari , Iran
| | - Masoud Darabi
- a Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
- g Department of Biochemistry and Clinical Laboratories, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
8
|
Klaunig JE, Li X, Wang Z. Role of xenobiotics in the induction and progression of fatty liver disease. Toxicol Res (Camb) 2018; 7:664-680. [PMID: 30090613 PMCID: PMC6062016 DOI: 10.1039/c7tx00326a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease is a major cause of chronic liver pathology in humans. Fatty liver disease involves the accumulation of hepatocellular fat in hepatocytes that can progress to hepatitis. Steatohepatitis is categorized into alcoholic (ASH) or non-alcoholic (NASH) steatohepatitis based on the etiology of the insult. Both pathologies involve an initial steatosis followed by a progressive inflammation of the liver and eventual hepatic fibrosis (steatohepatitis) and cirrhosis. The involvement of pharmaceuticals and other chemicals in the initiation and progression of fatty liver disease has received increased study. This review will examine not only how xenobiotics initiate hepatic steatosis and steatohepatitis but also how the presence of fatty liver may modify the metabolism and pathologic effects of xenobiotics. The feeding of a high fat diet results in changes in the expression of nuclear receptors that are involved in adaptive and adverse liver effects following xenobiotic exposure. High fat diets also modulate cellular and molecular pathways involved in inflammation, metabolism, oxidative phosphorylation and cell growth. Understanding the role of hepatic steatosis and steatohepatitis on the sequelae of toxic and pathologic changes seen following xenobiotic exposure has importance in defining proper and meaningful human risk characterization of the drugs and other chemical agents.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Xilin Li
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| | - Zemin Wang
- Indiana University , School of Public Health , Bloomington , Indiana , USA .
| |
Collapse
|
9
|
Kania-Korwel I, Wu X, Wang K, Lehmler HJ. Identification of lipidomic markers of chronic 3,3',4,4',5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology 2017; 390:124-134. [PMID: 28890136 PMCID: PMC5633524 DOI: 10.1016/j.tox.2017.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Exposure to PCB 126, an environmentally relevant aryl hydrocarbon receptor agonist, is an environmental factor causing hepatic steatosis in rodent models; however, the lipidome of PCB 126-exposed rats has not been investigated in-depth. The objective of the present study was therefore to characterize dose-dependent changes in the lipid profile in the liver of male Sprague-Dawley rats exposed to PCB 126. Rats were exposed for three month to intraperitoneal injections of 0.01, 0.05 and 0.2μmol/kg bw PCB 126 in corn oil. Control animals were exposed in parallel and received corn oil alone. Lipids were extracted from whole liver homogenate and levels of polar lipids and fatty acids incorporated into triglycerides (FATAGs) were determined with tandem mass spectrometry using electrospray ionization. PCB 126 exposure increased the hepatic content of polar lipids and FATAGs. Protein adjusted levels of several polar lipid classes, in particular phosphatidylserine levels, decreased, whereas FATAGs levels typically increased with increasing PCB 126 dose. Sensitive, dose-dependent endpoints of PCB 126 exposure included an increase in levels of adrenic acid incorporated into triglycerides and changes in levels of certain ether-linked phospholipid and 1-alkyl/1-alkenyldiacylglycerol species, as determined using partial least square discriminant analysis (PLS-DA) and ANOVA. These changes in the composition of polar lipids and fatty acid in the liver of PCB 126 exposed rats identified several novel markers of PCB 126-mediated fatty liver disease that need to be validated in further studies.
Collapse
Affiliation(s)
- Izabela Kania-Korwel
- Department of Occupational Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Xianai Wu
- Department of Occupational Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Brulport A, Le Corre L, Chagnon MC. Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet. Toxicology 2017; 390:43-52. [PMID: 28774668 DOI: 10.1016/j.tox.2017.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Contaminant involvement in the pathophysiology of obesity is widely recognized. It has been shown that low dose and chronic exposure to endocrine disruptor compounds (EDCs) potentiated diet- induced obesity. High and acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant (POP) and an EDC with anti-estrogenic property, causes wasting syndrome . However at lower doses, the TCDD metabolic effects remain poorly understood. We investigated the obesogenic effect during chronic exposure of TCDD at 1μg/kg body weight (bw)/week in adult C57BL/6J mice fed with a high fat diet (HFD) and exposed from 10 to 42 weeks old to TCDD or equal volume of vehicle by intragastric gavage. Under these conditions, TCDD was obesogenic in adult mice (7% in males and 8% in females), which was linked to fat mass. A sex effect was observed in the fat mass distribution in adipose tissue and in the hepatic triglyceride content evolution. In visceral fat pad weight, we observed a decrease (11%) in males and an increase (14%) in females. The hepatic triglyceride content increase (41%) in females only. TCDD failed to induce any change in plasma parameters regarding glucose and lipid homeostasis. Messenger ribonucleic acid (mRNA) levels involved in adipose tissue and hepatic metabolism, inflammation, xenobiotic metabolism and endocrine disruption were differently regulated between males and females. In conclusion, these results provide new evidence that dioxin, a POP and EDC can be obesogenic for adult mice with multi-organ effects.
Collapse
MESH Headings
- Adiposity/drug effects
- Animals
- Basic Helix-Loop-Helix Transcription Factors/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cytokines/blood
- Cytokines/genetics
- Diet, High-Fat
- Environmental Pollutants/toxicity
- Female
- Inflammation Mediators/blood
- Insulin/blood
- Insulin Resistance
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/physiopathology
- Leptin/blood
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Obesity/blood
- Obesity/chemically induced
- Obesity/genetics
- Obesity/physiopathology
- Polychlorinated Dibenzodioxins/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Aryl Hydrocarbon/drug effects
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Risk Assessment
- Sex Factors
- Stearoyl-CoA Desaturase/genetics
- Stearoyl-CoA Desaturase/metabolism
- Time Factors
- Triglycerides/blood
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France; AgroSup, LNC UMR1231, F-21000 Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000 Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France; AgroSup, LNC UMR1231, F-21000 Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000 Dijon, France.
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France; AgroSup, LNC UMR1231, F-21000 Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000 Dijon, France
| |
Collapse
|
11
|
Moyer BJ, Rojas IY, Kerley-Hamilton JS, Nemani KV, Trask HW, Ringelberg CS, Gimi B, Demidenko E, Tomlinson CR. Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice. Nutr Res 2017; 44:38-50. [PMID: 28821316 DOI: 10.1016/j.nutres.2017.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/16/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Inhibition of the aryl hydrocarbon receptor (AHR) prevents Western diet-induced obesity and fatty liver in C57Bl/6J (B6) male mice. The AHR is a ligand-activated nuclear receptor that regulates genes involved in xenobiotic metabolism and T-cell differentiation. Here, we tested the hypothesis that AHR antagonism would also prevent obesity and fatty liver in female mice and that B6 mice (higher-affinity AHR) and congenic B6.D2 mice (lower-affinity AHR) would differentially respond to AHR inhibition. Female and male adult B6 and B6.D2 mice were fed control and Western diets with and without α-naphthoflavone (NF), an AHR inhibitor. A nonlinear mixed-model analysis was developed to project asymptote body mass. We found that obesity, adiposity, and liver steatosis were reduced to near control levels in all female and male B6 and B6.D2 experimental groups fed Western diet with NF. However, differences were noted in that female B6.D2 vs B6 mice on Western diet became more obese; and in general, female mice compared with male mice had a greater fat mass to body mass ratio, were less responsive to NF, and had reduced liver steatosis and hepatomegaly. We report that male mice fed Western diet containing NF or CH-223191, another AHR inhibitor, caused reduced mRNA levels of several liver genes involved in metabolism, including Cyp1b1 and Scd1, offering evidence for a possible mechanism by which the AHR regulates obesity. In conclusion, although there are some sex- and Ahr allelic-dependent differences, AHR inhibition prevents obesity and liver steatosis in both males and females regardless of the ligand-binding capacity of the AHR. We also present evidence consistent with the notion that an AHR-CYP1B1-SCD1 axis is involved in obesity, providing potentially convenient and effective targets for treatment.
Collapse
Affiliation(s)
- Benjamin J Moyer
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Itzel Y Rojas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756
| | - Joanna S Kerley-Hamilton
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Krishnamurthy V Nemani
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Heidi W Trask
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Carol S Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Barjor Gimi
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Eugene Demidenko
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756.
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756.
| |
Collapse
|
12
|
Duval C, Teixeira-Clerc F, Leblanc AF, Touch S, Emond C, Guerre-Millo M, Lotersztajn S, Barouki R, Aggerbeck M, Coumoul X. Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:428-436. [PMID: 27713108 PMCID: PMC5332187 DOI: 10.1289/ehp316] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) has been associated with the progression of chronic liver diseases, yet the contribution of POPs to the development of fibrosis in non-alcoholic fatty liver disease (NAFLD), a condition closely linked to obesity, remains poorly documented. OBJECTIVES We investigated the effects of subchronic exposure to low doses of the POP 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor ligand, on NAFLD progression in diet-induced obese C57BL/6J mice. METHODS Male C57BL/6J mice were fed either a 10% low-fat (LFD) or a 45% high-fat (HFD) purified diet for 14 weeks and TCDD-exposed groups were injected once a week with 5 μg/kg TCDD or the vehicle for the last 6 weeks of the diet. RESULTS Liver histology and triglyceride levels showed that exposure of HFD fed mice to TCDD worsened hepatic steatosis, as compared to either HFD alone or LFD plus TCDD and the mRNA levels of key genes of hepatic lipid metabolism were strongly altered in co-treated mice. Further, increased liver collagen staining and serum transaminase levels showed that TCDD induced liver fibrosis in the HFD fed mice. TCDD in LFD fed mice increased the expression of several inflammation and fibrosis marker genes with no additional effect from a HFD. CONCLUSIONS Exposure to TCDD amplifies the impairment of liver functions observed in mice fed an enriched fat diet as compared to a low fat diet. The results provide new evidence that environmental pollutants promote the development of liver fibrosis in obesity-related NAFLD in C57BL/6J mice. Citation: Duval C, Teixeira-Clerc F, Leblanc AF, Touch S, Emond C, Guerre-Millo M, Lotersztajn S, Barouki R, Aggerbeck M, Coumoul X. 2017. Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model. Environ Health Perspect 125:428-436; http://dx.doi.org/10.1289/EHP316.
Collapse
Affiliation(s)
- Caroline Duval
- INSERM UMR (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche)-S1124, Paris, France
- Université Paris Descartes, ComUE (Communauté d’universités et d’établissements), Sorbonne Paris Cité, Paris, France
| | - Fatima Teixeira-Clerc
- INSERM UMR-S955, Hôpital Henri Mondor, Créteil, France
- Université Paris-Est, Créteil, France
| | - Alix F. Leblanc
- INSERM UMR (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche)-S1124, Paris, France
- Université Paris Descartes, ComUE (Communauté d’universités et d’établissements), Sorbonne Paris Cité, Paris, France
| | - Sothea Touch
- INSERM UMR-S1166, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Claude Emond
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | | | - Sophie Lotersztajn
- INSERM UMR-S955, Hôpital Henri Mondor, Créteil, France
- Université Paris-Est, Créteil, France
| | - Robert Barouki
- INSERM UMR (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche)-S1124, Paris, France
- Université Paris Descartes, ComUE (Communauté d’universités et d’établissements), Sorbonne Paris Cité, Paris, France
- AP-HP (Assistance Publique - Hôpitaux de Paris), Hôpital Necker-Enfants Malades, Paris, France
| | - Martine Aggerbeck
- INSERM UMR (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche)-S1124, Paris, France
- Université Paris Descartes, ComUE (Communauté d’universités et d’établissements), Sorbonne Paris Cité, Paris, France
| | - Xavier Coumoul
- INSERM UMR (Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche)-S1124, Paris, France
- Université Paris Descartes, ComUE (Communauté d’universités et d’établissements), Sorbonne Paris Cité, Paris, France
- Address correspondence to X. Coumoul, INSERM UMR-S1124, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France. Telephone: 33142863359. E-mail:
| |
Collapse
|
13
|
Ivanov S, Semin M, Lagunin A, Filimonov D, Poroikov V. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions. Mol Inform 2017; 36. [PMID: 28145637 DOI: 10.1002/minf.201600142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research.
Collapse
Affiliation(s)
- Sergey Ivanov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Maxim Semin
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia
| |
Collapse
|
14
|
Vogel CF, Chang WW, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang G, Leung PS, Matsumura F, Gershwin ME. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1071-1083. [PMID: 26862745 PMCID: PMC4937866 DOI: 10.1289/ehp.1510194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/03/2015] [Accepted: 01/13/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. OBJECTIVE This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. METHODS We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. RESULTS AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. CONCLUSION In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. CITATION Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F, Gershwin ME. 2016. Transgenic overexpression of aryl hydrocarbon receptor repressor (AhRR) and AhR-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ Health Perspect 124:1071-1083; http://dx.doi.org/10.1289/ehp.1510194.
Collapse
Affiliation(s)
| | - W.L. William Chang
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | | | | | | - Dalei Wu
- Center for Health and the Environment,
| | | | - GuoXiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Fumio Matsumura
- Department of Environmental Toxicology,
- Center for Health and the Environment,
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
15
|
Gutierrez MA, Davis SS, Rosko A, Nguyen SM, Mitchell KP, Mateen S, Neves J, Garcia TY, Mooney S, Perdew GH, Hubbard TD, Lamba DA, Ramanathan A. A novel AhR ligand, 2AI, protects the retina from environmental stress. Sci Rep 2016; 6:29025. [PMID: 27364765 PMCID: PMC4929558 DOI: 10.1038/srep29025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice.
Collapse
Affiliation(s)
- Mark A Gutierrez
- University of Denver, Colorado 2199 S University Blvd, Denver, CO 80208, USA
| | - Sonnet S Davis
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Andrew Rosko
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Steven M Nguyen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Kylie P Mitchell
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Samiha Mateen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Joana Neves
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Shaun Mooney
- University of Washington Box 358047 Seattle, WA 98195, USA
| | - Gary H Perdew
- The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, 309 Life Sciences Building, University Park, PA 16802, USA
| | - Troy D Hubbard
- The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, 309 Life Sciences Building, University Park, PA 16802, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94901, USA
| |
Collapse
|
16
|
Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol 2016; 304:121-32. [PMID: 27105554 DOI: 10.1016/j.taap.2016.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes≥2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824, United States
| | - Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States
| | - Michelle Steidemann
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Taylor K Dunivin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Mike Rizzo
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, United States; Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
17
|
Angrish MM, Kaiser JP, McQueen CA, Chorley BN. Tipping the Balance: Hepatotoxicity and the 4 Apical Key Events of Hepatic Steatosis. Toxicol Sci 2016; 150:261-8. [PMID: 26980302 DOI: 10.1093/toxsci/kfw018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatic steatosis is a condition were fat accumulates in the liver and it is associated with extra-hepatic diseases related to metabolic syndrome and systemic energy metabolism. If not reversed, steatosis can progress to steatohepatitis and irreversible stages of liver disease including fibrosis, cirrhosis, hepatocellular carcinoma, and death. From a public health standpoint, identifying chemical exposures that may be factors in steatosis etiology are important for preventing hepatotoxicity and liver disease progression. It is therefore important to identify the biological events that are key for steatosis pathology mediated by chemical exposure. In this review, we give a current overview of the complex biological cascades that can disrupt lipid homeostasis in hepatocytes in the context of 4 apical key events central to hepatic lipid retention: hepatic fatty acid (FA) uptake,de novoFA and lipid synthesis, FA oxidation, and lipid efflux. Our goal is to review these key cellular events and visually summarize them using a network for application in pathway-based toxicity testing. This effort provides a foundation to improve next-generation chemical screening efforts that may be used to prevent and ultimately reverse the growing incidence of fatty liver disease in our population.
Collapse
Affiliation(s)
- Michelle M Angrish
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Jonathan Phillip Kaiser
- United States Environmental Protection Agency (US EPA), National Center for Environmental Assessment, Office of Research and Development (ORD), Cincinnati, Ohio 45268
| | - Charlene A McQueen
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Brian N Chorley
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709;
| |
Collapse
|
18
|
Neuschäfer-Rube F, Schraplau A, Schewe B, Lieske S, Krützfeldt JM, Ringel S, Henkel J, Birkenfeld AL, Püschel GP. Arylhydrocarbon receptor-dependent mIndy (Slc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes. Toxicology 2015; 337:1-9. [PMID: 26303333 DOI: 10.1016/j.tox.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease is a growing problem in industrialized and developing countries. Hepatic lipid accumulation is the result of an imbalance between fatty acid uptake, fatty acid de novo synthesis, β-oxidation and secretion of triglyceride-rich lipoproteins from the hepatocyte. A central regulator of hepatic lipid metabolism is cytosolic citrate that can either be derived from the mitochondrium or be taken up from the blood via the plasma membrane sodium citrate transporter NaCT, the product of the mammalian INDY gene (SLC13A5). mINDY ablation protects against diet-induced steatosis whereas mINDY expression is increased in patients with hepatic steatosis. Diet-induced hepatic steatosis is also enhanced by activation of the arylhyrocarbon receptor (AhR) both in humans and animal models. Therefore, the hypothesis was tested whether the mINDY gene might be a target of the AhR. In accordance with such a hypothesis, the AhR activator benzo[a]pyrene induced the mINDY expression in primary cultures of rat hepatocytes in an AhR-dependent manner. This induction resulted in an increased citrate uptake and citrate incorporation into lipids which probably was further enhanced by the benzo[a]pyrene-dependent induction of key enzymes of fatty acid synthesis. A potential AhR binding site was identified in the mINDY promoter that appears to be conserved in the human promoter. Elimination or mutation of this site largely abolished the activation of the mINDY promoter by benzo[a]pyrene. This study thus identified the mINDY as an AhR target gene. AhR-dependent induction of the mINDY gene might contribute to the development of hepatic steatosis.
Collapse
Affiliation(s)
- Frank Neuschäfer-Rube
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Anne Schraplau
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Bettina Schewe
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Stefanie Lieske
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany; Section of Metabolic Vascular Medicine and Paul Langerhans Institute Dresden (PLID), Medical Clinic III, University Clinic Dresden, TU Dresden, 01307, Germany
| | - Julia-Mignon Krützfeldt
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Sebastian Ringel
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Janin Henkel
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine and Paul Langerhans Institute Dresden (PLID), Medical Clinic III, University Clinic Dresden, TU Dresden, 01307, Germany; Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 8WA, UK
| | - Gerhard P Püschel
- University of Potsdam, Institute of Nutritional Science, Department of Nutritional Biochemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| |
Collapse
|
19
|
Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2015; 36:802-14. [PMID: 26278112 DOI: 10.1002/jat.3211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/24/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Debra Layko
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, 36576, Israel
| | | | | | | | - Marie Lawson
- The Dow Chemical Company, Midland, MI, 48640, USA
| | - Greg Martin
- The Dow Chemical Company, Midland, MI, 48640, USA
| | | | | | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
20
|
Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8067-77. [PMID: 26023891 PMCID: PMC4890155 DOI: 10.1021/acs.est.5b01389] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Emmanuel Hatzakis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Robert G. Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jared Correll
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Philip B. Smith
- Metabolomics Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher R. Chiaro
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
21
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
22
|
Angrish MM, Madden MC, Pleil JD. Probe molecule (PrM) approach in adverse outcome pathway (AOP) based high-throughput screening (HTS): in vivo discovery for developing in vitro target methods. Chem Res Toxicol 2015; 28:551-9. [PMID: 25692543 DOI: 10.1021/acs.chemrestox.5b00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by relevant in vivo exposure data. The challenge is to develop HTS assays with unambiguous quantitative links between in vitro responses and corresponding in vivo effects, which is complicated by metabolically insufficient systems, in vitro to in vivo extrapolation (IVIVE), cross-species comparisons, and other inherent issues correlating IVIVE findings. This article introduces the concept of ultrasensitive gas phase probe molecules (PrMs) to help bridge the current HTS assay IVIVE gap. The PrM concept assesses metabolic pathways that have already been well-defined from intact human or mammalian models. Specifically, the idea is to introduce a gas phase probe molecule into a system, observe normal steady state, add chemicals of interest, and quantitatively measure (from headspace gas) effects on PrM metabolism that can be directly linked back to a well-defined and corresponding in vivo effect. As an example, we developed the pharmacokinetic (PK) parameters and differential equations to estimate methyl tertiary butyl ether (MTBE) metabolism to tertiary butyl alcohol (TBA) via cytochrome (CYP) 2A6 in the liver from human empirical data. Because MTBE metabolic pathways are well characterized from in vivo data, we can use it as a PrM to explore direct and indirect chemical effects on CYP pathways. The PrM concept could be easily applied to in vitro and alternative models of disease and phenotype, and even test for volatile chemicals while avoiding liquid handling robotics. Furthermore, a PrM can be designed for any chemical with known empirical human exposure data and used to assess chemicals for which no information exists. Herein, we propose an elegant gas phase probe molecule-based approach to in vitro toxicity testing.
Collapse
Affiliation(s)
- Michelle M Angrish
- †ORISE Participant, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Michael C Madden
- ‡Environmental Public Health Division, NHEERL/ORD, US EPA, Chapel Hill, North Carolina 27599, United States
| | - Joachim D Pleil
- §Human Exposure and Atmospheric Sciences Division, NERL/ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
23
|
Liu Y, Mark Worden R. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:67-75. [DOI: 10.1016/j.bbamem.2014.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
|
24
|
Jin Y, Miao W, Lin X, Wu T, Shen H, Chen S, Li Y, Pan Q, Fu Z. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:353-363. [PMID: 25124514 DOI: 10.1016/j.etap.2014.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenyu Miao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangjie Shen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shan Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yanhong Li
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiaoqiao Pan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
25
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
26
|
Kopec AK, Boverhof DR, Nault R, Harkema JR, Tashiro C, Potter D, Sharratt B, Chittim B, Zacharewski TR. Toxicogenomic evaluation of long-term hepatic effects of TCDD in immature, ovariectomized C57BL/6 mice. Toxicol Sci 2013; 135:465-75. [PMID: 23864506 DOI: 10.1093/toxsci/kft156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute exposure to hepatotoxic doses of 2,3,7,8-tetrachloro- dibenzo-p-dioxin (TCDD) in mice is characterized by differential gene expression that can be phenotypically anchored to elevated levels of serum alanine aminotransferase, increased relative liver weights, hepatic steatosis, inflammation, and hepatocellular necrosis. Unlike most studies that focus on acute exposure effects, this study evaluated the long-term effects of a single oral gavage of 30 μg/kg TCDD at 1, 4, 12, 24, 36, and 72 weeks postdose in ovariectomized C57BL/6 mice. Hepatic TCDD levels were almost completely eliminated by 24 weeks with a calculated half-life of 12 days. Hepatic gene expression analysis identified 395 unique differentially expressed genes between 1 and 12 weeks that decreased to ≤ 8 by 72 weeks, consistent with the minimal hepatic TCDD levels. Hepatic vacuolization, characteristic of short-term exposure, subsided by 4 weeks. Similarly, TCDD-elicited hepatic necrosis and inflammation dissipated by 1 week. Collectively, these results suggest that TCDD-elicited histologic and gene expression responses can be correlated to elevated hepatic TCDD levels, which, once eliminated, elicit minimal hepatic gene expression and histologic alterations.
Collapse
Affiliation(s)
- Anna K Kopec
- * Department of Biochemistry & Molecular Biology
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Forgacs AL, Dere E, Angrish MM, Zacharewski TR. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol Sci 2013; 133:54-66. [PMID: 23418086 DOI: 10.1093/toxsci/kft028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
28
|
Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, Cave MC. Toxicant-associated steatohepatitis. Toxicol Pathol 2013; 41:343-60. [PMID: 23262638 PMCID: PMC5114851 DOI: 10.1177/0192623312468517] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatotoxicity is the most common organ injury due to occupational and environmental exposures to industrial chemicals. A wide range of liver pathologies ranging from necrosis to cancer have been observed following chemical exposures both in humans and in animal models. Toxicant-associated fatty liver disease (TAFLD) is a recently named form of liver injury pathologically similar to alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Toxicant-associated steatohepatitis (TASH) is a more severe form of TAFLD characterized by hepatic steatosis, inflammatory infiltrate, and in some cases, fibrosis. While subjects with TASH have exposures to industrial chemicals, such as vinyl chloride, they do not have traditional risk factors for fatty liver such as significant alcohol consumption or obesity. Conventional biomarkers of hepatotoxicity including serum alanine aminotransferase activity may be normal in TASH, making screening problematic. This article examines selected chemical exposures associated with TAFLD in human subjects or animal models and concisely reviews the closely related NAFLD and ALD.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Juliane I. Beier
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heather B. Clair
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heather J. Bellis-Jones
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - K. Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Louisville VAMC, Louisville, Kentucky, USA
| | - Matt C. Cave
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Louisville VAMC, Louisville, Kentucky, USA
| |
Collapse
|
29
|
Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol Sci 2012; 131:108-15. [PMID: 22977169 DOI: 10.1093/toxsci/kfs277] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) mediates alterations in hepatic lipid composition elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to further investigate the effects of TCDD, liver, serum, and gonadal white adipose tissue (gWAT) fatty acid methyl esters (FAMEs) and lipids were examined in fasted 4-week-old female mice orally gavaged with 30 µg/kg TCDD at 24, 72, and 168 h postdose. Mean hepatic FAME levels increased (236.7 µmol/g in controls compared with 392.2 µmol/g in TCDD treated) with minimal changes in gWAT and serum. In the liver, TCDD decreased saturated fatty acids (SFAs 16:0, 18:0, 20:0, and 22:0) and increased monounsaturated fatty acids (MUFAs 16:1n7, 18:1n9, and 20:1n9). Hepatic polyunsaturated fatty acids (PUFAs) 20:2n6, 20:3n6, 18:3n3, and 22:5n3 also increased, whereas 20:4n6 and 22:6n3 levels decreased. gWAT PUFAs 20:2n6 and 20:3n6 exhibited modest increases, whereas serum 18:0 decreased and 18:1n9 increased. Serum analyses also identified a ~25% decrease in total cholesterol (CHOL), low-density lipoprotein (LDL), and high-density lipoprotein following TCDD treatment. The decrease in serum CHOL was consistent with the induction of hepatic reverse CHOL transport genes Lcat (2.0-fold), Apoa1 (1.7-fold), and Ldlr (3.6-fold), and the repression of CHOL biosynthesis genes Hmgcs1 (-2.1-fold) and Hmgcr (-2.3-fold). In addition, TCDD decreased serum Apob100 (4.4-fold) and Apob48 (2.2-fold) protein levels, suggesting serum lipid clearance and decreased hepatic efflux. Collectively, the TCDD-elicited decreases in serum lipid levels are consistent with AhR-mediated enhancement of dietary fat distribution to the liver.
Collapse
Affiliation(s)
- Michelle Manente Angrish
- Genetics Program, Center for Integrative ToxicologyMichigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
30
|
Tanos R, Murray IA, Smith PB, Patterson A, Perdew GH. Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver. Toxicol Sci 2012; 129:372-9. [PMID: 22696238 DOI: 10.1093/toxsci/kfs204] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated a role for the aryl hydrocarbon receptor (AHR) in the attenuation of the cholesterol biosynthesis pathway. This regulation did not require that the AHR binds to its cognate response element. Based on these observations and other reports depicting a role for AHR in lipid metabolism, we chose to investigate the involvement of the receptor in the regulation of the fatty acid synthesis pathway in mice and humans. For this purpose, C57BL/6J, liver-specific transgenic DRE-binding mutant AhR (A78D-AhrTtr CreAlb Ahrfx/fx) and CreAlb Ahrfx/fx mice were treated with an AHR ligand, and hepatic mRNA expression levels of key fatty acid genes (e.g., Acaca, Fasn, Scd1) were measured. The basal levels of those genes were also compared between C57BL6/J and hepatic AHR-deficient mice, as well as between Ahb and Ahd congenic mice. To extend these results to humans, fatty acid gene expression in human cells were compared with AHR-silenced cells. In addition, primary human hepatocytes were treated with an AHR ligand to assess alterations in gene expression and fatty acid synthesis. These studies indicated that the AHR constitutively attenuates the expression of key fatty acid synthesis genes in the absence of binding to its cognate response element. In addition, activation of AHR led to further repression of the expression of these genes and a decrease in overall fatty acid synthesis and secretion in human hepatocytes. Based on our results, we can conclude that increased AHR activity represses fatty acid synthesis, suggesting it may be a future therapeutic target.
Collapse
Affiliation(s)
- Rachel Tanos
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
31
|
Angrish MM, Mets BD, Jones AD, Zacharewski TR. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice. Toxicol Sci 2012; 128:377-86. [PMID: 22539624 DOI: 10.1093/toxsci/kfs155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD) increases fatty acid (FA) transport and FA levels resulting in hepatic steatosis in mice. Diet as a source of lipids was investigated using customized diets, stearoyl-CoA desaturase 1 (Scd1) null mice, and (14)C-oleate (18:1n9) uptake studies. C57BL/6 mice fed with 5, 10, or 15% fat or 50, 60 or 70% carbohydrate diets exhibited increased relative liver weight following gavage with 30 µg/kg TCDD for 168 h. Hepatic lipid extract analysis from mice fed with 5, 10, and 15% fat diets identified a dose-dependent increase in total FAs induced by TCDD. Mice fed with fat diet also exhibited a dose-dependent increase in the dietary essential linoleic (18:2n6) and α-linolenic (18:3n3) acids. No dose-dependent FA increase was detected on carbohydrate diets, suggesting dietary fat as a source of lipids in TCDD-induced steatosis as opposed to de novo lipogenesis. TCDD also induced oleate levels threefold in Scd1 null mice that are incapable of desaturating stearate (18:0). This is consistent with oleate representing > 90% of all monounsaturated FAs in rodent chow. Moreover, TCDD increased hepatic (14)C-oleate levels twofold in wild type and 2.4-fold in Scd1 null mice concurrent with the induction of intestinal and hepatic lipid transport genes (Slc27a, Fabp, Ldlr, Cd36, and Apob). In addition, computational scanning identified putative dioxin response elements and in vivo ChIP-chip analysis revealed regions of aryl hydrocarbon receptor (AhR) enrichment in lipid transport genes differentially regulated by TCDD. Collectively, these results suggest the AhR mediates increased uptake of dietary fats that contribute to TCDD-elicited hepatic steatosis.
Collapse
|
32
|
Forgacs AL, Kent MN, Makley MK, Mets B, DelRaso N, Jahns GL, Burgoon LD, Zacharewski TR, Reo NV. Comparative metabolomic and genomic analyses of TCDD-elicited metabolic disruption in mouse and rat liver. Toxicol Sci 2011; 125:41-55. [PMID: 21964420 DOI: 10.1093/toxsci/kfr262] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) elicits a broad spectrum of species-specific effects that have not yet been fully characterized. This study compares the temporal effects of TCDD on hepatic aqueous and lipid metabolite extracts from immature ovariectomized C57BL/6 mice and Sprague-Dawley rats using gas chromatography-mass spectrometry and nuclear magnetic resonance-based metabolomic approaches and integrates published gene expression data to identify species-specific pathways affected by treatment. TCDD elicited metabolite and gene expression changes associated with lipid metabolism and transport, choline metabolism, bile acid metabolism, glycolysis, and glycerophospholipid metabolism. Lipid metabolism is altered in mice resulting in increased hepatic triacylglycerol as well as mono- and polyunsaturated fatty acid (FA) levels. Mouse-specific changes included the induction of CD36 and other cell surface receptors as well as lipases- and FA-binding proteins consistent with hepatic triglyceride and FA accumulation. In contrast, there was minimal hepatic fat accumulation in rats and decreased CD36 expression. However, choline metabolism was altered in rats, as indicated by decreases in betaine and increases in phosphocholine with the concomitant induction of betaine-homocysteine methyltransferase and choline kinase gene expression. Results from these studies show that aryl hydrocarbon receptor-mediated differential gene expression could be linked to metabolite changes and species-specific alterations of biochemical pathways.
Collapse
Affiliation(s)
- Agnes L Forgacs
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|