1
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
3
|
Solecki R, Rauch M, Gall A, Buschmann J, Kellner R, Kucheryavenko O, Schmitt A, Delrue N, Li W, Hu J, Fujiwara M, Kuwagata M, Mantovani A, Makris SL, Paumgartten F, Schönfelder G, Schneider S, Vogl S, Kleinstreuer N, Schneider M, Schulze F, Fritsche E, Clark R, Shiota K, Chahoud I. Update of the DevTox data database for harmonized risk assessment and alternative methodologies in developmental toxicology: Report of the 9th Berlin Workshop on Developmental Toxicity. Reprod Toxicol 2019; 89:124-129. [DOI: 10.1016/j.reprotox.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 01/24/2023]
|
4
|
de Medeiros PHQS, Pinto DV, de Almeida JZ, Rêgo JMC, Rodrigues FAP, Lima AÂM, Bolick DT, Guerrant RL, Oriá RB. Modulation of Intestinal Immune and Barrier Functions by Vitamin A: Implications for Current Understanding of Malnutrition and Enteric Infections in Children. Nutrients 2018; 10:nu10091128. [PMID: 30134532 PMCID: PMC6164597 DOI: 10.3390/nu10091128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
The micronutrient vitamin A refers to a group of compounds with pleiotropic effects on human health. These molecules can modulate biological functions, including development, vision, and regulation of the intestinal barrier. The consequences of vitamin A deficiency and supplementation in children from developing countries have been explored for several years. These children live in an environment that is highly contaminated by enteropathogens, which can, in turn, influence vitamin A status. Vitamin A has been described to modulate gene expression, differentiation and function of diverse immune cells; however, the underlying mechanisms are not fully elucidated. This review aims to summarize the most updated advances on elucidating the vitamin A effects targeting intestinal immune and barrier functions, which may help in further understanding the burdens of malnutrition and enteric infections in children. Specifically, by covering both clinical and in vivo/in vitro data, we describe the effects of vitamin A related to gut immune tolerance/homeostasis, intestinal barrier integrity, and responses to enteropathogens in the context of the environmental enteric dysfunction. Some of the gaps in the literature that require further research are also highlighted.
Collapse
Affiliation(s)
- Pedro Henrique Q S de Medeiros
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana Zani de Almeida
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana M C Rêgo
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Department of Nutrition, Christus University Center, Fortaleza 60190-060 CE, Brazil.
| | - Francisco A P Rodrigues
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Aldo Ângelo M Lima
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - David T Bolick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Reinaldo B Oriá
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| |
Collapse
|
5
|
Dimopoulou M, Verhoef A, Gomes CA, van Dongen CW, Rietjens IM, Piersma AH, van Ravenzwaay B. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles. Toxicol Lett 2018; 286:10-21. [DOI: 10.1016/j.toxlet.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023]
|
6
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017; 392:96-105. [DOI: 10.1016/j.tox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
|
7
|
Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol 2017; 72:53-61. [PMID: 28591664 DOI: 10.1016/j.reprotox.2017.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of RA in the embryo is in many ways the driving force determining developmental cell proliferation versus differentiation. As a consequence, RA concentrations are carefully controlled in time and space in the developing embryo. RA deficiency and overdosing both result in characteristic patterns of malformations that may involve many different organ systems. The central role of RA in embryo development provides us with a set of sensitive biomarkers that may be employed in developmental toxicity testing. This includes the synthesizing and metabolizing enzymes of RA, but also a myriad of related morphogenetic factors and their genes, of which the expression may be affected by changes in RA balance. Several examples of embryotoxicants interfering with the homeostasis of RA and related parameters have been described. A preliminary adverse outcome pathway framework for RA mediated malformations has been published. Expansion of this framework and its application in developmental toxicity testing may allow the detection of a large variety of embryotoxicants with diverse modes of action. RA homeostasis therefore provides a promising set of molecular tools that may be employed in the advancement of mode of action driven animal-free developmental toxicity testing.
Collapse
Affiliation(s)
- Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Ellen V Hessel
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Yvonne C Staal
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. Embryotoxic and pharmacologic potency ranking of six azoles in the rat whole embryo culture by morphological and transcriptomic analysis. Toxicol Appl Pharmacol 2017; 322:15-26. [DOI: 10.1016/j.taap.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
|
9
|
Leung MCK, Procter AC, Goldstone JV, Foox J, DeSalle R, Mattingly CJ, Siddall ME, Timme-Laragy AR. Applying evolutionary genetics to developmental toxicology and risk assessment. Reprod Toxicol 2017; 69:174-186. [PMID: 28267574 PMCID: PMC5829367 DOI: 10.1016/j.reprotox.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
Abstract
Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Andrew C Procter
- Institute for Advanced Analytics, North Carolina State University, Raleigh, NC, United States
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Jonathan Foox
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Robert DeSalle
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Mark E Siddall
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
10
|
Dimopoulou M, Verhoef A, van Ravenzwaay B, Rietjens IM, Piersma AH. Flusilazole induces spatio-temporal expression patterns of retinoic acid-, differentiation- and sterol biosynthesis-related genes in the rat Whole Embryo Culture. Reprod Toxicol 2016; 64:77-85. [DOI: 10.1016/j.reprotox.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
|
11
|
Robinson JF, Gormley MJ, Fisher SJ. A genomics-based framework for identifying biomarkers of human neurodevelopmental toxicity. Reprod Toxicol 2016; 60:1-10. [PMID: 26827931 PMCID: PMC4867143 DOI: 10.1016/j.reprotox.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
Human embryonic stem cell (hESC) neural differentiation models have tremendous potential for evaluating environmental compounds in terms of their ability to induce neurodevelopmental toxicity. Genomic based-approaches are being applied to identify changes underlying normal human development (in vitro and in vivo) and the effects of environmental exposures. Here, we investigated whether mechanisms that are shared between hESC neural differentiation model systems and human embryos are candidate biomarkers of developmental toxicities for neurogenesis. We conducted a meta-analysis of transcriptomic datasets with the goal of identifying differentially expressed genes that were common to the hESC-model and human embryos. The overlapping NeuroDevelopmental Biomarker (NDB) gene set contained 304 genes which were enriched for their roles in neurogenesis. These genes were investigated for their utility as candidate biomarkers in the context of toxicogenomic studies focused on the effects of retinoic acid, valproic acid, or carbamazepine in hESC models of neurodifferentiation. The results revealed genes, including 13 common targets of the 3 compounds, that were candidate biomarkers of neurotoxicity in hESC-based studies of environmental toxicants.
Collapse
Affiliation(s)
- J F Robinson
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States.
| | - M J Gormley
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States
| | - S J Fisher
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), United States; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), United States; The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), United States; Division of Maternal Fetal Medicine, University of California, San Francisco (UCSF), United States; Department of Anatomy, University of California, San Francisco (UCSF), United States; Human Embryonic Stem Cell Program, University of California, San Francisco (UCSF), United States
| |
Collapse
|
12
|
Lucas CG, Remião MH, Komninou ER, Domingues WB, Haas C, Leon PMMD, Campos VF, Ourique A, Guterres SS, Pohlmann AR, Basso AC, Seixas FK, Beck RCR, Collares T. Tretinoin-loaded lipid-core nanocapsules decrease reactive oxygen species levels and improve bovine embryonic development during in vitro oocyte maturation. Reprod Toxicol 2015; 58:131-9. [DOI: 10.1016/j.reprotox.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
13
|
Le Duc D, Spataru A, Ceanga M, Zagrean L, Schöneberg T, Toescu EC, Zagrean AM. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures. Brain Res 2015; 1614:1-13. [PMID: 25881894 DOI: 10.1016/j.brainres.2015.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
Abstract
Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.
Collapse
Affiliation(s)
- Diana Le Duc
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | - Ana Spataru
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihai Ceanga
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Emil C Toescu
- Translational Neuroscience, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ana-Maria Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
14
|
Toxicogenomics in vitro as an alternative tool for safety evaluation of petroleum substances and PAHs with regard to prenatal developmental toxicity. Toxicol In Vitro 2015; 29:299-307. [DOI: 10.1016/j.tiv.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 01/02/2023]
|
15
|
Tonk ECM, Pennings JLA, Piersma AH. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 2014; 55:104-13. [PMID: 25461899 DOI: 10.1016/j.reprotox.2014.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR, Hengstler JG, Rahnenführer J, Waldmann T, Leist M. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 2014; 88:1451-68. [PMID: 24935251 PMCID: PMC4067541 DOI: 10.1007/s00204-014-1279-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 01/17/2023]
Abstract
The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.
Collapse
Affiliation(s)
- Nina V. Balmer
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Stefanie Klima
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Eugen Rempel
- Department of Statistics, TU Dortmund, Dortmund, Germany
| | - Violeta N. Ivanova
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | | | - Matthias K. Weng
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Kesavan Meganathan
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Michael R. Berthold
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
17
|
Rovida C, Vivier M, Garthoff B, Hescheler J. ESNATS Conference — The use of Human Embryonic Stem Cells for Novel Toxicity Testing Approaches. Altern Lab Anim 2014; 42:97-113. [DOI: 10.1177/026119291404200203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The main achievements and results of the ESNATS project (Embryonic Stem Cell-based Novel Alternative Testing Strategies) were presented at the final project conference that was held on 15 September 2013, the day before the traditional EUSAAT (European Society for Alternatives to Animal Testing) Congress in Linz, Austria. The ESNATS project was an FP7 European Integrated Project, running from 2008 to 2013, the aim of which was to develop a novel toxicity testing platform based on embryonic stem cells (ESCs), and in particular, human ESC (hESCs), to accelerate drug development, reduce related R&D costs, and propose a powerful alternative to animal tests in the spirit of the Three Rs principles. Altogether, ESNATS offered the first proof of concept that hESCs can be used to create robust, reproducible and ready-to use test assays for predicting human toxicity. In the end, essentially five test systems were developed to an adequate level for entering possible pre-validation procedures. These methods are based on hESCs, and can be combined to study the possible effects, on the human embryo, of exposure to a chemical during the early stages of development. In addition to the presentations by the main project partners, external speakers were invited to give lectures on relevant topics, both in the field of neurotoxicity and, more generally, on the applicability of hESCs in the development of advanced in vitro tests.
Collapse
Affiliation(s)
- Costanza Rovida
- Centre for Alternatives to Animal Testing–Europe (CAAT–Europe), University of Konstanz, Konstanz, Germany
| | - Manon Vivier
- Department of Toxicology, Pharmacognosy and Dermato-cosmetology, Vrije Universiteit Brussel, Jette, Belgium
| | | | | |
Collapse
|
18
|
Baack ML, Wang C, Hu S, Segar JL, Norris AW. Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis. Reprod Toxicol 2014; 46:129-36. [PMID: 24721120 DOI: 10.1016/j.reprotox.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
Abstract
Embryonic exposure to excess circulating fuels is proposed to underlie diabetic embryopathy. To isolate the effects of hyperglycemia from the many systemic anomalies of diabetes, we infused 4 mg/min glucose into the left uterine artery of non-diabetic pregnant rats on gestation days (GD) 7-9. Right-sided embryos and dams exhibited no glucose elevation. Embryos were assessed on GD13, comparing the left versus right uterine horns. Hyperglycemic exposure increased rates of embryopathy, resorptions, and worsened embryopathy severity. By contrast, saline infusion did not affect any of these parameters. To assess for possible embryopathy susceptibility bias between uterine horns, separate dams were given retinoic acid (25mg/kg, a mildly embryopathic dose) systemically on GD7.5. The resultant embryopathy rates were equivalent between uterine horns. We conclude that hyperglycemia, even in the absence of systemic maternal diabetes, is sufficient to produce in vivo embryopathy during organogenesis.
Collapse
Affiliation(s)
- Michelle L Baack
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Chunlin Wang
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Shanming Hu
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Jeffrey L Segar
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Andrew W Norris
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA.
| |
Collapse
|
19
|
Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation. Toxicol Appl Pharmacol 2013; 272:161-71. [DOI: 10.1016/j.taap.2013.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/01/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
|
20
|
Li X, Yang Z, Zeng Y, Xu H, Li H, Han Y, Long X, You C. Cell cycle-related genes p57kip2, Cdk5 and Spin in the pathogenesis of neural tube defects. Neural Regen Res 2013; 8:1863-71. [PMID: 25206495 PMCID: PMC4145975 DOI: 10.3969/j.issn.1673-5374.2013.20.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/19/2013] [Indexed: 02/05/2023] Open
Abstract
In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an important role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.
Collapse
Affiliation(s)
- Xinjun Li
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Zhong Yang
- Department of Neurobiology, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Yi Zeng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, Chengdu 610041, Sichuan Province, China
| | - Hong Xu
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Hongli Li
- Department of Neurobiology, the Third Military Medical University of Chinese PLA, Chongqing 400038, China
| | - Yangyun Han
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Xiaodong Long
- Department of Neurosurgery, Deyang People's Hospital, Deyang 618000, Sichuan Province, China
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
21
|
Tonk ECM, Robinson JF, Verhoef A, Theunissen PT, Pennings JLA, Piersma AH. Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reprod Toxicol 2013; 41:57-66. [PMID: 23811354 DOI: 10.1016/j.reprotox.2013.06.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Transcriptomic evaluations may improve toxicity prediction of in vitro-based developmental models. In this study, transcriptomics was used to identify VPA-induced gene expression changes in rat whole embryo culture (WEC). Furthermore, VPA-induced responses were compared across in vitro-based developmental models, such as the cardiac and neural embryonic stem cells (ESTc and ESTn, respectively) and the zebrafish embryotoxicity model. VPA-induced gene regulation in WEC corresponded with observed morphological effects and previously suggested mechanisms of toxicity. Gene Ontology term-directed analysis showed conservation of VPA-induced gene expression changes across in vitro-based developmental models, with ESTc and ESTn exhibiting complementary responses. Furthermore, comparison of in vitro-based developmental and non-developmental models revealed that more generalized VPA-induced effects can be detected using non-developmental models whereas developmental models provide added value when assessing developmental-specific effects. These analyses can be used to optimize test batteries for the detection of developmental toxicants in vitro.
Collapse
Affiliation(s)
- Elisa C M Tonk
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Robinson JF, Piersma AH. Toxicogenomic approaches in developmental toxicology testing. Methods Mol Biol 2013; 947:451-73. [PMID: 23138921 DOI: 10.1007/978-1-62703-131-8_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of toxicogenomic applications provides new tools to characterize, classify, and potentially predict teratogens. However, due to the vast number of experimental and statistical procedural steps, toxicogenomic studies are challenging. Here, we guide researchers through the basic framework of conducting toxicogenomic investigations in the field of developmental toxicology, providing examples of biological and technical factors that may influence response and interpretation. Furthermore, we review current, diverse applications of toxicogenomic-based approaches in teratology testing, including exposure-response characterization (dose and duration), chemical classification studies, and cross-model comparisons study designs. This review is intended to guide scientists through the challenging and complex structure of conducting toxicogenomic analyses, while considering the many applications of using toxicogenomics in study designs and the future of these types of "omics" approaches in developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research-National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | |
Collapse
|
23
|
Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, Sargsyan A, Rodríguez Díaz E, Bacon BT, Aryal P, Graham TE. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). J Biol Chem 2012; 288:1250-65. [PMID: 23105095 DOI: 10.1074/jbc.m112.369132] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.
Collapse
Affiliation(s)
- Philomena Alapatt
- Molecular Medicine Program and Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Z, Shen J, Wu WKK, Wang X, Liang J, Qiu G, Liu J. Vitamin A deficiency induces congenital spinal deformities in rats. PLoS One 2012; 7:e46565. [PMID: 23071590 PMCID: PMC3465343 DOI: 10.1371/journal.pone.0046565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/31/2012] [Indexed: 11/17/2022] Open
Abstract
Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP) spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs) and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58) in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Robinson JF, Verhoef A, van Beelen VA, Pennings JL, Piersma AH. Dose–response analysis of phthalate effects on gene expression in rat whole embryo culture. Toxicol Appl Pharmacol 2012; 264:32-41. [DOI: 10.1016/j.taap.2012.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 01/05/2023]
|
26
|
Robinson JF, Tonk EC, Verhoef A, Piersma AH. Triazole induced concentration-related gene signatures in rat whole embryo culture. Reprod Toxicol 2012; 34:275-83. [DOI: 10.1016/j.reprotox.2012.05.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 02/04/2023]
|
27
|
Osuala K, Baker CN, Nguyen HL, Martinez C, Weinshenker D, Ebert SN. Physiological and genomic consequences of adrenergic deficiency during embryonic/fetal development in mice: impact on retinoic acid metabolism. Physiol Genomics 2012; 44:934-47. [PMID: 22911456 DOI: 10.1152/physiolgenomics.00180.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenergic hormones are essential for early heart development. To gain insight into understanding how these hormones influence heart development, we evaluated genomic expression changes in embryonic hearts from adrenergic-deficient and wild-type control mice. To perform this study, we used a mouse model with targeted disruption of the Dopamine β-hydroxylase (Dbh) gene, whose product is responsible for enzymatic conversion of dopamine into norepinephrine. Embryos homozygous for the null allele (Dbh(-/-)) die from heart failure beginning as early as embryonic day 10.5 (E10.5). To assess underlying causes of heart failure, we isolated hearts from Dbh(-/-) and Dbh(+/+) embryos prior to manifestation of the phenotype and examined gene expression changes using genomic Affymetrix 430A 2.0 arrays, which enabled simultaneous evaluation of >22,000 genes. We found that only 22 expressed genes showed a significant twofold or greater change, representing ~0.1% of the total genes analyzed. More than half of these genes are associated with either metabolism (31%) or signal transduction (22%). Remarkably, several of the altered genes encode for proteins that are directly involved in retinoic acid (RA) biosynthesis and transport. Subsequent evaluation showed that RA concentrations were significantly elevated by an average of ~3-fold in adrenergic-deficient (Dbh(-/-)) embryos compared with controls, thereby suggesting that RA may be an important downstream mediator of adrenergic action during embryonic heart development.
Collapse
Affiliation(s)
- Kingsley Osuala
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Robinson JF, Verhoef A, Piersma AH. Transcriptomic analysis of neurulation and early organogenesis in rat embryos: an in vivo and ex vivo comparison. Toxicol Sci 2012; 126:255-66. [PMID: 22262562 DOI: 10.1093/toxsci/kfr343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cultured embryos mimic the morphological developmental progression of embryos (in vivo) undergoing neurulation and early organogenesis. Using available genomics technologies, comparative molecular-based assessments between cultured embryos and in vivo models may further clarify commonalities and dissimilarities, which contribute to differences between systems. Therefore, in this study, using a transcriptomic approach, we compared cultured whole rat embryos and embryos in vivo at comparable time points in development (gestational day (GD) 10 + 2-48 h, GD 0 = copulatory plug) to assess for commonalities and differences in gene expression in relation to morphology. We reveal strong parallels in time-dependent expression of genes in terms of magnitude, directionality, and functionality between whole embryo culture (WEC) and in vivo (rat). Genes changing in expression over time resemble previously hypothesized mechanisms underlying early development in mammalian systems. Furthermore, at the gene and functional level, we identify genes, which differ in expression between models, including genes related to development, oxygen transport, and metabolism. In summary, our results support the use of WEC for toxicological studies aimed at representing in vivo development during this time window at the molecular level. Additionally, we indicate genes, which differ in expression between models, providing possible insights for improvement of culture conditions.
Collapse
Affiliation(s)
- Joshua F Robinson
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | | | | |
Collapse
|