1
|
Borgne-Sanchez A, Fromenty B. Mitochondrial dysfunction in drug-induced hepatic steatosis: Recent findings and current concept. Clin Res Hepatol Gastroenterol 2025; 49:102529. [PMID: 39798918 DOI: 10.1016/j.clinre.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα). Many drugs have been shown to cause mitochondrial dysfunction, which can lead to acute and chronic liver lesions. While severe inhibition of mitochondrial FAO would eventually cause microvesicular steatosis, hypoglycemia, and liver failure, moderate impairment of this metabolic pathway can induce macrovacuolar steatosis, which can progress in the long term to steatohepatitis and cirrhosis. Drugs can impair mitochondrial FAO through several mechanisms including direct inhibition of FAO enzymes, sequestration of coenzyme A and l-carnitine, impairment of the activity of one or several MRC complexes and reduced PPARα expression. In drug-induced macrovacuolar steatosis, non-mitochondrial mechanisms can also be involved in lipid accumulation including increased de novo lipogenesis and reduced very-low-density lipoprotein secretion. Nonetheless, mitochondrial dysfunction and subsequent oxidative stress appear to be key events in the progression of steatosis to steatohepatitis. Patients suffering from metabolic dysfunction-associated steatotic liver disease (MASLD) and treated with mitochondriotoxic drugs should be closely monitored to reduce the risk of acute liver injury or a faster transition of steatosis to steatohepatitis. Therapies based on the mitochondrial cofactor l-carnitine, the antioxidant N-acetylcysteine, or thyromimetics might be useful to prevent or treat drug-induced mitochondrial dysfunction, steatosis, and steatohepatitis.
Collapse
Affiliation(s)
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France.
| |
Collapse
|
2
|
Buron N, Porceddu M, Loyant R, Martel C, Allard JA, Fromenty B, Borgne-Sanchez A. Drug-induced impairment of mitochondrial fatty acid oxidation and steatosis: assessment of causal relationship with 45 pharmaceuticals. Toxicol Sci 2024; 200:369-381. [PMID: 38676573 DOI: 10.1093/toxsci/kfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.
Collapse
Affiliation(s)
- Nelly Buron
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | | | - Roxane Loyant
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Cécile Martel
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Julien A Allard
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | | |
Collapse
|
3
|
Jin Y, Shou Y, Lei Q, Du C, Xu L, Chen N, Ma W, Zhu X, Zhou S, Zheng Y, Yu D. An entropy weight method to integrate big omics and mechanistically evaluate DILI. Hepatology 2024; 79:1264-1278. [PMID: 37820269 PMCID: PMC11095888 DOI: 10.1097/hep.0000000000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS DILI accounts for more than half of acute liver failure cases in the United States and is a major health care issue for the public worldwide. As investigative toxicology is playing an evolving role in the pharmaceutical industry, mechanistic insights into drug hepatotoxicity can facilitate drug development and clinical medication. METHODS By integrating multisource datasets including gene expression profiles of rat livers from open TG-GATE database and DrugMatrix, drug labels from FDA Liver Toxicity Knowledge Base, and clinical reports from LiverTox, and with the employment of bioinformatic and computational tools, this study developed an approach to characterize and predict DILI based on the molecular understanding of the processes (toxicity pathways). RESULTS A panel of 11 pathways widely covering biological processes and stress responses was established using a training set of six positive and one negative DILI drugs from open TG-GATEs. An entropy weight method-based model was developed to weight responsive genes within a pathway, and an interpretable machine-learning (ML) model XGBoot-SHAP was trained to rank the importance of pathways to the panel activity. The panel activity was proven to differentiate between injured and noninjured sample points and characterize DILI manifestation using six training drugs. Next, the model was tested using an additional 89 drugs (61 positives + 28 negatives), and a precision of 86% and higher can be achieved. CONCLUSIONS This study provides a novel approach to mechanisms-driven prediction modeling, as well as big data integration for insights into pharmacology and other human biology areas.
Collapse
Affiliation(s)
- Yuan Jin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qinkai Lei
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shuya Zhou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Siddiqa A, Qureshi R, Raja NI, Khan IA, Ahmad MZ, Rafique S, Ali A, Ahmad A, Kaushik P. Liver-boosting potential: chicory compound-mediated silver nanoparticles for hepatoprotection-biochemical and histopathological insights. Front Pharmacol 2024; 15:1325359. [PMID: 38449804 PMCID: PMC10914973 DOI: 10.3389/fphar.2024.1325359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Liver disease is a serious health concern in today's world, posing a challenge to both healthcare providers and pharmaceutical companies. Most synthetic drugs and chemicals cause liver damage accounting for approximately 10% of acute hepatitis and 50% of acute liver failure. Purpose: The present study aimed to evaluate the hepato-protective activity of an extract of chicory formulation assisted by silver nanoparticles against carbon tetra chloride (CCl4)-induced hepatic damage in rat's liver. Methods: Rats of the Wistar strain (Rattus norvegicus) were used to test the in vivo hepato-protective efficacy at various doses. Rats were randomly divided into nine groups, each containing six rats. The groups were as follows: first group (control), second group (CCl4), third group, silymarin (20 mg/kg of body weight), fourth group (CCl4+chicory) (1.75 mg/kg of b. wt), fifth group (CCl4 + chicory at the dose of 2.35 mg/kg), sixth group (CCl4 + chicory of 3.25 mg/kg), seventh group (CCl4 +AgNPs 1.75 mg/kg of b. wt.), eighth group (CCl4 + AgNPs 2.35 mg/kg of body weight), and ninth group (CCl4 + AgNPs 3.25 mg/kg of b. wt.). Blood samples were taken 24 h after the last administration (i.e., 30th day). The blood samples were analyzed for different serum enzymes such as ALP (alkaline phosphatase), ALT (alanine transaminase), bilirubin (Blr), triglyceride, and cholesterol. Histology liver sections were performed. Results: Treatment with AgNPs and chicory extract showed significant hepato-protective activity in a dose-dependent manner. In three doses, the chicory extract at a rate of 3.25 mg/kg of body weight significantly reduced elevated levels of biochemical markers in comparison to CCl4-intoxicated rats. Histology of the liver sections from CCl4-treated rats revealed inflammation of hepatocytes, necrosis, cytoplasmic degeneration, vacuolization, and a deformed central vein. The chicory formulation extract exhibited a remarkable recovery percentage in the liver architecture that was higher than the drug (i.e., silymarin). While treatment with AgNPs also repaired the degenerative changes and restored the normal form of the liver, chicory formulation extract possessed more hepato-protective potential as compared to AgNPs by regulating biochemical and histo-pathological parameters. Conclusion: This study can be used as confirmation of the hepato-protective potential of chicory compounds for possible use in the development programs of drugs to treat liver diseases.
Collapse
Affiliation(s)
- Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Imtiaz Ahmed Khan
- Department of Veterinary Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Zishan Ahmad
- Department of Veterinary Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Shaista Rafique
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Department of Vegetable Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| |
Collapse
|
5
|
Allard J, Bucher S, Ferron PJ, Launay Y, Fromenty B. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury. Fundam Clin Pharmacol 2024; 38:152-167. [PMID: 37665028 DOI: 10.1111/fcp.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Julien Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| |
Collapse
|
6
|
Bronsard J, Savary C, Massart J, Viel R, Moutaux L, Catheline D, Rioux V, Clement B, Corlu A, Fromenty B, Ferron PJ. 3D multi-cell-type liver organoids: A new model of non-alcoholic fatty liver disease for drug safety assessments. Toxicol In Vitro 2024; 94:105728. [PMID: 37951556 DOI: 10.1016/j.tiv.2023.105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The development of in vitro models that recapitulate critical liver functions is essential for accurate assessments of drug toxicity. Although liver organoids can be used for drug discovery and toxicology, they are limited by (i) the lack of expression and activity of xenobiotic-metabolizing enzymes, and (ii) the difficulty of mimicking non-alcoholic fatty liver disease (NAFLD, which influences the expression of these enzymes) in vitro. Here, we generated three-dimensional multi-cell-type liver organoids (hereafter "HML organoids") from HepaRG cells, primary human macrophages, and hepatic-stellate-cell-derived LX-2 cells. We also developed an NAFLD model by culturing HML organoids for 9 days with a mixture of stearic and oleic acids. The exposed organoids showed typical features of steatosis and expressed fibrosis markers. We subsequently used HML and NAFLD-HML organoids to model drug-induced liver injury. By estimating the IC50 and benchmark doses, we were able to improve the in vitro detection of drugs likely to be toxic in fatty livers. Thus, HML and NAFLD-HML organoids exhibited most of the liver's functions and are relevant in vitro models of drug metabolism, drug toxicity, and adverse drug event in NAFLD.
Collapse
Affiliation(s)
- J Bronsard
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - C Savary
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J Massart
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - R Viel
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, France-BioImaging (ANR-10-INBS-04), plateforme H2P2, F-35000 Rennes, France
| | - L Moutaux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - D Catheline
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - V Rioux
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Clement
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - A Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - B Fromenty
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France
| | - P J Ferron
- INSERM, Université de Rennes, INRAE, Institut NuMeCan UMR1317 (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France.
| |
Collapse
|
7
|
Salimi A, Khezri S, Azizian S, Kamrani V, Amir Jahadi N, Shahedi M. Evaluation of in vitro effects of ifosfamide drug on mitochondrial functions using isolated mitochondria obtained from vital organs. J Biochem Mol Toxicol 2024; 38:e23570. [PMID: 37929796 DOI: 10.1002/jbt.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as, brain, heart, kidney, and liver. Ifosfamide (IFO) as an anticancer drug, is associated with increased risk of neurotoxicity, cardiotoxicity nephrotoxicity, hepatotoxicity, and hemorrhagic cystitis. The aim of this study was to evaluate the direct effect of IFO on isolated mitochondria obtained from the rat brain, heart, kidney, and liver. Mitochondria were isolated with mechanical lysis and differential centrifugation from different organs and treated with various concentrations of IFO. Using biochemical and flowcytometry assays, we evaluated mitochondrial succinate dehydrogenase (SDH) activity, mitochondrial swelling, lipid peroxidation, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP). Our data showed that IFO did not cause deleterious alterations in mitochondrial functions, mitochondrial swelling, lipid peroxidation ROS formation, and MMP collapse in mitochondria isolated from brain, heart, kidney, and liver. Altogether, the data showed that IFO is not directly toxic in mitochondria isolated from brain, heart, kidney, and liver. This study proved that mitochondria alone does not play the main role in the toxicity of IFO, and suggests to reduce the toxicity of this drug, other pathways resulting in the production of toxic metabolites should be considered.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Kamrani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Amir Jahadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Shahedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155142. [PMID: 37913641 DOI: 10.1016/j.phymed.2023.155142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most challenging and thought-provoking liver problem for hepatologists owing to unregulated medication usage in medical practices, nutritional supplements, and botanicals. Due to underreporting, analysis, and identification issues, clinically evaluated medication hepatotoxicity is prevalent yet hard to quantify. PURPOSE This review's primary objective is to thoroughly compare pharmaceutical drugs and herbal compounds that have undergone clinical trials, focusing on their metabolic mechanisms contributing to the onset of liver illnesses and their hepatoprotective effects. METHODS The data was gathered from several online sources, such as PubMed, Scopus, Google Scholar, and Web of Science, using appropriate keywords. RESULTS The prevalence of conventional and herbal medicine is rising. A comprehensive understanding of the metabolic mechanism is necessary to mitigate the hepatotoxicity induced by drugs and facilitate the incorporation or substitution of herbal medicine instead of pharmaceuticals. Moreover, pre-clinical pharmacological research has the potential to facilitate the development of natural products as therapeutic agents, displaying promising possibilities for their eventual clinical implementation. CONCLUSIONS Acetaminophen, isoniazid, rifampicin, diclofenac, and pyrogallol have been identified as the most often reported synthetic drugs that produce hepatotoxicity by oxidative stress, inflammation, apoptosis, and fibrosis during the last several decades. Due to their ability to downregulate many factors (such as cytokines) and activate several enzyme/enzyme systems, herbal substances (such as Gingko biloba extract, curcumin, resveratrol, and silymarin) provide superior protection against harmful mechanisms which induce hepatotoxicity with fewer adverse effects than their synthetic counterparts.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Mohd Kashif Kidwai
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| |
Collapse
|
9
|
Lim J, Kim JS, Kim HW, Kim YH, Jung SS, Kim JW, Oh JY, Lee H, Kim SK, Kim SH, Lyu J, Ko Y, Kwon SJ, Jeong YJ, Kim DJ, Koo HK, Jegal Y, Kyung SY, An TJ, Min J. Metabolic Disorders Are Associated With Drug-Induced Liver Injury During Antituberculosis Treatment: A Multicenter Prospective Observational Cohort Study in Korea. Open Forum Infect Dis 2023; 10:ofad422. [PMID: 37654787 PMCID: PMC10468151 DOI: 10.1093/ofid/ofad422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Background Drug-induced liver injury (DILI) may lead to the discontinuation of antituberculosis (anti-TB) treatment (ATT). Some studies have suggested that metabolic disorders increase the risk of DILI during ATT. This study aimed to identify risk factors for DILI, particularly metabolic disorders, during ATT. Methods A multicenter prospective observational cohort study to evaluate adverse events during ATT was conducted in Korea from 2019 to 2021. Drug-susceptible patients with TB who had been treated with standard ATT for 6 months were included. The patients were divided into 2 groups depending on the presence of 1 or more metabolic conditions, such as insulin resistance, hypertension, obesity, and dyslipidemia. We monitored ATT-related adverse events, including DILI, and treatment outcomes. The incidence of DILI was compared between individuals with and without metabolic disorders, and related factors were evaluated. Results Of 684 patients, 52 (7.6%) experienced DILI, and 92.9% of them had metabolic disorders. In the multivariable analyses, underlying metabolic disorders (adjusted hazard ratio [aHR], 2.85; 95% CI, 1.01-8.07) and serum albumin <3.5 g/dL (aHR, 2.26; 95% CI, 1.29-3.96) were risk factors for DILI during ATT. In the 1-month landmark analyses, metabolic disorders were linked to an elevated risk of DILI, especially significant alanine aminotransferase elevation. The treatment outcome was not affected by the presence of metabolic disorders. Conclusions Patients with metabolic disorders have an increased risk of ATT-induced liver injury compared with controls. The presence of metabolic disorders and hypoalbuminemia adversely affects the liver in patients with ATT.
Collapse
Affiliation(s)
- Jihye Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ju Sang Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hyun Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Soo Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Woo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heayon Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Kyoung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jiwon Lyu
- Department of Pulmonary and Critical Care Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Yousang Ko
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sun Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Yun-Jeong Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hyeon-Kyoung Koo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yangjin Jegal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Sun Young Kyung
- Division of Pulmonology, Departments of Internal Medicine, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Tai Joon An
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
12
|
Dong H, You J, Zhao Y, Zheng D, Zhong Y, Li G, Weng Z, Luo H, Jiang S. Study on the Characteristics of Small-Molecule Kinase Inhibitors-Related Drug-Induced Liver Injury. Front Pharmacol 2022; 13:838397. [PMID: 35529445 PMCID: PMC9068902 DOI: 10.3389/fphar.2022.838397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: More than half of the small-molecule kinase inhibitors (KIs) induced liver injury clinically. Meanwhile, studies have shown a close relationship between mitochondrial damage and drug-induced liver injury (DILI). We aimed to study KIs and the binding between drugs and mitochondrial proteins to find factors related to DILI occurrence. Methods: A total of 1,223 oral FDA-approved drugs were collected and analyzed, including 44 KIs. Fisher’s exact test was used to analyze DILI potential and risk of different factors. A total of 187 human mitochondrial proteins were further collected, and high-throughput molecular docking was performed between human mitochondrial proteins and drugs in the data set. The molecular dynamics simulation was used to optimize and evaluate the dynamic binding behavior of the selected mitochondrial protein/KI complexes. Results: The possibility of KIs to produce DILI is much higher than that of other types (OR = 46.89, p = 9.28E-13). A few DILI risk factors were identified, including molecular weight (MW) between 400 and 600, the defined daily dose (DDD) ≥ 100 mg/day, the octanol–water partition coefficient (LogP) ≥ 3, and the degree of liver metabolism (LM) more than 50%. Drugs that met this combination of rules were found to have a higher DILI risk than controls (OR = 8.28, p = 4.82E-05) and were more likely to cause severe DILI (OR = 8.26, p = 5.06E-04). The docking results showed that KIs had a significant higher affinity with human mitochondrial proteins (p = 4.19E-11) than other drug types. Furthermore, the five proteins with the lowest docking score were selected for molecular dynamics simulation, and the smallest fluctuation of the backbone RMSD curve was found in the protein 5FS8/KI complexes, which indicated the best stability of the protein 5FS8 bound to KIs. Conclusions: KIs were found to have the highest odds ratio of causing DILI. MW was significantly related to the production of DILI, and the average docking scores of KI drugs were found to be significantly different from other classes. Further analysis identified the top binding mitochondrial proteins for KIs, and specific binding sites were analyzed. The optimization of molecular docking results by molecular dynamics simulation may contribute to further studying the mechanism of DILI.
Collapse
Affiliation(s)
- Huiqun Dong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jia You
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Zhao
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Danhua Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yi Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Gaozheng Li
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| | - Heng Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
- MetaNovas Biotech Inc., Foster City, CA, United States
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| | - Shan Jiang
- Department of Vascular Thyroid Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Zuquan Weng, ; Heng Luo, ; Shan Jiang,
| |
Collapse
|
13
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
14
|
Guo L, Tang T, Fang D, Gong H, Zhang B, Zhou Y, Zhang L, Yan M. An Insight on the Pathways Involved in Crizotinib and Sunitinib Induced Hepatotoxicity in HepG2 Cells and Animal Model. Front Oncol 2022; 12:749954. [PMID: 35155225 PMCID: PMC8832280 DOI: 10.3389/fonc.2022.749954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
Both crizotinib and sunitinib, novel orally-active multikinase inhibitors, exhibit antitumor activity and extend the survival of patients with a malignant tumor. However, some patients may suffer liver injury that can further limit the clinical use of these drugs, however the mechanisms underlying hepatotoxicity are still to be elucidated. Thus, our study was designed to use HepG2 cells in vitro and the ICR mice model in vivo to investigate the mechanisms of hepatotoxicity induced by crizotinib and sunitinib. Male ICR mice were treated orally with crizotinib (70 mg/kg/day) or sunitinib (7.5 mg/kg/day) for four weeks. The results demonstrated that crizotinib and sunitinib caused cytotoxicity in HepG2 cells and chronic liver injury in mice, which were associated with oxidative stress, apoptosis and/or necrosis. Crizotinib- and sunitinib-induced oxidative stress was accompanied by increasing reactive oxygen species and malondialdehyde levels and decreasing the activity of superoxide dismutase and glutathione peroxidase. Notably, the activation of the Kelch-like ECH-associated protein-1/Nuclear factor erythroid-2 related factor 2 signaling pathway was involved in the process of oxidative stress, and partially protected against oxidative stress. Crizotinib and sunitinib induced apoptosis via the mitochondrial pathway, which was characterized by decreasing Bcl2/Bax ratio to dissipate the mitochondrial membrane potential, and increasing apoptotic markers levels. Moreover, the pan-caspase inhibitor Z-VAD-FMK improved the cell viability and alleviated liver damage, which further indicated the presence of apoptosis. Taken together, this study demonstrated that crizotinib- and sunitinib-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and markedly increased levels of serum alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tingli Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongmei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yueyin Zhou
- Orthodontic Department of Xiangya Stomatology Hospital, Central South University, Changsha, China
| | - Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Drug-Induced Liver Injury: Clinical Evidence of N-Acetyl Cysteine Protective Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3320325. [PMID: 34912495 PMCID: PMC8668310 DOI: 10.1155/2021/3320325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress is a key pathological feature implicated in both acute and chronic liver diseases, including drug-induced liver injury (DILI). The latter describes hepatic injury arising as a direct toxic effect of administered drugs or their metabolites. Although still underreported, DILI remains a significant cause of liver failure, especially in developed nations. Currently, it is understood that mitochondrial-generated oxidative stress and abnormalities in phase I/II metabolism, leading to glutathione (GSH) suppression, drive the onset of DILI. N-Acetyl cysteine (NAC) has attracted a lot of interest as a therapeutic agent against DILI because of its strong antioxidant properties, especially in relation to enhancing endogenous GSH content to counteract oxidative stress. Thus, in addition to updating information on the pathophysiological mechanisms implicated in oxidative-induced hepatic injury, the current review critically discusses clinical evidence on the protective effects of NAC against DILI, including the reduction of patient mortality. Besides injury caused by paracetamol, NAC can also improve liver function in relation to other forms of liver injury such as those induced by excessive alcohol intake. The implicated therapeutic mechanisms of NAC extend from enhancing hepatic GSH levels to reducing biomarkers of paracetamol toxicity such as keratin-18 and circulating caspase-cleaved cytokeratin-18. However, there is still lack of evidence confirming the benefits of using NAC in combination with other therapies in patients with DILI.
Collapse
|
16
|
Rana P, Aleo MD, Wen X, Kogut S. Hepatotoxicity reports in the FDA adverse event reporting system database: A comparison of drugs that cause injury via mitochondrial or other mechanisms. Acta Pharm Sin B 2021; 11:3857-3868. [PMID: 35024312 PMCID: PMC8727782 DOI: 10.1016/j.apsb.2021.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42-1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12-2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61-0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.
Collapse
Key Words
- AE, adverse event
- Adverse event reporting
- CI, confidence interval
- CNS, center nervous system
- DILI, drug-induced liver injury
- DNA, deoxyribonucleic acid
- Drug-induced liver injury
- FAERS database
- FAERS, FDA's Adverse Event Reporting System
- FDA, US Food and Drug Administration
- Hepatotoxicity
- MedDRA, Medical Dictionary for Regulatory Activities
- Mitochondrial toxicity
- NCTR-LTKB, National Center for Toxicological Research-Liver Toxicity Knowledge Base
- NSAID, nonsteroidal anti-inflammatory drugs
- ROR, Reporting Odds Ratio
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Groton, CT 06340, USA
- Corresponding author. Tel.: +1 0 715 6154.
| | - Michael D. Aleo
- Drug Safety Research & Development, Pfizer, Groton, CT 06340, USA
| | - Xuerong Wen
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA
| | - Stephen Kogut
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA
| |
Collapse
|
17
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
18
|
van der Stel W, Yang H, Vrijenhoek NG, Schimming JP, Callegaro G, Carta G, Darici S, Delp J, Forsby A, White A, le Dévédec S, Leist M, Jennings P, Beltman JB, van de Water B, Danen EHJ. Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Arch Toxicol 2021; 96:259-285. [PMID: 34642769 PMCID: PMC8748354 DOI: 10.1007/s00204-021-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes.
Collapse
Affiliation(s)
- Wanda van der Stel
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Nanette G Vrijenhoek
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Johannes P Schimming
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Giulia Callegaro
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Giada Carta
- Division Molecular and Computational Toxicology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Salihanur Darici
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Johannes Delp
- Chair for In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Sylvia le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Marcel Leist
- Chair for In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Paul Jennings
- Division Molecular and Computational Toxicology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Erik H J Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
19
|
Nguyen PTT, Hoang DV, Pham KM, Nguyen HT. A Multiple Logistic Regression Model Based on Gamma-Glutamyl Transferase as a Biomarker for Early Prediction of Drug-Induced Liver Injury in Vietnamese Patients. J Clin Pharmacol 2021; 62:110-117. [PMID: 34415063 DOI: 10.1002/jcph.1955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]
Abstract
The discovery of new biomarkers and the causality of drug-induced liver injury (DILI) is a major focus in modern medicine. Alcoholism is considered a risk factor for DILI. However, the extraction and assessment of alcohol history are difficult due to noncooperation by patients and intermittent management. Therefore, we conducted a case-control study of 1277 patients diagnosed with DILI according to the Roussel Uclaf Causality Assessment Method scale to evaluate gamma-glutamyl transferase (GGT) as a biomarker for predicting DILI in Vietnamese patients, where the proportion of alcoholism is quite high. Further, we built and validated a logistic regression model to predict the risk of DILI in hospitalized patients. The risk of DILI increased by 10% for 1 UI/L higher levels of GGT before prescription (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.00-1.01). A history of alcoholism was not a risk factor for DILI occurrence (OR, 1.83; 95%CI, 0.99-3.04; P = .057). A logistic regression model was successfully built and validated based on age; sex; initial levels of alanine aminotransferase, alkaline phosphatate, GGT, likelihood score of the suspected drug, and history of liver disease; the area under the receiver operating characteristic curve of the model was 0.883 (95%CI, 0.868-0.897). Our results thus suggest the necessity of exercising caution when prescribing to patients without a history of alcoholism but having high GGT levels. This model can be applied clinically to assess the risk of DILI before prescribing to reduce the risk of DILI in the patient.
Collapse
Affiliation(s)
- Phuong Thi Thu Nguyen
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam.,Hai Phong International Hospital, Haiphong, Vietnam
| | - Dung Van Hoang
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Khue Minh Pham
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Hoi Thanh Nguyen
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam.,Hai Phong International Hospital, Haiphong, Vietnam
| |
Collapse
|
20
|
A Green Approach to Producing Polymer Microparticles for Local Sustained Release of Flavopiridol. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
22
|
Role of respiratory uncoupling in drug-induced mitochondrial permeability transition. Toxicol Appl Pharmacol 2021; 427:115659. [PMID: 34332991 DOI: 10.1016/j.taap.2021.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial injury contributes to severe drug-induced liver injury. Particularly, mitochondrial permeability transition (MPT) is thought to be relevant to cytolytic hepatitis. However, the mechanism of drug-induced MPT is unclear and prediction of MPT is not adequately evaluated in the preclinical stage. In a previous study, we found that troglitazone, a drug withdrawn due to liver injury, induced MPT via mild depolarization probably resulting from uncoupling. Herein, we investigated whether other drugs that induce MPT share similar properties as troglitazone, using isolated mitochondria from rat liver. Of the 22 test drugs examined, six drugs, including troglitazone, induced MPT and showed an uncoupling effect. Additionally, receiver operating characteristic analysis was conducted to predict the MPT potential from the respiratory control ratio, an indicator of uncoupling intensity. Results showed that 2.5 was the best threshold that exhibited high sensitivity (1.00) and high specificity (0.81), indicating that uncoupling was correlated with MPT potential. Activation of calcium-independent phospholipase A2 appeared to be involved in uncoupling-induced MPT. Furthermore, a strong relationship between MPT intensity and the uncoupling effect among similar compounds was confirmed. These results may help in predicting MPT potential using cultured cells and modifying the chemical structures of the drugs to reduce MPT risk.
Collapse
|
23
|
Monckton CP, Brown GE, Khetani SR. Latest impact of engineered human liver platforms on drug development. APL Bioeng 2021; 5:031506. [PMID: 34286173 PMCID: PMC8286174 DOI: 10.1063/5.0051765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of drug attrition, which is partly due to differences between preclinical animals and humans in metabolic pathways. Therefore, in vitro human liver models are utilized in biopharmaceutical practice to mitigate DILI risk and assess related mechanisms of drug transport and metabolism. However, liver cells lose phenotypic functions within 1–3 days in two-dimensional monocultures on collagen-coated polystyrene/glass, which precludes their use to model the chronic effects of drugs and disease stimuli. To mitigate such a limitation, bioengineers have adapted tools from the semiconductor industry and additive manufacturing to precisely control the microenvironment of liver cells. Such tools have led to the fabrication of advanced two-dimensional and three-dimensional human liver platforms for different throughput needs and assay endpoints (e.g., micropatterned cocultures, spheroids, organoids, bioprinted tissues, and microfluidic devices); such platforms have significantly enhanced liver functions closer to physiologic levels and improved functional lifetime to >4 weeks, which has translated to higher sensitivity for predicting drug outcomes and enabling modeling of diseased phenotypes for novel drug discovery. Here, we focus on commercialized engineered liver platforms and case studies from the biopharmaceutical industry showcasing their impact on drug development. We also discuss emerging multi-organ microfluidic devices containing a liver compartment that allow modeling of inter-tissue crosstalk following drug exposure. Finally, we end with key requirements for engineered liver platforms to become routine fixtures in the biopharmaceutical industry toward reducing animal usage and providing patients with safe and efficacious drugs with unprecedented speed and reduced cost.
Collapse
Affiliation(s)
- Chase P Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Grace E Brown
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
24
|
Allard J, Bucher S, Massart J, Ferron PJ, Le Guillou D, Loyant R, Daniel Y, Launay Y, Buron N, Begriche K, Borgne-Sanchez A, Fromenty B. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol 2021; 37:151-175. [PMID: 32535746 PMCID: PMC8012331 DOI: 10.1007/s10565-020-09537-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Simon Bucher
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Julie Massart
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
- HCS Pharma, 250 rue Salvador Allende, 59120 Loos, France
| | - Dounia Le Guillou
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Roxane Loyant
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Yoann Daniel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Nelly Buron
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Karima Begriche
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Annie Borgne-Sanchez
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
25
|
Liu Y, Han X, Zhao N, Fang X, Zhang S, Li S, Jiang W, Ding L. The association of liver function biomarkers with internal exposure of short- and medium-chain chlorinated paraffins in residents from Jinan, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115762. [PMID: 33049485 DOI: 10.1016/j.envpol.2020.115762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are pervasive environmental pollutants which have been reported to be hepatotoxic by laboratory cell and animal studies. However, the related epidemiological reports on their hepatotoxic effects to humans are sparse. In this study, we evaluated the associations between six liver enzymes and serum short-chain CP (SCCP) or medium-chain CP (MCCP) concentrations of 197 residents in Jinan, China. Serum S/MCCPs were detected by quadrupole time-of-flight high-resolution mass spectrometry coupled with atmospheric pressure chemical ionization source (APCI-QTOF-HRMS), and quantified by pattern deconvolution method. The associations between total serum S/MCCP concentrations (ΣS/MCCPs) and continuous liver enzyme levels were assessed by linear regression. Odds ratios (ORs) for the effects of serum ΣS/MCCPs concentrations on liver function biomarkers dichotomized by clinical reference intervals were predicted by logistic regression, either treating ΣS/MCCPs as continuous or categorical dependents. After multivariable adjustment, linear regression results illustrated that 1-ln unit increase in serum ΣSCCPs was negatively associated with male PA levels [-6.08, 95% confidence interval (CI): -11.90, -3.25, p < 0.05], positively associated with male TB levels (1.80, 95% CI: 0.28, 3.31, p < 0.05), and positively associated with female AST levels (1.39, 95% CI: 0.07, 2.70, p < 0.05). One-ln unit increase in serum ΣMCCPs was negatively associated male PA levels (-7.56, 95% CI: -17.15, -4.03, p < 0.05). Logistic regression results suggested that male serum ΣSCCPs were associated with increased prevalence of abnormal PA (OR = 1.47 per 1 ln-unit increase, CI = 1.18, 1.82) and TB (OR = 1.75, 95% CI = 1.12, 2.76) levels, and male serum ΣMCCPs were significantly associated with increased prevalence of abnormal PA (OR = 1.43, 95% CI = 1.03, 1.97) levels. In addition, male participants with concentrations above the median ΣS/MCCPs were associated with increased risk for abnormal PA levels [SCCPs, 2.11-fold (95% CI = 1.15, 3.87); MCCPs, 1.94-fold (95% CI = 1.24, 3.03)]. Male participants with concentrations above the median ΣSCCPs were also associated with increased risk for abnormal TB levels (OR = 1.75, 95% CI = 1.12, 2.76). Conclusively, our results revealed that CP internal exposure was associated with disturbed liver biomarker levels, suggesting the hepatotoxicity of both SCCPs and MCCPs to humans.
Collapse
Affiliation(s)
- Yi Liu
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Xiumei Han
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xinxin Fang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Shixue Li
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Wei Jiang
- Shenzhen Research Institute, Shandong University, Shenzhen, 518057, China
| | - Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
26
|
Houron C, Danielou M, Mir O, Fromenty B, Perlemuter G, Voican CS. Multikinase inhibitor-induced liver injury in patients with cancer: A review for clinicians. Crit Rev Oncol Hematol 2020; 157:103127. [PMID: 33161366 DOI: 10.1016/j.critrevonc.2020.103127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multikinase inhibitors (MKI) are targeted molecular agents that have revolutionized cancer management. However, there is a paucity of data concerning MKI-related liver injury risk and clinical guidelines for the management of liver toxicity in patients receiving MKI for cancer are scarce. DESIGN We conducted a PubMed search of articles in English published from January 2000 to December 2018 related to hepatotoxicity of the 29 FDA-approved MKIs at doses used in clinical practice. The search terms were the international non-proprietary name of each agent cross-referenced with «hepatotoxicity», «hepatitis», «hepatic adverse event», or «liver failure», and «phase II clinical trial», «phase III clinical trial», or «case report». RESULTS Following this search, 140 relevant studies and 99 case reports were considered. Although asymptomatic elevation of aminotransferase levels has been frequently observed in MKI clinical trials, clinically significant hepatotoxicity is a rare event. In most cases, the interval between treatment initiation and the onset of liver injury is between one week and two months. Liver toxicity is often hepatocellular and less frequently mixed. Life-threatening MKI-induced hepatic injury has been described, involving fulminant liver failure or death. Starting from existing data, a description of MKI-related liver events, grading of hepatotoxicity risk, and recommendations for management are also given for various MKI molecules. CONCLUSION All MKIs can potentially cause liver injury, which is sometimes irreversible. As there is still no strategy available to prevent MKI-related hepatotoxicity, early detection remains crucial. The surveillance of liver function during treatment may help in the early detection of hepatotoxicity. Furthermore, the exclusion of potential causes of hepatic injury is essential to avoid unnecessary MKI withdrawal.
Collapse
Affiliation(s)
- Camille Houron
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France
| | - Marie Danielou
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| | - Olivier Mir
- Gustave Roussy Cancer Campus, Department of Ambulatory Care, F-94805, Villejuif, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Gabriel Perlemuter
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France.
| | - Cosmin Sebastian Voican
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| |
Collapse
|
27
|
Hexokinase II dissociation alone cannot account for changes in heart mitochondrial function, morphology and sensitivity to permeability transition pore opening following ischemia. PLoS One 2020; 15:e0234653. [PMID: 32579577 PMCID: PMC7313731 DOI: 10.1371/journal.pone.0234653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/31/2020] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that hexokinase II (HK2) dissociation from mitochondria during cardiac ischemia correlates with cytochrome c (cyt-c) loss, oxidative stress and subsequent reperfusion injury. However, whether HK2 release is the primary signal mediating this ischemia-induced mitochondrial dysfunction was not established. To investigate this, we studied the effects of dissociating HK2 from isolated heart mitochondria. Mitochondria isolated from Langendorff-perfused rat hearts before and after 30 min global ischemia ± ischemic preconditioning (IPC) were subject to in vitro dissociation of HK2 by incubation with glucose-6-phosphate at pH 6.3. Prior HK2 dissociation from pre- or end-ischemic heart mitochondria had no effect on their cyt-c release, respiration (± ADP) or mitochondrial permeability transition pore (mPTP) opening. Inner mitochondrial membrane morphology was assessed indirectly by monitoring changes in light scattering (LS) and confirmed by transmission electron microscopy. Although no major ultrastructure differences were detected between pre- and end-ischemia mitochondria, the amplitude of changes in LS was reduced in the latter. This was prevented by IPC but not mimicked in vitro by HK2 dissociation. We also observed more Drp1, a mitochondrial fission protein, in end-ischemia mitochondria. IPC failed to prevent this increase but did decrease mitochondrial-associated dynamin 2. In vitro HK2 dissociation alone cannot replicate ischemia-induced effects on mitochondrial function implying that in vivo dissociation of HK2 modulates end-ischemia mitochondrial function indirectly perhaps involving interaction with mitochondrial fission proteins. The resulting changes in mitochondrial morphology and cristae structure would destabilize outer / inner membrane interactions, increase cyt-c release and enhance mPTP sensitivity to [Ca2+].
Collapse
|
28
|
Norman BH. Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies. J Med Chem 2020; 63:11397-11419. [PMID: 32511920 DOI: 10.1021/acs.jmedchem.0c00524] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adverse drug reactions (ADRs) are a common cause of attrition in drug discovery and development and drug-induced liver injury (DILI) is a leading cause of preclinical and clinical drug terminations. This perspective outlines many of the known DILI mechanisms and assessment methods used to evaluate and mitigate DILI risk. Literature assessments and retrospective analyses using verified DILI-associated drugs from the Liver Tox Knowledge Base (LTKB) have been used to derive the predictive value of each end point, along with combination approaches of multiple methods. In vitro assays to assess inhibition of the bile salt export pump (BSEP), mitotoxicity, reactive metabolite (RM) formation, and hepatocyte cytolethality, along with physicochemical properties and clinical dose provide useful DILI predictivity. This Perspective also highlights some of the strategies used by medicinal chemists to reduce DILI risk during the optimization of drug candidates.
Collapse
Affiliation(s)
- Bryan H Norman
- Norman Drug Discovery Training and Consulting, LLC, 8540 Bluefin Circle, Indianapolis, Indiana 46236, United States
| |
Collapse
|
29
|
Rana P, Kogut S, Wen X, Akhlaghi F, Aleo MD. Most Influential Physicochemical and In Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Chem Res Toxicol 2020; 33:1780-1790. [PMID: 32338883 DOI: 10.1021/acs.chemrestox.0c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug-induced organ injury is a major reason for drug candidate attrition in preclinical and clinical drug development. The liver, kidneys, and heart have been recognized as the most common organ systems affected in safety-related attrition or the subject of black box warnings and postmarket drug withdrawals. In silico physicochemical property calculations and in vitro assays have been utilized separately in the early stages of the drug discovery and development process to predict drug safety. In this study, we combined physicochemical properties and in vitro cytotoxicity assays including mitochondrial dysfunction to build organ-specific univariate and multivariable logistic regression models to achieve odds ratios for the prediction of clinical hepatotoxicity, nephrotoxicity, and cardiotoxicity using 215 marketed drugs. The multivariable hepatotoxic predictive model showed an odds ratio of 6.2 (95% confidence interval (CI) 1.7-22.8) or 7.5 (95% CI 3.2-17.8) for mitochondrial inhibition or drug plasma Cmax >1 μM for drugs associated with liver injury, respectively. The multivariable nephrotoxicity predictive model showed an odds ratio of 5.8 (95% CI 2.0-16.9), 6.4 (95% CI 1.1-39.3), or 15.9 (95% CI 2.8-89.0) for drug plasma Cmax >1 μM, mitochondrial inhibition, or hydrogen-bond-acceptor atoms >7 for drugs associated with kidney injury, respectively. Conversely, drugs with a total polar surface area ≥75 Å were 79% (odds ratio 0.21, 95% CI 0.061-0.74) less likely to be associated with kidney injury. Drugs belonging to the extended clearance classification system (ECCS) class 4, where renal secretion is the primary clearance mechanism (low permeability drugs that are bases/neutrals), were 4 (95% CI 1.8-9.5) times more likely to to be associated with kidney injury with this data set. Alternatively, ECCS class 2 drugs, where hepatic metabolism is the primary clearance (high permeability drugs that are bases/neutrals) were 77% less likely (odds ratio 0.23 95% CI 0.095-0.54) to to be associated with kidney injury. A cardiotoxicity model was poorly defined using any of these drug physicochemical attributes. Combining in silico physicochemical properties descriptors along with in vitro toxicity assays can be used to build predictive toxicity models to select small molecule therapeutics with less potential to cause liver and kidney organ toxicity.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Kogut
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Xuerong Wen
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Fatemeh Akhlaghi
- College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Michael D Aleo
- Drug Safety Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
30
|
Walker PA, Ryder S, Lavado A, Dilworth C, Riley RJ. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch Toxicol 2020; 94:2559-2585. [PMID: 32372214 PMCID: PMC7395068 DOI: 10.1007/s00204-020-02763-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.
Collapse
Affiliation(s)
- Paul A Walker
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - Stephanie Ryder
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Andrea Lavado
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Clive Dilworth
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Alderley Park Accelerator, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Robert J Riley
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| |
Collapse
|
31
|
Abid A, Subhani F, Kayani F, Awan S, Abid S. Drug induced liver injury is associated with high mortality-A study from a tertiary care hospital in Pakistan. PLoS One 2020; 15:e0231398. [PMID: 32276267 PMCID: PMC7148123 DOI: 10.1371/journal.pone.0231398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM In light of few established drug induced liver injury (DILI) registries, this study aims to evaluate the clinical spectrum and predictors of mortality and morbidity of hospitalized patients with suspected DILI. PATIENTS AND METHODS DILI cases were identified and categorized on basis of COIMS/RUCAM score and the exclusion of other liver diseases. Clinical and laboratory parameters were analyzed to identify the predictors of morbidity (prolonged hospital stay > 5 days) and mortality. RESULTS Out of 462 patients, there were 264 (57.6%) males and the mean age of the cohort was 50.83 years (range: 20-94 years). DILI was classified as definite or highly probable in 31.1%, probable in 62.5%, and possible in 7.4% of cases. Pattern of liver injury was hepatocellular in 25.1%, cholestatic in 56.17%, and mixed in 18.72% of patients. Anti-tuberculosis drugs (ATDs) were found to be the most common category of drugs causing DILI, in 295 (63.9%) patients. Clinically, encephalopathy was present in 21.6% patients; other presenting symptoms included abdominal pain (57.1%), vomiting (57.1%), jaundice (54.1%) and pruritus (42.3%). In-hospital mortality was 26.5% and prolonged hospital stay (> 5 days) was observed in 35.93% of patients. Mortality was significantly greater in patients with encephalopathy, male gender, hepatocellular pattern of DILI, increased INR and use of ventilator support. CONCLUSION In our study, the most frequent cause of DILI in hospitalized patients was ATDs. More than a quarter of patients died during hospital stay. A close control of clinical and biochemical parameters are required to prevent and monitor DILI, especially in patients taking ATDs in our region.
Collapse
Affiliation(s)
- Adeel Abid
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Farhana Kayani
- Section of Gastroenterology and Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Safia Awan
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Shahab Abid
- Section of Gastroenterology and Department of Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
32
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2020; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
33
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
34
|
Fromenty B. Letter to the Editor Regarding the Article Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury by Cho and Co-Workers, 2019. Chem Res Toxicol 2019; 33:2-4. [DOI: 10.1021/acs.chemrestox.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bernard Fromenty
- INSERM, Université de Rennes, INRAE, Nutrition, Metabolisms, and Cancer (NuMeCan) Institut, UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
35
|
Geng N, Ren X, Gong Y, Zhang H, Wang F, Xing L, Cao R, Xu J, Gao Y, Giesy JP, Chen J. Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2019; 133:105231. [PMID: 31678905 DOI: 10.1016/j.envint.2019.105231] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Short-chain chlorinated paraffins (SCCPs) used in various industrial applications have been listed as new POPs. Previous studies based on high-dose exposures indicate their hepatotoxicity. However, their mechanisms of toxicity or adverse outcome pathways and health risks remain largely unknown. OBJECTIVES This study aimed to evaluate metabolic consequences of chronic dietary exposure to SCCPs at low doses and reveal the molecular mechanisms underlying hepatotoxicity of SCCPs. METHODS A combination of transcriptomics and metabolomics, together with general pathophysiological tests were performed to assess the hepatic response of male rats exposed to SCCPs. RESULTS Our results highlight two major modes of action: Inhibition of energy metabolism and activation of the peroxisome proliferator-activated receptor α (PPARα). Exposure to SCCPs suppressed oxidative phosphorylation, glycolysis, gluconeogenesis and turnover of ATP-ADP-AMP and thus results in deficiencies of amino acids and nucleotides in liver of the rat. Exposure to SCCPs affected expression levels of 13 genes downstream of PPARα that encode proteins associated with metabolism of fatty acids. As a result, peroxisomal and mitochondrial fatty acid β-oxidation, microsomal fatty acid ω-oxidation, and lipogenesis were accelerated. CONCLUSIONS Results of this work strongly support the conclusion that low-dose exposure to SCCPs can result in adverse outcomes in the rat model. Significant SCCP-induced inhibition of energy metabolism occurs at environmentally relevant dosages, which suggests that SCCPs exhibit metabolic toxicity. Interactions of SCCPs with PPARα signaling pathway can explain the disruption of lipids and amino acids metabolism.
Collapse
Affiliation(s)
- Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xiaoqian Ren
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Gong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - Feidi Wang
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd, Shenyang 110021, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiazhi Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - John P Giesy
- Toxicology Program and Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
36
|
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
38
|
Contreras-Baeza Y, Ceballo S, Arce-Molina R, Sandoval PY, Alegría K, Barros LF, San Martín A. MitoToxy assay: A novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor, Laconic. PLoS One 2019; 14:e0224527. [PMID: 31671132 PMCID: PMC6822764 DOI: 10.1371/journal.pone.0224527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z’-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.
Collapse
Affiliation(s)
| | | | - Robinson Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Universidad Austral de Chile (UACh), Valdivia, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | | | | |
Collapse
|
39
|
Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol 2019; 135:110916. [PMID: 31669601 DOI: 10.1016/j.fct.2019.110916] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes for 13 proteins involved in the oxidative phosphorylation (OXPHOS) process. In liver, genetic or acquired impairment of mtDNA homeostasis can reduce ATP output but also decrease fatty acid oxidation, thus leading to different hepatic lesions including massive necrosis and microvesicular steatosis. Hence, a severe impairment of mtDNA homeostasis can lead to liver failure and death. An increasing number of investigations report that some drugs can induce mitochondrial dysfunction and drug-induced liver injury (DILI) by altering mtDNA homeostasis. Some drugs such as ciprofloxacin, antiretroviral nucleoside reverse-transcriptase inhibitors and tacrine can inhibit hepatic mtDNA replication, thus inducing mtDNA depletion. Drug-induced reduced mtDNA levels can also be the consequence of reactive oxygen species-mediated oxidative damage to mtDNA, which triggers its degradation by mitochondrial nucleases. Such mechanism is suspected for acetaminophen and troglitazone. Other pharmaceuticals such as linezolid and tetracyclines can impair mtDNA translation, thus selectively reducing the synthesis of the 13 mtDNA-encoded proteins. Lastly, some drugs might alter the mtDNA methylation status but the pathophysiological consequences of such alteration are still unclear. Drug-induced impairment of mtDNA homeostasis is probably under-recognized since preclinical and post-marketing safety studies do not classically investigate mtDNA levels, mitochondrial protein synthesis and mtDNA oxidative damage.
Collapse
|
40
|
Konieczka P, Barszcz M, Kowalczyk P, Szlis M, Jankowski J. The potential of acetylsalicylic acid and vitamin E in modulating inflammatory cascades in chickens under lipopolysaccharide-induced inflammation. Vet Res 2019; 50:65. [PMID: 31533824 PMCID: PMC6751615 DOI: 10.1186/s13567-019-0685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Distinct enzymes, including cyclooxygenase 1 and 2 (COX-1 and COX-2), lipoxygenase (LOXs), and cytochrome P450 monooxygenase (CYP450), produce different stress mediators and mediate inflammation in birds. Bioactive agents such as acetylsalicylic acid (ASA) and vitamin E (vE) may affect enzyme activities and could be used in poultry production to control the magnitude of acute phase inflammation. Here, we characterized COX, LOX, and CYP450 mRNA expression levels in chicken immune tissues in response to Escherichia coli lipopolysaccharide (LPS) challenge and investigated whether ASA and vE could alter gene expression. Additionally, for the first time in chickens, we evaluated oxygen consumption by platelet mitochondria as a biomarker of mitochondria function in response to ASA- and vE. LPS challenge compromised bird growth rates, but neither dietary ASA nor vE significantly ameliorated this effect; however, gradually increasing dietary vE levels were more effective than basal levels. ASA regulated arachidonic acid metabolism, providing an eicosanoid synthesis substrate, whereas gradually increasing vE levels evoked aspirin resistance during challenge. Gene expression in immune tissues was highly variable, indicating a complex regulatory network controlling inflammatory pathways. However, unlike COX-1, COX-2 and CYP450 exhibited increased mRNA expression in some cases, suggesting an initiation of novel anti-inflammatory and pro-resolving signals during challenge. Measuring oxygen consumption rate, we revealed that neither the ASA nor vE levels applied here exerted toxic effects on platelet mitochondria.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland. .,Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110, Jabłonna, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
41
|
Aleo MD, Shah F, Allen S, Barton HA, Costales C, Lazzaro S, Leung L, Nilson A, Obach RS, Rodrigues AD, Will Y. Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential. Chem Res Toxicol 2019; 33:223-238. [DOI: 10.1021/acs.chemrestox.9b00262] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Scott Allen
- Drug Safety Research and Development, Investigative Toxicology, Pfizer Worldwide Research & Development, One Burtt Road, Andover, Massachusetts 01810, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu Q, Liu L, Vu H, Kuhls M, Aslamkhan AG, Liaw A, Yu Y, Kaczor A, Ruth M, Wei C, Imredy J, Lebron J, Pearson K, Gonzalez R, Mitra K, Sistare FD. Can Galactose Be Converted to Glucose in HepG2 Cells? Improving the in Vitro Mitochondrial Toxicity Assay for the Assessment of Drug Induced Liver Injury. Chem Res Toxicol 2019; 32:1528-1544. [PMID: 31271030 DOI: 10.1021/acs.chemrestox.9b00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway. However, our NMR metabolomics analysis of HepG2 cells and culture media showed very limited galactose metabolism. To clarify the role of galactose in HepG2 cellular metabolism, U-13C6-galactose or U-13C6-glucose was added to HepG2 culture media to help specifically track the metabolism of those two sugars. Conversion to U-13C3-lactate was hardly detected when HepG2 cells were incubated with U-13C6-galactose, while an abundance of U-13C3-lactate was produced when HepG2 cells were incubated with U-13C6-glucose. In the absence of glucose, HepG2 cells increased glutamine consumption as a bioenergetics source. The requirement of additional glutamine almost matched the amount of glucose needed to maintain a similar level of cellular ATP in HepG2 cells. This improved understanding of galactose and glutamine metabolism in HepG2 cells helped optimize the ATP-based mitochondrial toxicity assay. The modified assay showed 96% sensitivity and 97% specificity in correctly discriminating compounds known to cause mitochondrial toxicity from those with prior evidence of not being mitochondrial toxicants. The greatest significance of the modified assay was its improved sensitivity in detecting the inhibition of mitochondrial fatty acid β-oxidation (FAO) when glutamine was withheld. Use of this improved assay for an empirical prediction of the likely contribution of mitochondrial toxicity to human DILI (drug induced liver injury) was attempted. According to testing of 65 DILI positive compounds representing numerous mechanisms of DILI together with 55 DILI negative compounds, the overall prediction of mitochondrial mechanism-related DILI showed 25% sensitivity and 95% specificity.
Collapse
Affiliation(s)
- Qiuwei Xu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Liping Liu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Heather Vu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Matthew Kuhls
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Amy G Aslamkhan
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Andy Liaw
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Yan Yu
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Allen Kaczor
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Michael Ruth
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Christina Wei
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - John Imredy
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Jose Lebron
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Kara Pearson
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Raymond Gonzalez
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Kaushik Mitra
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| | - Frank D Sistare
- Merck & Co. Inc. , Kenilworth , New Jersey 07033 , United States
| |
Collapse
|
43
|
Zhao Q, Zhang T, Xiao X, Huang J, Wang Y, Gonzalez FJ, Li F. Impaired clearance of sunitinib leads to metabolic disorders and hepatotoxicity. Br J Pharmacol 2019; 176:2162-2178. [PMID: 30875096 PMCID: PMC6555861 DOI: 10.1111/bph.14664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Sunitinib is a small-molecule TK inhibitor associated with hepatotoxicity. The mechanisms of its toxicity are still unclear. EXPERIMENTAL APPROACH In the present study, mice were treated with 60, 150, and 450 mg·kg-1 sunitinib to evaluate sunitinib hepatotoxicity. Sunitinib metabolites and endogenous metabolites in liver, serum, faeces, and urine were analysed using ultra-performance LC electrospray ionization quadrupole time-of-flight MS-based metabolomics. KEY RESULTS Four reactive metabolites and impaired clearance of sunitinib in liver played a dominant role in sunitinib-induced hepatotoxicity. Using a non-targeted metabolomics approach, various metabolic pathways, including mitochondrial fatty acid β-oxidation (β-FAO), bile acids, lipids, amino acids, nucleotides, and tricarboxylic acid cycle intermediates, were disrupted after sunitinib treatment. CONCLUSIONS AND IMPLICATIONS These studies identified significant alterations in mitochondrial β-FAO and bile acid homeostasis. Activation of PPARα and inhibition of xenobiotic metabolism may be of value in attenuating sunitinib hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Jian‐Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Wang
- Department of PathologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
44
|
Bilal M, Iqbal HMN. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:555-568. [PMID: 30909033 DOI: 10.1016/j.scitotenv.2019.03.261] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 02/05/2023]
Abstract
In recent years, the use of cosmeceutical-based personal care and beauty products has ever increased, around the world. Currently, an increasing number of compounds are being assimilated in the formulation of cosmetic products as preservatives, fragrances, surfactants, etc. to intensify the performance, quality, value, and lifespan of cosmetics. Nevertheless, many of these chemical additives pose toxic effects to the human body, exhibiting health risks from a mild hypersensitivity to life-threatening anaphylaxis or lethal intoxication. Therefore, the indiscriminate application of cosmeceuticals has recently become a mounting issue confronting public health. The present review focuses on exposure to a large variety of toxic substances used in cosmetic formulations such as 1,4-dioxane formaldehyde, paraformaldehyde, benzalkonium chloride, imidazolidinyl urea, diazolidinyl urea, trace heavy metals, parabens derivatives, phthalates, isothiazolinone derivatives (methylchloroiso-thiazolinone, and methylisothiazolinone), methyldibromo glutaronitrile, and phenoxy-ethanol. The biological risks related to these substances that they can pose to human health in terms of cytotoxicity, genotoxicity, mutagenicity, neurotoxicity oestrogenicity or others are also discussed. Researchers from academia, consultancy firms, governmental organizations, and cosmetic companies should carry out further progress to keep updating the consumers regarding the dark-sides, and health-related harmful apprehensions of cosmetics. In addition, the industry-motivated initiatives to abate environmental impact through green, sustainable and eco-friendly product development grasp significant perspective.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
45
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
46
|
Allard J, Le Guillou D, Begriche K, Fromenty B. Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:75-107. [PMID: 31307592 DOI: 10.1016/bs.apha.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is commonly associated with nonalcoholic fatty liver (NAFL), a benign condition characterized by hepatic lipid accumulation. However, NAFL can progress in some patients to nonalcoholic steatohepatitis (NASH) and then to severe liver lesions including extensive fibrosis, cirrhosis and hepatocellular carcinoma. The entire spectrum of these hepatic lesions is referred to as nonalcoholic fatty liver disease (NAFLD). The transition of simple fatty liver to NASH seems to be favored by several genetic and environmental factors. Different experimental and clinical investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs may cause more severe and/or more frequent acute liver injury in obese individuals whereas others may trigger the transition of simple fatty liver to NASH or may worsen hepatic lipid accumulation, necroinflammation and fibrosis. This review presents the available information regarding drugs that may cause a specific risk in the context of obesity and NAFLD. These drugs, which belong to different pharmacological classes, include acetaminophen, halothane, methotrexate, rosiglitazone and tamoxifen. For some of these drugs, experimental investigations confirmed the clinical observations and unveiled different pathophysiological mechanisms which may explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Because obese people often take several drugs for the treatment of different obesity-related diseases, there is an urgent need to identify the main pharmaceuticals that may cause acute liver injury on a fatty liver background or that may enhance the risk of severe chronic liver disease.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Dounia Le Guillou
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Karima Begriche
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France.
| |
Collapse
|
47
|
Affiliation(s)
- Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Room 259, 1035 University Avenue, Duluth, Minnesota 55812
| |
Collapse
|
48
|
Gonzalez-Jimenez A, McEuen K, Chen M, Suzuki A, Robles-Diaz M, Medina-Caliz I, Bessone F, Hernandez N, Arrese M, Parana R, Lucena MI, Stephens C, Andrade RJ. The influence of drug properties and host factors on delayed onset of symptoms in drug-induced liver injury. Liver Int 2019; 39:401-410. [PMID: 30195258 DOI: 10.1111/liv.13952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most patients with drug-induced liver injury (DILI) manifest clinical symptoms while on therapy, while some patients manifest days or weeks after drug cessation (delayed onset). This challenges DILI causality assessment and diagnosis. Factors contributing to the delayed onset phenotype are currently unknown. We explored factors contributing to delayed onset of DILI by analysing culprit drug properties, host factors and their interactions in a large patient population from the Spanish DILI Registry. METHODS Clinical information from 388 patients (69 presented delayed onset) and drug properties of 43 causative drugs (45 active ingredients) were analysed. A two-tier regression-based model was used to assess host/drug interactions affecting the probability of delayed onset. RESULTS Antibacterial and anti-inflammatory drugs accounted for the delayed onset cases. Drug property of <50% hepatic metabolism (odds ratio [OR] 11.06, 95% confidence interval [95% CI]: 4.4-32.2, P = 0.0003), daily dose ≥1000 mg (OR: 2.77, 95% CI: 1.3-6.1, P = 0.0063) and the absence of pre-existing conditions in a patient (OR: 2.55, 95% CI: 1.3-4.9, P = 0.0043) were independently associated with delayed onset. The findings were consistent when externally validated using Latin American DILI Network cases (N = 131). Likewise, drug properties of mitochondrial liability and Pauling electronegativity were associated with delayed onset, but dependent on specific host factors such as age, sex and pre-existing cardiac diseases. CONCLUSIONS This study demonstrated that delayed onset, a specific DILI phenotype, is explained by complex interactions among drug properties and host factors and provided mechanistic hypotheses for future studies. These findings can help improve the diagnostic capability and causality assessment.
Collapse
Affiliation(s)
- Andres Gonzalez-Jimenez
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Kristin McEuen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ayako Suzuki
- Gastroenterology, Duke University, Durham, North Carolina, USA
- Gastroenterology, Durham VA Medical Center, Durham, North Carolina, USA
| | - Mercedes Robles-Diaz
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Inmaculada Medina-Caliz
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Fernando Bessone
- Facultad de Medicina, Hospital Provincial del Centenario, Universidad de Rosario, Rosario, Argentina
| | - Nelia Hernandez
- Facultad de Medicina, Hospital de Clínicas, UDELAR, Montevideo, Uruguay
| | - Marco Arrese
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile y Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raymundo Parana
- Hospital Universitario Prof. Edgard Santos, Universidad Federal da Bahía, Salvador de Bahía, Brazil
| | - M Isabel Lucena
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Camilla Stephens
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica del Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|
49
|
Arakawa K, Ikeyama Y, Sato T, Segawa M, Sekine S, Ito K. Functional modulation of liver mitochondria in lipopolysaccharide/drug co-treated rat liver injury model. J Toxicol Sci 2019; 44:833-843. [DOI: 10.2131/jts.44.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Koichi Arakawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yugo Ikeyama
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masahiro Segawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
50
|
Kizhedath A, Wilkinson S, Glassey J. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicol In Vitro 2018; 55:108-115. [PMID: 30572011 DOI: 10.1016/j.tiv.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 01/30/2023]
Abstract
Parabens, esters of parahydroxybenzoic acid, are widely used in cosmetic, food and pharmaceutical industries mainly for their antibacterial and fungicidal properties. Methyl paraben has shown very low toxicity in a wide range of in vitro and animal tests. However, butyl paraben and derivatives, such as isobutyl parabens, are classified as allergens and have been shown to induce toxic effects. In the present study the effects of exposure to methyl or butyl paraben (5-1000 μM) on cytotoxicity, oxidative stress, mitochondrial dysfunction and genotoxicity were measured in a hepatocarcinoma cell line (HepG2) and human dermal fibroblasts neonatal (HDFn). Butyl paraben caused a concentration dependent decrease (above 400 μM) in cell viability for both cell lines. Toxicity of butyl paraben observed appeared to be mediated via ATP depletion as seen from luminescence assays. Depletion of glutathione was also observed for higher concentrations of butyl paraben, which may indicate the involvement of oxidative stress. Methyl paraben, however, did not show any significant decrease in cell viability, reduction in ATP or glutathione levels in HepG2 and HDFn cell lines at the concentrations tested. In vitro studies based on human cell lines can provide information in the early stages of multitier paraben toxicity studies and can be combined with in vivo and ex vivo studies to build more comprehensive, scientifically sound strategies for paraben safety testing. The results obtained in this study could supplement existing in vivo toxicity data for defining more robust limits for human exposure.
Collapse
Affiliation(s)
- Arathi Kizhedath
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Simon Wilkinson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|