1
|
Yang X, Wang J, Wei C, Tian J, Yan L, Huang Q. Association between ethylene oxide exposure and osteoarthritis risk mediated by oxidative stress: evidence from NHANES 2013-2020. Med Gas Res 2025; 15:348-355. [PMID: 39511755 PMCID: PMC11918471 DOI: 10.4103/mgr.medgasres-d-24-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
Ethylene oxide is extensively used for sterilizing medical equipment, and its carcinogenicity has been well documented. Furthermore, the onset of multiple diseases, including diabetes and hypertension, has been demonstrated to be associated with exposure to this compound. However, its association with osteoarthritis risk remains elusive. The study analyzed data from the National Health and Nutrition Examination Survey from 2013-2020, which included 6088 American adults, among whom 763 (12.5%) were diagnosed with osteoarthritis. We utilized a weighted generalized linear model to assess the correlation between ethylene oxide exposure levels and osteoarthritis risk. This study used mediation analysis to assess the functions of indicators of oxidative stress (γ-glutamyl transferase) and inflammation (alkaline phosphatase, white blood cell count, neutrophil count, and lymphocyte count) as mediators of how ethylene oxide affects osteoarthritis. The analysis revealed that elevated levels of ethylene oxide were correlated with a higher risk of osteoarthritis, even when controlling for other variables. The odds of developing osteoarthritis were 1.86 times higher in the fourth quartile than in the first quartile (95% confidence interval: 1.20-2.88, P = 0.0097, P for trend = 0.0087). Subgroup analyses indicated consistency across different cohorts. Mediation analysis revealed that oxidative stress (γ-glutamyl transferase), not inflammation, was the mediator linking ethylene oxide levels to the risk of osteoarthritis. This finding in a sample of American adults revealed a direct relationship between exposure to ethylene oxide and increased osteoarthritis risk. Oxidative stress has been suggested as a possible biological explanation for osteoarthritis caused by ethylene oxide.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianwen Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chengcheng Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Tian
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qishun Huang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Liu KP, Huang HQ, Li BF, Pan LL, Liu PC, Lin N, Lan JN, Liao ZQ, Huang YQ, Chen XR, Li XT, Luo HR, Lai ZM. Association between blood ethylene oxide levels and trouble sleeping in U.S. adults: Data from NHANES 2013-2018. J Affect Disord 2025; 377:77-84. [PMID: 39965677 DOI: 10.1016/j.jad.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Environmental factors such as pollution have been reported to deteriorate sleep quality. Ethylene oxide (EO), a reactive cyclic oxide commonly used in manufacturing processes, has been associated with various health concerns such as cancer, metabolic syndrome, and inflammatory conditions. However, the relationship between EO exposure and self-reported troubled sleeping remains unclear. Using the National Health and Nutrition Examination Survey (NHANES) data from 2013 to 2018, 4310 participants with EO exposure histories were analyzed. Three groups of participants were categorized according to log2-transformed levels of hemoglobin adducts of the EO (HbEO). The risk of trouble sleeping was assessed using logistic regression, restricted cubic spline regression modeling, and subgroup analysis. Over the tertiles of HbEO levels, the prevalence of trouble sleeping prevalence increased from 28 % to 29 % to 35 %. Log2-transformed HbEO levels were significantly associated with an increased risk of trouble sleeping after adjusting for all covariates (Tertile 3 vs. Tertile 1 in model 4: OR = 1.41, 95 % CI: 1.07-1.86, P = 0.018, P for trend = 0.025). Additionally, a nonlinear J-shaped relationship was observed between HbEO levels and trouble sleeping. Furthermore, HbEO levels were positively correlated with trouble sleeping among different subgroups. Within the 40-60 age bracket, a distinct positive correlation emerged between HbEO levels and trouble sleeping (OR = 1.19, 95 % CI: 1.09-1.3, P = 0.0013). The results indicate a strong link between higher blood HbEO levels and an increased likelihood of sleep disturbances in U.S. adults, especially among those aged 40 to 60 years.
Collapse
Affiliation(s)
- Ke-Peng Liu
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China; Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Hua-Qing Huang
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China; Department of Pain Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin-Fei Li
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Ling-Li Pan
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Pei-Chang Liu
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Nan Lin
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Jian-Ning Lan
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Zhen-Qi Liao
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Ya-Qi Huang
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Xiu-Ru Chen
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Xiao-Ting Li
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Hui-Rong Luo
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian Province 350001, China.
| |
Collapse
|
3
|
Bates CA, Haber LT, Moore MM, Schoeny R, Maier A. Development of a framework for risk assessment of dietary carcinogens. Food Chem Toxicol 2023; 180:114022. [PMID: 37716495 DOI: 10.1016/j.fct.2023.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Although there are a number of guidance documents and frameworks for evaluation of carcinogenicity, none of the current methods fully reflects the state of the science. Common limitations include the absence of dose-response assessment and not considering the impact of differing exposure patterns (e.g., intermittent, high peaks vs. lower, continuous exposures). To address these issues, we have developed a framework for risk assessment of dietary carcinogens. This framework includes an enhanced approach for weight of evidence (WOE) evaluation for genetic toxicology data, with a focus on evaluating studies based on the most recent testing guidance to determine whether a chemical is a mutagen. Included alongside our framework is a discussion of resources for evaluating tissue dose and the temporal pattern of internal dose, taking into account the chemical's toxicokinetics. The framework then integrates the mode of action (MOA) and associated dose metric category with the exposure data to identify the appropriate approach(es) to low-dose extrapolation and level of concern associated with the exposure scenario. This framework provides risk managers with additional flexibility in risk management and risk communication options, beyond the binary choice of linear low-dose extrapolation vs. application of uncertainty factors.
Collapse
Affiliation(s)
| | - Lynne T Haber
- Risk Science Center, University of Cincinnati College of Medicine, USA
| | | | | | | |
Collapse
|
4
|
Lynch HN, Kozal JS, Russell AJ, Thompson WJ, Divis HR, Freid RD, Calabrese EJ, Mundt KA. Systematic review of the scientific evidence on ethylene oxide as a human carcinogen. Chem Biol Interact 2022; 364:110031. [PMID: 35779612 DOI: 10.1016/j.cbi.2022.110031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Ethylene oxide is a highly reactive chemical primarily used as an intermediate in chemical production and as a sterilant of medical equipment and food products; it also is produced endogenously as a result of physiological processes. We conducted a systematic review of the potential carcinogenicity of inhaled ethylene oxide in humans using methods that adhere to PRIMSA guidelines and that incorporate aspects from the Institute of Medicine (IOM) (now the National Academy of Medicine) as well as several US Environmental Protection Agency (EPA) frameworks for systematic reviews. After a comprehensive literature search and selection process, study quality was evaluated following a method adapted from the EPA Toxic Substances Control Act (TSCA) framework. The literature screening and selection process identified 24 primary studies in animals or humans and more than 50 mechanistic studies. Integrating epidemiological, animal, and mechanistic literature on ethylene oxide and cancer according to the IOM framework yielded classifications of suggestive evidence of no association between ethylene oxide and stomach cancer, breast cancer and lymphohematopoietic malignancies at human relevant exposures. However, we acknowledge that there is additional uncertainty in the classification for lymphohematopoietic malignancies owing to a paucity of evidence for specific types of these tumors, each of which is a distinct disease entity of possibly unique etiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenneth A Mundt
- Cardno ChemRisk, Boston, MA, USA; University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Allemang A, Lester C, Roth T, Pfuhler S, Peuschel H, Kosemund K, Mahony C, Bergeland T, O'Keeffe L. Assessing the genotoxicity and carcinogenicity of 2-chloroethanol through structure activity relationships and in vitro testing approaches. Food Chem Toxicol 2022; 168:113290. [PMID: 35863484 DOI: 10.1016/j.fct.2022.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The detection of 2-chloroethanol in foods generally follows an assumption that the pesticide ethylene oxide has been used at some stage in the supply chain. In this situation the Pesticide Residues in Food Regulation (EC) 396/2005 requires 2-chloroethanol to be assessed as if equivalent to ethylene oxide, which has been classified as a genotoxic carcinogen. This review investigated whether this is an appropriate risk assessment approach for 2-chloroethanol. This involved an assessment of existing genotoxicity and carcinogenicity data, application of Structure Activity Based Read Across for carcinogenicity assessment, biological reactivity in the ToxTracker assay and micronuclei formation in HepaRG cells. Although we identified there is an absence of a standard oral bioassay for 2-chloroethanol, carcinogenicity weight-of-evidence assessment along with data on relevant structural analogues do not show evidence for carcinogenicity for 2-chloroethanol. The absence of genotoxicity was demonstrated for 2-chloroethanol and suitable analogues. In contrast, ethylene oxide showed reactivity towards markers indicative of direct DNA damage which is consistent with what is known about its mode-of-action. These data facilitate the understanding of 2-chloroethanol and given that it is not a genotoxic carcinogen suggest it must be assessed relative to non-cancer endpoints and a health protective Reference Dose should be established on that basis.
Collapse
Affiliation(s)
| | - Cathy Lester
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Thomas Roth
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | | | - Henrike Peuschel
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | - Kirstin Kosemund
- Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65824, Schwalbach am Taunus, Germany
| | | | | | - Lara O'Keeffe
- The Procter & Gamble Company, Reading, Berkshire, UK.
| |
Collapse
|
6
|
McKim KL, Myers MB, Harris KL, Gong B, Xu J, Parsons BL. CarcSeq Measurement of Rat Mammary Cancer Driver Mutations and Relation to Spontaneous Mammary Neoplasia. Toxicol Sci 2021; 182:142-158. [PMID: 33822199 DOI: 10.1093/toxsci/kfab040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to deduce carcinogenic potential from subchronic, repeat dose rodent studies would constitute a major advance in chemical safety assessment and drug development. This study investigated an error-corrected NGS method (CarcSeq) for quantifying cancer driver mutations (CDMs) and deriving a metric of clonal expansion predictive of future neoplastic potential. CarcSeq was designed to interrogate subsets of amplicons encompassing hotspot CDMs applicable to a variety of cancers. Previously, normal human breast DNA was analyzed by CarcSeq and metrics based on mammary-specific CDMs were correlated with tissue donor age, a surrogate of breast cancer risk. Here we report development of parallel methodologies for rat. The utility of the rat CarcSeq method for predicting neoplastic potential was investigated by analyzing mammary tissue of 16-week-old untreated rats with known differences in spontaneous mammary neoplasia (Fischer 344, Wistar Han, and Sprague Dawley). Hundreds of mutants with mutant fractions ≥ 10-4 were quantified in each strain, most were recurrent mutations, and 42.5% of the nonsynonymous mutations have human homologs. Mutants in the mammary-specific target of the most tumor-sensitive strain (Sprague Dawley) showed the greatest nonsynonymous/synonymous mutation ratio, indicative of positive selection consistent with clonal expansion. For the mammary-specific target (Hras, Pik3ca, and Tp53 amplicons), median absolute deviation correlated with percentages of rats that develop spontaneous mammary neoplasia at 104 weeks (Pearson r = 1.0000, 1-tailed p = .0010). Therefore, this study produced evidence CarcSeq analysis of spontaneously occurring CDMs can be used to derive an early metric of clonal expansion relatable to long-term neoplastic outcome.
Collapse
Affiliation(s)
| | | | | | - Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | |
Collapse
|
7
|
Gollapudi BB, Su S, Li AA, Johnson GE, Reiss R, Albertini RJ. Genotoxicity as a toxicologically relevant endpoint to inform risk assessment: A case study with ethylene oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:852-871. [PMID: 32926486 PMCID: PMC7756744 DOI: 10.1002/em.22408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 05/05/2023]
Abstract
The purpose of the present investigation is to analyze the in vivo genotoxicity dose-response data of ethylene oxide (EO) and the applicability of the derived point-of-departure (PoD) values when estimating permitted daily exposure (PDE) values. A total of 40 data sets were identified from the literature, and benchmark dose analyses were conducted using PROAST software to identify a PoD value. Studies employing the inhalation route of exposure and assessing gene or chromosomal mutations and chromosomal damage in various tissues were considered the most relevant for assessing risk from EO, since these effects are likely to contribute to adverse health consequences in exposed individuals. The PoD estimates were screened for precision and the values were divided by data-derived adjustment factors. For gene mutations, the lowest PDE was 285 parts per trillion (ppt) based on the induction of lacI mutations in the testes of mice following 48 weeks of exposure to EO. The corresponding lowest PDE value for chromosomal mutations was 1,175 ppt for heritable translocations in mice following 8.5 weeks of EO exposure. The lowest PDE for chromosomal aberrations was 238 ppt in the mouse peripheral blood lymphocytes following 48 weeks of inhalation exposure. The diverse dose-response data for EO-induced genotoxicity enabled the derivation of PoDs for various endpoints, tissues, and species and identified 238 ppt as the lowest PDE in this retrospective analysis.
Collapse
Affiliation(s)
| | - Steave Su
- Exponent, Inc., Center for Health SciencesNew YorkNew YorkUSA
| | - Abby A. Li
- Exponent, Inc., Center for Health SciencesOaklandCaliforniaUSA
| | | | - Richard Reiss
- Exponent, Inc., Center for Health SciencesAlexandriaVirginiaUSA
| | - Richard J. Albertini
- Department of PathologyUniversity of Vermont College of MedicineBurlingtonVermontUSA
| |
Collapse
|
8
|
Porta M, Pumarega J, Amaral AFS, Genkinger JM, Camargo J, Mucci L, Alguacil J, Gasull M, Zhang X, Morales E, Iglesias M, Ogino S, Engel LS. Influence of KRAS mutations, persistent organic pollutants, and trace elements on survival from pancreatic ductal adenocarcinoma. ENVIRONMENTAL RESEARCH 2020; 190:109781. [PMID: 32791343 PMCID: PMC7689512 DOI: 10.1016/j.envres.2020.109781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/02/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Reasons why pancreatic ductal adenocarcinoma (PDAC) continues to have poor survival are only partly known. No previous studies have analyzed the combined influence of KRAS mutations, persistent organic pollutants (POPs), and trace elements upon survival in PDAC or in any other human cancer. OBJECTIVE To analyze the individual and combined influence of KRAS mutations, POPs, and trace elements upon survival from PDAC. METHODS Incident cases of PDAC (n = 185) were prospectively identified in five hospitals in Eastern Spain in 1992-1995 and interviewed face-to-face during hospital admission. KRAS mutational status was determined from tumour tissue through polymerase chain reaction and artificial restriction fragment length polymorphism. Blood and toenail samples were obtained before treatment. Serum concentrations of POPs were analyzed by high-resolution gas chromatography with electron-capture detection. Concentrations of 12 trace elements were determined in toenail samples by inductively coupled plasma mass spectrometry. Multivariable Cox proportional hazards regression was used to assess prognostic associations. RESULTS Patients with a KRAS mutated tumor had a 70% higher risk of early death than patients with a KRAS wild-type PDAC (hazard ratio [HR] = 1.7, p = 0.026), adjusting for age, sex, and tumor stage. KRAS mutational status was only modestly and not statistically significantly associated with survival when further adjusting by treatment or by treatment intention. The beneficial effects of treatment remained unaltered when KRAS mutational status was taken into account, and treatment did not appear to be less effective in the subgroup of patients with a KRAS mutated tumor. POPs did not materially influence survival: the adjusted HR of the highest POP tertiles was near unity for all POPs. When considering the joint effect on survival of POPs and KRAS, patients with KRAS mutated tumors had modest and nonsignificant HRs (most HRs around 1.3 to 1.4). Higher concentrations of lead, cadmium, arsenic, vanadium, and aluminium were associated with better survival. When KRAS status, POPs, and trace elements were simultaneously considered along with treatment, only the latter was statistically significantly related to survival. CONCLUSIONS In this study based on molecular, clinical, and environmental epidemiology, KRAS mutational status, POPs, and trace elements were not adversely related to PDAC survival when treatment was simultaneously considered; only treatment was independently related to survival. The lack of adverse prognostic effects of POPs and metals measured at the time of diagnosis provide scientific and clinical reassurance on the effects of such exposures upon survival of patients with PDAC. The weak association with KRAS mutations contributes to the scant knowledge on the clinical implications of a genetic alteration highly frequent in PDAC.
Collapse
Affiliation(s)
- Miquel Porta
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Pumarega
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - André F S Amaral
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jeanine M Genkinger
- Department of Epidemiology, Columbia University, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Judit Camargo
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorelei Mucci
- Harvard Medical School, Harvard T. H. Chan School of Public Health, Brigham and Women's Hospital, Boston, USA
| | - Juan Alguacil
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad de Huelva, Huelva, Spain
| | - Magda Gasull
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Xuehong Zhang
- Harvard Medical School, Harvard T. H. Chan School of Public Health, Brigham and Women's Hospital, Boston, USA
| | - Eva Morales
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; IMIB-Arrixaca, Department of Public Health Sciences, University of Murcia
| | - Mar Iglesias
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Shuji Ogino
- Harvard Medical School, Harvard T. H. Chan School of Public Health, Brigham and Women's Hospital, Boston, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
9
|
Abstract
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10-5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.
Collapse
|
10
|
Gómez-Tomás Á, Pumarega J, Alguacil J, Amaral AF, Malats N, Pallarès N, Gasull M, Porta M, PANKRAS II Study Group. Concentrations of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:693-703. [PMID: 31066938 PMCID: PMC6786909 DOI: 10.1002/em.22296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 05/04/2023]
Abstract
Trace elements are a possible risk factor for pancreatic ductal adenocarcinoma (PDAC). However, their role in the occurrence and persistence of KRAS mutations remains unstudied. There appear to be no studies analyzing biomarkers of trace elements and KRAS mutations in any human cancer. We aimed to determine whether patients with KRAS mutated and nonmutated tumors exhibit differences in concentrations of trace elements. Incident cases of PDAC were prospectively identified in five hospitals in Spain. KRAS mutational status was determined through polymerase chain reaction from tumor tissue. Concentrations of 12 trace elements were determined in toenail samples by inductively coupled plasma mass spectrometry. Concentrations of trace elements were compared in 78 PDAC cases and 416 hospital-based controls (case-control analyses), and between 17 KRAS wild-type tumors and 61 KRAS mutated tumors (case-case analyses). Higher levels of iron, arsenic, and vanadium were associated with a statistically nonsignificant increased risk of a KRAS wild-type PDAC (OR for higher tertile of arsenic = 3.37, 95% CI 0.98-11.57). Lower levels of nickel and manganese were associated with a statistically significant higher risk of a KRAS mutated PDAC (OR for manganese = 0.34, 95% CI 0.14-0.80). Higher levels of selenium appeared protective for both mutated and KRAS wild-type PDAC. Higher levels of cadmium and lead were clear risk factors for both KRAS mutated and wild-type cases. This is the first study analyzing biomarkers of trace elements and KRAS mutations in any human cancer. Concentrations of trace elements differed markedly between PDAC cases with and without mutations in codon 12 of the KRAS oncogene, thus suggesting a role for trace elements in pancreatic and perhaps other cancers with such mutations. Environ. Mol. Mutagen., 60:693-703, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Álvaro Gómez-Tomás
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Pumarega
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan Alguacil
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universidad de Huelva, Huelva, Spain
| | - André F.S. Amaral
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Natàlia Pallarès
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Magda Gasull
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miquel Porta
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
11
|
Pottenger LH, Boysen G, Brown K, Cadet J, Fuchs RP, Johnson GE, Swenberg JA. Understanding the importance of low-molecular weight (ethylene oxide- and propylene oxide-induced) DNA adducts and mutations in risk assessment: Insights from 15 years of research and collaborative discussions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:100-121. [PMID: 30536466 PMCID: PMC6590209 DOI: 10.1002/em.22248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
The interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus). This review summarizes and evaluates the status of dose-response data for DNA adducts and mutations from recent experimental work with standard mutagenic agents and ethylene oxide and propylene oxide, and the importance for risk assessment. This body of evidence demonstrates that small N7-alkyl/hydroxyalkylguanine adducts are not pro-mutagenic and, therefore, adduct formation alone is not adequate evidence to support a mutagenic mode of action. Quantitative methods for dose-response analysis and derivation of thresholds, benchmark dose (BMD), or other points-of-departure (POD) for genotoxic events are now available. Integration of such analyses of genetox data is necessary to properly assess any role for DNA adducts in risk assessment. Regulatory acceptance and application of these insights remain key challenges that only the regulatory community can address by applying the many learnings from recent research. The necessary tools, such as BMDs and PODs, and the example datasets, are now available and sufficiently mature for use by the regulatory community. Environ. Mol. Mutagen. 60: 100-121, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- L. H. Pottenger
- Olin Corporation/Blue Cube Operations, LLC, retired, LHP TOX CONSULT, LLCMidlandMIUSA
| | - G. Boysen
- Department of Environmental and Occupational Health and The Winthrop P Rockefeller Cancer Institute University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - K. Brown
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUnited Kingdom
| | - J. Cadet
- Institut Nanosciences et Cryogénie, CEA‐GrenobleGrenobleFrance
- Université de SherbrookeSherbrookeCanada
| | - R. P. Fuchs
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068Marseille, 13009France
- CNRS, UMR7258Marseille, 13009France
- Institut Paoli‐CalmettesMarseille, 13009France
- Aix‐Marseille UniversityUM 105, 13284, MarseilleFrance
| | - G. E. Johnson
- Swansea University, Institute of Life SciencesSwanseaUnited Kingdom
| | - J. A. Swenberg
- University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
12
|
Modern conception of carcinogenesis creates opportunities to advance cancer risk assessment. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
McKinzie PB, McKim KL, Pearce MG, Bishop ME, Parsons BL. Lifespan Kras mutation levels in lung and liver of B6C3F 1 mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:715-721. [PMID: 30255594 DOI: 10.1002/em.22198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Somatic mutations accumulate in the human genome and are correlated with increased cancer incidence as humans age. The standard model for studying the carcinogenic effects of exposures for human risk assessment is the rodent 2-year carcinogenicity assay. However, there is little information regarding the effect of age on cancer-driver gene mutations in these models. The mutant fraction (MF) of Kras codon 12 GGT to GAT and GGT to GTT mutations, oncogenic mutations orthologous between humans and rodents, was quantified over the lifespan of B6C3F1 mice. MFs were measured in lung and liver tissue, organs that frequently develop tumors following carcinogenic exposures. The MFs were evaluated at 4, 6, 8, 12, 21, and 85 weeks, with the 12-week and 21-week time points being coincident with the conclusion of 28-day and 90-day exposure durations used in short-term toxicity testing. The highly sensitive and quantitative Allele-specific Competitive Blocker PCR (ACB-PCR) assay was used to quantify the number of mutant Kras codon 12 alleles. The mouse lung showed a slight, but significant trend increase in the Kras codon 12 GAT mutation over the 85-week period. The trend with age can be equally well-fit by several non-linear functions, but not by a linear function. In contrast, the liver GAT mutation did not increase, and the GTT mutation did not increase for either organ. Even with the slight increase in the lung GAT MFs, our results indicate that the future use of Kras mutation as a biomarker of carcinogenic effect will not be confounded by animal age. Environ. Mol. Mutagen. 59:715-721, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Karen L McKim
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Michelle E Bishop
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| |
Collapse
|
14
|
Jinot J, Fritz JM, Vulimiri SV, Keshava N. Carcinogenicity of ethylene oxide: key findings and scientific issues. Toxicol Mech Methods 2018; 28:386-396. [PMID: 29210319 PMCID: PMC10883472 DOI: 10.1080/15376516.2017.1414343] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed an evaluation of the inhalation carcinogenicity of ethylene oxide (EtO) in December 2016. This article reviews key findings and scientific issues regarding the carcinogenicity of EtO in EPA's Carcinogenicity Assessment. EPA's assessment critically reviewed and characterized epidemiologic, laboratory animal, and mechanistic studies pertaining to the human carcinogenicity of EtO, and addressed some key scientific issues such as the analysis of mechanistic data as part of the cancer hazard evaluation and to inform the quantitative risk assessment. The weight of evidence from the epidemiologic, laboratory animal, and mechanistic studies supports a conclusion that EtO is carcinogenic in humans, with the strongest human evidence linking EtO exposure to lymphoid and breast cancers. Analyses of the mechanistic data establish a key role for genotoxicity and mutagenicity in EtO-induced carcinogenicity and reveal little evidence supporting other mode-of-action hypotheses. In conclusion, EtO was found to be carcinogenic to humans by inhalation, posing a potential human health hazard for lymphoid and breast cancers.
Collapse
Affiliation(s)
- Jennifer Jinot
- a National Center for Environmental Assessment , U.S. Environmental Protection Agency , Washington , DC , USA
| | - Jason M Fritz
- a National Center for Environmental Assessment , U.S. Environmental Protection Agency , Washington , DC , USA
| | - Suryanarayana V Vulimiri
- a National Center for Environmental Assessment , U.S. Environmental Protection Agency , Washington , DC , USA
| | - Nagalakshmi Keshava
- a National Center for Environmental Assessment , U.S. Environmental Protection Agency , Washington , DC , USA
| |
Collapse
|
15
|
Parsons BL, McKim KL, Myers MB. Variation in organ-specific PIK3CA and KRAS mutant levels in normal human tissues correlates with mutation prevalence in corresponding carcinomas. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:466-476. [PMID: 28755461 PMCID: PMC5601221 DOI: 10.1002/em.22110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 05/27/2023]
Abstract
Large-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas. We report PIK3CA E545K MF measurements in those tissues, as well as in normal breast, normal thyroid, mammary ductal carcinomas, and papillary thyroid carcinomas. We report KRAS G12D and G12V MF measurements in normal colon. These MF measurements were integrated with previously published ACB-PCR data on KRAS G12D, KRAS G12V, and PIK3CA H1047R. Analysis of these data revealed a correlation between the degree of interindividual variability in these mutations (as log10 MF standard deviation) in normal tissues and the frequencies with which the mutations are detected in carcinomas of the corresponding organs in the COSMIC database. This novel observation has important implications. It suggests that interindividual variability in mutation levels of normal tissues may be used as a metric to identify mutations with critical early roles in tissue-specific carcinogenesis. Additionally, it raises the possibility that personalized cancer therapeutics, developed to target specifically activated oncogenic products, might be repurposed as prophylactic therapies to reduce the accumulation of cells carrying CDMs and, thereby, reduce future cancer risk. Environ. Mol. Mutagen. 58:466-476, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| |
Collapse
|
16
|
Manjanatha MG, Shelton SD, Chen Y, Parsons BL, Myers MB, McKim KL, Gollapudi BB, Moore NP, Haber LT, Allen B, Moore MM. Dose and temporal evaluation of ethylene oxide-induced mutagenicity in the lungs of male big blue mice following inhalation exposure to carcinogenic concentrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:122-134. [PMID: 28326610 DOI: 10.1002/em.22080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Sharon D Shelton
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Karen L McKim
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - B Bhaskar Gollapudi
- Toxicology and Environmental Research and Consulting, Dow Chemical Company, Midland, Michigan
| | - Nigel P Moore
- Toxicology and Environmental Research and Consulting, Dow Europe GmbH, Horgen, Switzerland
| | - Lynne T Haber
- Environmental Health, Toxicology Excellence for Risk Assessment, Cincinnati, Ohio
| | - Bruce Allen
- Independent Consultant, Chapel Hill, North Carolina
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| |
Collapse
|
17
|
Aoki Y. Evaluation of in vivo mutagenesis for assessing the health risk of air pollutants. Genes Environ 2017; 39:16. [PMID: 28373898 PMCID: PMC5376282 DOI: 10.1186/s41021-016-0064-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Various kind of chemical substances, including man-made chemical products and unintended products, are emitted to ambient air. Some of these substances have been shown to be mutagenic and therefore to act as a carcinogen in humans. National pollutant inventories (e.g., Pollutant Release and Transfer Registration in Japan) have estimated release amounts of man-made chemical products, but a major concern is the release of suspended particulate matter containing potent mutagens, for example, polycyclic aromatic hydrocarbons and related compounds generated by the combustion of fossil fuel, which are not estimated by PRTR system. In situ exposure studies have revealed that DNA adducts in the lung, and possibly mutations in germline cells are induced in rodents by inhalation of ambient air, indicating that evaluating in vivo mutations is important for assessing environmental health risks. Transgenic rodent systems (Muta, Big Blue, and gpt delta) are good tools for analyzing in vivo mutations induced by a mixture of chemical substances present in the environment. Following inhalation of diesel exhaust (used as a model mixture), mutation frequency was increased in the lung of gpt delta mice and base substitutions were induced at specific guanine residues (mutation hotspots) on the target transgenes. Mutation hotspots induced by diesel exhaust were different from those induced by benzo[a]pyrene, a typical mutagen in ambient air, but nearly identical to those induced by 1,6-dinitropyrene contained in diesel exhaust. Comparison between mutation hotspots in the TP53 (p53) gene in human lung cancer (data extracted from the IARC TP53 database) and mutations we identified in gpt delta mice showed that G to A transitions centered in CGT and CGG trinucleotides were mutation hotspots on both TP53 genes in human lung cancers and gpt genes in transgenic mice that inhaled diesel exhaust. The carcinogenic potency (TD50 value) of genotoxic carcinogen was shown to be correlated with the in vivo mutagenicity (total dose per increased mutant frequency). These results suggest that the mutations identified in transgenic rodents can help identify environmental mutagens that cause cancer.
Collapse
Affiliation(s)
- Yasunobu Aoki
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| |
Collapse
|
18
|
Luderer U, Myers MB, Banda M, McKim KL, Ortiz L, Parsons BL. Ovarian effects of prenatal exposure to benzo[a]pyrene: Roles of embryonic and maternal glutathione status. Reprod Toxicol 2017; 69:187-195. [PMID: 28279692 PMCID: PMC5422106 DOI: 10.1016/j.reprotox.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/27/2023]
Abstract
Females deficient in the glutamate cysteine ligase modifier subunit (Gclm) of the rate-limiting enzyme in glutathione synthesis are more sensitive to ovarian follicle depletion and tumorigenesisby prenatal benzo[a]pyrene (BaP) exposure than Gclm+/+ mice. We investigated effects of prenatal exposure to BaP on reproductive development and ovarian mutations in Kras, a commonly mutated gene in epithelial ovarian tumors. Pregnantmice were dosed from gestational day 6.5 through 15.5 with 2mg/kg/day BaP or vehicle. Puberty onset occurred 5 days earlier in F1 daughters of all Gclm genotypes exposed to BaP compared to controls. Gclm+/- F1 daughters of Gclm+/- mothers and wildtype F1 daughters of wildtype mothers had similar depletion of ovarian follicles following prenatal exposure to BaP, suggesting that maternal Gclm genotype does not modify ovarian effects of prenatal BaP. We observed no BaP treatment or Gclm genotype related differences in ovarian Kras codon 12 mutations in F1 offspring.
Collapse
Affiliation(s)
- Ulrike Luderer
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617, United States; Department of Developmental and Cell Biology, UC Irvine, Irvine, CA 92617, United States; Program in Public Health, UC Irvine, Irvine, CA 92617, United States.
| | - Meagan B Myers
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Malathi Banda
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States.
| | - Karen L McKim
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Laura Ortiz
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617, United States
| | - Barbara L Parsons
- U.S. Food, Drug Administration, Division of Genetic, Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
19
|
Banda M, McKim KL, Haber LT, MacGregor JA, Gollapudi BB, Parsons BL. Quantification of Kras mutant fraction in the lung DNA of mice exposed to aerosolized particulate vanadium pentoxide by inhalation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:53-60. [DOI: 10.1016/j.mrgentox.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/11/2023]
|
20
|
Myers MB, McKim KL, Meng F, Parsons BL. Low-frequency KRAS mutations are prevalent in lung adenocarcinomas. Per Med 2015; 12:83-98. [PMID: 27795727 PMCID: PMC5084916 DOI: 10.2217/pme.14.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM This study quantified low-frequency KRAS mutations in normal lung and lung adenocarcinomas, to understand their potential significance in the development of acquired resistance to EGFR-targeted therapies. MATERIALS & METHODS Allele-specific Competitive Blocker-PCR was used to quantify KRAS codon 12 GAT (G12D) and GTT (G12V) mutation in 19 normal lung and 21 lung adenocarcinoma samples. RESULTS Lung adenocarcinomas had KRAS codon 12 GAT and GTT geometric mean mutant fractions of 1.94 × 10-4 and 1.16 × 10-3, respectively. For 76.2% of lung adenocarcinomas, the level of KRAS mutation was greater than the upper 95% confidence interval of that in normal lung. CONCLUSION KRAS mutant tumor subpopulations, not detectable by DNA sequencing, may drive resistance to EGFR blockade in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Karen L McKim
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Fanxue Meng
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic & Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
21
|
Breheny D, Cunningham F, Kilford J, Payne R, Dillon D, Meredith C. Application of a modified gaseous exposure system to the in vitro toxicological assessment of tobacco smoke toxicants. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:662-72. [PMID: 24889675 PMCID: PMC6710645 DOI: 10.1002/em.21876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Tobacco smoke is a complex mixture of over 6,000 individual chemical constituents. Approximately 150 of these have been identified as 'tobacco smoke toxicants' due to their known toxicological effects. A number of these toxicants are present in the gaseous phase of tobacco smoke. This presents a technical challenge when assessing the toxicological effects of these chemicals in vitro. We have adapted a commercially available tobacco smoke exposure system to enable the assessment of the contribution of individual smoke toxicants to the overall toxicological effects of whole mainstream cigarette smoke (WS). Here we present a description of the exposure system and the methodology used. We use the example of a gaseous tobacco smoke toxicant, ethylene oxide (EtO), a Group 1 IARC carcinogen and known mutagen, to illustrate how this methodology can be applied to the assessment of genotoxicity of gaseous chemicals in the context of WS. In the present study we found that EtO was positive in Salmonella typhimurium strain YG1042, a strain that is sensitive to tobacco smoke. However, EtO did not increase the mutagenicity of the WS mixture when it was added at greatly higher concentrations than those found typically in WS. The findings presented here demonstrate the suitability of this exposure system for the assessment of the mutagenic potential of gases in vitro. Whilst we have focused on tobacco smoke toxicants, this system has broad application potential in studying the biological effects of exposure to a wide range of gaseous compounds that are present within complex aerosol mixtures.
Collapse
Affiliation(s)
- Damien Breheny
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Fiona Cunningham
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Joanne Kilford
- Covance Laboratories LtdOtley Road, HarrogateNorth YorkshireHG3 1PYUnited Kingdom
| | - Rebecca Payne
- Covance Laboratories LtdOtley Road, HarrogateNorth YorkshireHG3 1PYUnited Kingdom
| | - Deborah Dillon
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| | - Clive Meredith
- British American TobaccoGroup R&D, SouthamptonHampshireSO15 8TLUnited Kingdom
| |
Collapse
|