1
|
Chiu CH, Sun SH, Yao YJ, Chuang Y, Lee YT, Lin YJ. Concentrations, composition profiles, and in vitro-in silico-based mixture risk assessment of bisphenol A and its analogs in plant-based foods. ENVIRONMENT INTERNATIONAL 2025; 195:109229. [PMID: 39740268 DOI: 10.1016/j.envint.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The substitution of bisphenol A (BPA) with structurally similar analogs has raised concerns due to their comparable estrogenic activities. Considering the high consumption of plant-based foods, assessing the risks posed by bisphenols (BPs) in such dietary sources is essential. However, limited exposure and animal toxicological data on BP analogs hinder comprehensive risk assessments. This study investigated 16 BPs in 23 plant-based foods from Taiwan and estimated their dietary exposure across age groups. High-throughput toxicokinetic modeling was used to convert in vitro ToxCast estrogen receptor (ER) bioactive concentrations into human-equivalent points of departure (PODs), which were compared to PODs derived from animal studies and applied to assess mixture risks through the margin of exposure based on the common ER pathway. In total, 7 BPs were detected, and most samples (85.9 %) contained detectable concentrations. Total concentrations of the 7 BPs (∑7BP) ranged from 0.06 ± 0.11 ng/g to 26.60 ± 72.18 ng/g, with BPA being the most predominant (63 % of the mean ∑7BP concentrations), followed by bisphenol S (19 %) and 4,4-bisphenol F (13 %). In vitro-in silico-derived PODs were comparable to or even more protective than in vivo animal-derived PODs. For most population groups, combined exposure to multiple BPs from plant-based foods is generally not a risk concern for ER pathway perturbation, although potential concerns in worst-case scenarios cannot be excluded. This study advances the understanding of the dietary risks associated with BP mixtures and illustrates the potential of in vitro-in silico approaches for assessing human health risks from environmental contaminants.
Collapse
Affiliation(s)
- Chun-Hui Chiu
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shih-Han Sun
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yun-Jia Yao
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Yi Chuang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tsung Lee
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
2
|
Tang L, Ye Y, Ji J, Wang JS, Huang Z, Sun J, Sheng L, Sun X. PI3K/Akt/FoxO Pathway Mediates Antagonistic Toxicity in HepG2 Cells Coexposed to Deoxynivalenol and Enniatins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8214-8224. [PMID: 38557103 DOI: 10.1021/acs.jafc.4c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.
Collapse
Affiliation(s)
- Luyao Tang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Zhicong Huang
- Food and Drug Administration, Zhongshan City West District Street, Zhongshan, Guangdong 528401, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| |
Collapse
|
3
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
4
|
Liu S, Kumari S, He H, Mishra P, Singh BN, Singh D, Liu S, Srivastava P, Li C. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization. Biosens Bioelectron 2023; 231:115285. [PMID: 37058958 DOI: 10.1016/j.bios.2023.115285] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
As a full-fidelity simulation of human cells, tissues, organs, and even systems at the microscopic scale, Organ-on-a-Chip (OOC) has significant ethical advantages and development potential compared to animal experiments. The need for the design of new drug high-throughput screening platforms and the mechanistic study of human tissues/organs under pathological conditions, the evolving advances in 3D cell biology and engineering, etc., have promoted the updating of technologies in this field, such as the iteration of chip materials and 3D printing, which in turn facilitate the connection of complex multi-organs-on-chips for simulation and the further development of technology-composite new drug high-throughput screening platforms. As the most critical part of organ-on-a-chip design and practical application, verifying the success of organ model modeling, i.e., evaluating various biochemical and physical parameters in OOC devices, is crucial. Therefore, this paper provides a logical and comprehensive review and discussion of the advances in organ-on-a-chip detection and evaluation technologies from a broad perspective, covering the directions of tissue engineering scaffolds, microenvironment, single/multi-organ function, and stimulus-based evaluation, and provides a more comprehensive review of the progress in the significant organ-on-a-chip research areas in the physiological state.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Hongyi He
- West China School of Medicine & West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Parichita Mishra
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Pradeep Srivastava
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
5
|
Li C, Jiang L, Zhang D, Qi Y, Wang X, Jin Y, Liu X, Lin Y, Luo J, Xu L, Zhao K, Yu D. Human health risk assessment of 6:2 Cl-PFESA through quantitative in vitro to in vivo extrapolation by integrating cell-based assays, an epigenetic key event, and physiologically based pharmacokinetic modeling. ENVIRONMENT INTERNATIONAL 2023; 173:107846. [PMID: 36842380 DOI: 10.1016/j.envint.2023.107846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Human health risk assessment of chemicals is essential but often relies on time-consuming and animal and labor-extensive procedures. Here, we develop a population-based, quantitative in vitro to in vivo extrapolation (QIVIVE) approach which depended on cellular effects monitored by in vitro assays, considered chemical internal concentration determined by LC-MS/MS, extrapolated into in vivo target tissue concentration through physiologically based pharmacokinetic (PBPK) modelling, and assessed populational health risk using in silico modelling. By applying this QIVIVE approach to 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), as a representative of the emerging pollutants, we find that 6:2 Cl-PFESA disturbed lipid homeostasis in HepG2 cells through enhancement of lipid accumulation and fatty acid β-oxidation, during which miR-93-5p served as a key event towards toxicity and thus, could serve as an efficient toxicity marker for risk assessment; further, the disruption potency of lipid homeostasis of 6:2 Cl-PFESA for the most of studied populations in China might be of moderate concern. Together, our approach improved the reliability of QIVIVE during human health risk assessment, which can readily be used for other chemicals.
Collapse
Affiliation(s)
- Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lidan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinyi Wang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Jin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiao Luo
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
6
|
Zhang Y, Liu Z, Wang Z, Gao H, Wang Y, Cui M, Peng H, Xiao Y, Jin Y, Yu D, Chen W, Wang Q. Health risk assessment of cadmium exposure by integration of an in silico physiologically based toxicokinetic model and in vitro tests. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130191. [PMID: 36272375 DOI: 10.1016/j.jhazmat.2022.130191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a common environmental pollutant that can damage multiple organs, including the kidney. To prevent renal effects, international authorities have set health-based guidance values of Cd from epidemiological studies. To explore the health risk of Cd exposure and whether human equivalent doses (HEDs) derived from in vitro tests match the current guidance values, we integrated renal tubular epithelial cell-based assays with a physiologically based toxicokinetic model combined with the Monte Carlo method. For females, the HEDs (μg/kg/week) derived from KE2 (DNA damage), KE3 (cell cycle arrest), and KE4 (apoptosis) were 0.20 (2.5th-97.5th percentiles: 0.09-0.48), 0.52 (0.24-1.26), and 2.73 (1.27-6.57), respectively; for males the respective HEDs were 0.23 (0.10-0.49), 0.60 (0.27-1.30), and 3.11 (1.39-6.78). Among them, HEDKE4 (female) was close to the tolerable weekly intake (2.5 μg/kg/week) set by the European Food Safety Authority. The margin of exposure (MOE) derived from HEDKE4 (female) indicated that risks of renal toxicity for populations living in cadmium-contaminated regions should be of concern. This study provided a new approach methodology (NAM) for environmental chemical risk assessment using in silico and in vitro methods.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuqing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Ding J, Liu W, Zhang H, Zhu L, Zhu L, Feng J. Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312469. [PMID: 34886193 PMCID: PMC8657049 DOI: 10.3390/ijerph182312469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Organophosphate esters (OPEs) are widely used and harmful to organisms and human health. Dust ingestion is an important exposure route for OPEs to humans. In this study, by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based Toxicokinetic (PBTK) modeling, we assessed the hepatocyte-based health risk for humans around the world due to exposure to two typical OPEs (TPHP and TDCPP) through the dust ingestion exposure route. Results showed that the health guidance value of TPHP and TCDPP obtained in this study was lower than the value obtained through animal experiments. In addition, probabilistic risk assessment results indicate that populations worldwide are at low risk of exposure to TPHP and TDCPP through dust ingestion due to low estimated daily intakes (EDIs) which are much lower than the reference dose (RfDs) published by the US EPA, except in some regional cases. Most margin of exposure (MOE) ranges of TDCPP for children are less than 100, which indicates a moderately high risk. Researchers should be concerned about exposure to TDCPP in this area. The method proposed in this study is expected to be applied to the health risk assessment of other chemicals.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
8
|
Wlodkowic D, Czerw A, Karakiewicz B, Deptała A. Recent progress in cytometric technologies and their applications in ecotoxicology and environmental risk assessment. Cytometry A 2021; 101:203-219. [PMID: 34652065 DOI: 10.1002/cyto.a.24508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Environmental toxicology focuses on identifying and predicting impact of potentially toxic anthropogenic chemicals on biosphere at various levels of biological organization. Presently there is a significant drive to gain deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity. Most notable is increased focus on elucidation of cellular-response networks, interactomes, and greater implementation of cell-based biotests using high-throughput procedures, while at the same time decreasing the reliance on standard animal models used in ecotoxicity testing. This is aimed at discovery and interpretation of molecular pathways of ecotoxicity at large scale. In this regard, the applications of cytometry are perhaps one of the most fundamental prospective analytical tools for the next generation and high-throughput ecotoxicology research. The diversity of this modern technology spans flow, laser-scanning, imaging, and more recently, Raman as well as mass cytometry. The cornerstone advantages of cytometry include the possibility of multi-parameter measurements, gating and rapid analysis. Cytometry overcomes, thus, limitations of traditional bulk techniques such as spectrophotometry or gel-based techniques that average the results from pooled cell populations or small model organisms. Novel technologies such as cell imaging in flow, laser scanning cytometry, as well as mass cytometry provide innovative and tremendously powerful capabilities to analyze cells, tissues as well as to perform in situ analysis of small model organisms. In this review, we outline cytometry as a tremendously diverse field that is still vastly underutilized and often largely unknown in environmental sciences. The main motivation of this work is to highlight the potential and wide-reaching applications of cytometry in ecotoxicology, guide environmental scientists in the technological aspects as well as popularize its broader adoption in environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health, Department of Social Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention. Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Knudsen TB, Fitzpatrick SC, De Abrew KN, Birnbaum LS, Chappelle A, Daston GP, Dolinoy DC, Elder A, Euling S, Faustman EM, Fedinick KP, Franzosa JA, Haggard DE, Haws L, Kleinstreuer NC, Buck Louis GM, Mendrick DL, Rudel R, Saili KS, Schug TT, Tanguay RL, Turley AE, Wetmore BA, White KW, Zurlinden TJ. FutureTox IV Workshop Summary: Predictive Toxicology for Healthy Children. Toxicol Sci 2021; 180:198-211. [PMID: 33555348 PMCID: PMC8041457 DOI: 10.1093/toxsci/kfab013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.
Collapse
Affiliation(s)
- Thomas B Knudsen
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | | | | | - Linda S Birnbaum
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina, USA
| | - Anne Chappelle
- Chappelle Toxicology Consulting, LLC, Chadds Ford, Pennsylvania, USA
| | | | | | - Alison Elder
- University of Rochester, Rochester, New York, USA
| | - Susan Euling
- U.S. Environmental Protection Agency, Office of Children’s Health Protection, Washington, District of Columbia, USA
| | | | | | - Jill A Franzosa
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Derik E Haggard
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education (ORISE);, Texas, USA
| | | | | | | | - Donna L Mendrick
- U.S. Food and Drug Administration, NCTR, Silver Spring, Maryland, USA
| | | | - Katerine S Saili
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Thaddeus T Schug
- National Institute of Environmental Health Science, NIH, Research Triangle Park, North Carolina, USA
| | | | | | - Barbara A Wetmore
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| | - Kimberly W White
- American Chemistry Council, Washington, District of Columbia, USA
| | - Todd J Zurlinden
- U.S. Environmental Protection Agency, ORD, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Lin YJ, Lin Z. In vitro-in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122856. [PMID: 32937695 DOI: 10.1016/j.jhazmat.2020.122856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Combined risk assessment of endocrine effects of bisphenol A (BPA) and its analogues, such as bisphenols S, F, and AF (BPS, BPF, and BPAF), is challenging due to lack of related common toxicity metrics. This study conducted a population-based in vitro-to-in vivo extrapolation using physiologically based pharmacokinetic (PBPK) models coupled with Monte Carlo simulations to convert ToxCast in vitro estrogen receptor (ER) assays to human equivalent doses (HEDs). The ER pathway-based HEDs were compared with HEDs from animal studies and used to assess the combined risks for different populations across different countries/regions in a probabilistic manner. The estimated ER pathway-based HEDs for the four bisphenols (BPs) matched the animal-derived HEDs. The HEDs for the ER gene transcription (the common biological process target among BPs) were 0.40 (2.5th-97.5th percentiles: 0.06-5.42), 4.43 (0.69-53.84), 3.30 (0.51-626.57), and 1.12 (0.16-9.73) mg/kg/day for BPA, BPS, BPF, and BPAF, respectively. Results suggest a potentially moderate concern for combined risks of activating the ER pathway for toddlers and adults with high dietary exposures. This study presents in vitro-based credible HEDs for the four BPs and represents an advancement in the application of in vitro-in silico-based alternative approaches in human health risk assessment.
Collapse
Affiliation(s)
- Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, 11221, Taiwan; Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
11
|
Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells 2020; 9:cells9030573. [PMID: 32121221 PMCID: PMC7140531 DOI: 10.3390/cells9030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.
Collapse
|
12
|
Thomas DG, Shankaran H, Truong L, Tanguay RL, Waters KM. Time-dependent behavioral data from zebrafish reveals novel signatures of chemical toxicity using point of departure analysis. ACTA ACUST UNITED AC 2019; 9:50-60. [PMID: 31485548 DOI: 10.1016/j.comtox.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-content imaging of larval zebrafish behavior can be used as a screening approach to rapidly evaluate the relative potential for chemicals to cause toxicity. However, most statistical methods applied to these data transform movement values to incidence-based "hits" and calculate lowest effect levels (LELs), which loses individual fish resolution of behavior and defies hazard ranking due to reliance on applied dose levels. We developed a parallelizable workflow to calculate benchmark dose (BMD) values from dynamic, high-content zebrafish behavior data that scales for high-throughput chemical screening. To capture the zebrafish movement response from light to dark stimulus, we summarized time-dependent data using both area under the curve and the immediate change at the transition point into two novel metrics that characterized abnormal behavior as a function of chemical concentration. The BMD workflow was applied to calculate BMD10 values of 1,060 ToxCast chemicals for 24 zebrafish endpoints, including behavior, mortality and morphology. The BMD10 values provided better precision and separation than LELs for clustering chemicals since they were derived from models that best-fit their concentration-response curves. Analysis of BMD10 values revealed behavioral signatures as the most sensitive endpoints. High concordance in chemical activity was observed between ToxCast in vitro data and zebrafish in vivo behavioral data, however ToxPi analysis indicated that rankings based on in vitro data were not a reliable predictor of in vivo rankings for lower potency chemicals. This analysis method will enable the use of high-content zebrafish behavioral screening data for BMD analysis in toxicological hazard assessment.
Collapse
Affiliation(s)
- Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Harish Shankaran
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
13
|
Kapraun DF, Wambaugh JF, Setzer RW, Judson RS. Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation. PLoS One 2019; 14:e0215906. [PMID: 31048866 PMCID: PMC6497258 DOI: 10.1371/journal.pone.0215906] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/10/2019] [Indexed: 12/28/2022] Open
Abstract
Many parameters treated as constants in traditional physiologically based pharmacokinetic models must be formulated as time-varying quantities when modeling pregnancy and gestation due to the dramatic physiological and anatomical changes that occur during this period. While several collections of empirical models for such parameters have been published, each has shortcomings. We sought to create a repository of empirical models for tissue volumes, blood flow rates, and other quantities that undergo substantial changes in a human mother and her fetus during the time between conception and birth, and to address deficiencies with similar, previously published repositories. We used maximum likelihood estimation to calibrate various models for the time-varying quantities of interest, and then used the Akaike information criterion to select an optimal model for each quantity. For quantities of interest for which time-course data were not available, we constructed composite models using percentages and/or models describing related quantities. In this way, we developed a comprehensive collection of formulae describing parameters essential for constructing a PBPK model of a human mother and her fetus throughout the approximately 40 weeks of pregnancy and gestation. We included models describing blood flow rates through various fetal blood routes that have no counterparts in adults. Our repository of mathematical models for anatomical and physiological quantities of interest provides a basis for PBPK models of human pregnancy and gestation, and as such, it can ultimately be used to support decision-making with respect to optimal pharmacological dosing and risk assessment for pregnant women and their developing fetuses. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.
Collapse
Affiliation(s)
- Dustin F. Kapraun
- National Center for Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - John F. Wambaugh
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Richard S. Judson
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
14
|
Jiang C, Yang H, Di P, Li W, Tang Y, Liu G. In silico prediction of chemical reproductive toxicity using machine learning. J Appl Toxicol 2019; 39:844-854. [DOI: 10.1002/jat.3772] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Changsheng Jiang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Peiwen Di
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
15
|
Lai RWS, Yeung KWY, Yung MMN, Djurišić AB, Giesy JP, Leung KMY. Regulation of engineered nanomaterials: current challenges, insights and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3060-3077. [PMID: 28639026 DOI: 10.1007/s11356-017-9489-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
Substantial production and wide applications of engineered nanomaterials (ENMs) have raised concerns over their potential influences on the environment and humans. However, regulations of products containing ENMs are scarce, even in countries with the greatest volume of ENMs produced, such as the United States and China. After a comprehensive review of life cycles of ENMs, five major challenges to regulators posed by ENMs are proposed in this review: (a) ENMs exhibit variable physicochemical characteristics, which makes them difficult for regulators to establish regulatory definition; (b) Due to diverse sources and transport pathways for ENMs, it is difficult to monitor or predict their fates in the environment; (c) There is a lack of reliable techniques for quantifying exposures to ENMs; (d) Because of diverse intrinsic properties of ENMs and dynamic environmental conditions, it is difficult to predict bioavailability of ENMs on wildlife and the environment; and (e) There are knowledge gaps in toxicity and toxic mechanisms of ENMs from which to predict their hazards. These challenges are all related to issues in conventional assessments of risks that regulators rely on. To address the fast-growing nanotechnology market with limited resources, four ENMs (nanoparticles of Ag, TiO2, ZnO and Fe2O3) have been prioritized for research. Compulsory reporting schemes (registration and labelling) for commercial products containing ENMs should be adopted. Moreover, to accommodate their potential risks in time, an integrative use of quantitative structure-activity relationship and adverse outcome pathway (QSAR-AOP), together with qualitative alternatives to conventional risk assessment are proposed as tools for decision making of regulators.
Collapse
Affiliation(s)
- Racliffe W S Lai
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Katie W Y Yeung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mana M N Yung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - John P Giesy
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Knudsen TB, Klieforth B, Slikker W. Programming microphysiological systems for children's health protection. Exp Biol Med (Maywood) 2017; 242:1586-1592. [PMID: 28658972 DOI: 10.1177/1535370217717697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS) and computer simulation models that recapitulate the underlying biology and toxicology of critical developmental transitions are emerging tools for developmental effects assessment of drugs/chemicals. Opportunities and challenges exist for their application to alternative, more public health relevant and efficient chemical toxicity testing methods. This is especially pertinent to children's health research and the evaluation of complex embryological and reproductive impacts of drug/chemical exposure. Scaling these technologies to higher throughput is a key challenge and drives the need for in silico models for quantitative prediction of developmental toxicity to inform safety assessments. One example is cellular agent-based models, constructed from extant embryology, that produce data useful to simulate critical developmental transitions and thereby predict phenotypic consequences of disruption in silico. Biologically inspired MPS models built from human induced pluripotent stem (iPS)-derived cells and synthetic matrices that recapitulate organ-specific physiologies and native tissue architectures are providing exciting new research opportunities to advance the assessment of developmental toxicity and offer the possibility of deriving a full 'human on a chip' system, or a 'Homunculus.' Impact statement This 'commentary' summarizes research needs and opportunities for engineered MPS models for developmental and reproductive toxicity testing. Emerging concepts can be taken forward to a virtual tissue modeling framework for assessing chemical (and non-chemical) stressors on human development. These models will advance children's health research, both basic and translational and new ways to evaluate complex embryological and reproductive impacts of drug and chemical exposures to inform safety assessments.
Collapse
Affiliation(s)
- T B Knudsen
- 1 National Center for Computational Toxicology/EPA, Research Triangle Park, NC 27711, USA
| | - B Klieforth
- 2 National Center for Environmental Research/EPA, Washington, DC 20460, USA
| | - W Slikker
- 3 National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| |
Collapse
|
17
|
Lei T, Chen F, Liu H, Sun H, Kang Y, Li D, Li Y, Hou T. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Mol Pharm 2017; 14:2407-2421. [PMID: 28595388 DOI: 10.1021/acs.molpharmaceut.7b00317] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a dangerous end point, respiratory toxicity can cause serious adverse health effects and even death. Meanwhile, it is a common and traditional issue in occupational and environmental protection. Pharmaceutical and chemical industries have a strong urge to develop precise and convenient computational tools to evaluate the respiratory toxicity of compounds as early as possible. Most of the reported theoretical models were developed based on the respiratory toxicity data sets with one single symptom, such as respiratory sensitization, and therefore these models may not afford reliable predictions for toxic compounds with other respiratory symptoms, such as pneumonia or rhinitis. Here, based on a diverse data set of mouse intraperitoneal respiratory toxicity characterized by multiple symptoms, a number of quantitative and qualitative predictions models with high reliability were developed by machine learning approaches. First, a four-tier dimension reduction strategy was employed to find an optimal set of 20 molecular descriptors for model building. Then, six machine learning approaches were used to develop the prediction models, including relevance vector machine (RVM), support vector machine (SVM), regularized random forest (RRF), extreme gradient boosting (XGBoost), naïve Bayes (NB), and linear discriminant analysis (LDA). Among all of the models, the SVM regression model shows the most accurate quantitative predictions for the test set (q2ext = 0.707), and the XGBoost classification model achieves the most accurate qualitative predictions for the test set (MCC of 0.644, AUC of 0.893, and global accuracy of 82.62%). The application domains were analyzed, and all of the tested compounds fall within the application domain coverage. We also examined the structural features of the compounds and important fragments with large prediction errors. In conclusion, the SVM regression model and the XGBoost classification model can be employed as accurate prediction tools for respiratory toxicity.
Collapse
Affiliation(s)
- Tailong Lei
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou, Jiangsu 215123, P. R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China.,State Key Lab of CAD&CG, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
18
|
Fields W, Maione A, Keyser B, Bombick B. Characterization and Application of the VITROCELL VC1 Smoke Exposure System and 3D EpiAirway Models for Toxicological and e-Cigarette Evaluations. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wanda Fields
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | | | - Brian Keyser
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| | - Betsy Bombick
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, North Carolina
| |
Collapse
|
19
|
Barbosa F. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:137-144. [PMID: 28277036 DOI: 10.1080/15287394.2016.1259475] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function and behavior of chemical elements in ecosystems and in human health probably comprise one of the most studied issues and a theme of great interest and fascination in science. Hot topics are emerging on an annual basis in this field. Bearing this in mind, some promising themes to explore in the field of metals and metalloids in the environment and in toxicology are highlighted and briefly discussed herein.
Collapse
Affiliation(s)
- Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP , Brazil
| |
Collapse
|
20
|
Fischer BM, Neumann D, Piberger AL, Risnes SF, Köberle B, Hartwig A. Use of high-throughput RT-qPCR to assess modulations of gene expression profiles related to genomic stability and interactions by cadmium. Arch Toxicol 2016; 90:2745-2761. [PMID: 26525392 PMCID: PMC5065590 DOI: 10.1007/s00204-015-1621-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/20/2015] [Indexed: 01/21/2023]
Abstract
Predictive test systems to assess the mode of action of chemical carcinogens are urgently required. Within the present study, we applied the Fluidigm dynamic array on the BioMark™ HD System for quantitative high-throughput RT-qPCR analysis of 95 genes and 96 samples in parallel, selecting genes crucial for maintaining genomic stability, including stress response as well as DNA repair, cell cycle control, apoptosis and mitotic signaling. The specificity of each individually designed sequence-specific primer pair and their respective target amplicons were evaluated via melting curve analysis as part of qPCR and size verification via agarose gel electrophoresis. For each gene, calibration curves displayed high efficiencies and correlation coefficients in the identified linear dynamic range as well as low intra-assay variations. Data were processed via Fluidigm real-time PCR analysis and GenEx software, and results were depicted as relative gene expression according to the ΔΔC q method. Subsequently, gene expression analyses were conducted in cadmium-treated adenocarcinoma A549 and epithelial bronchial BEAS-2B cells. They revealed distinct dose- and time-dependent and also cell-type-specific gene expression patterns, including the induction of genes coding for metallothioneins, the oxidative stress response, cell cycle control, mitotic signaling and apoptosis. Interestingly, while genes coding for the DNA damage response were induced, distinct DNA repair genes were down-regulated at the transcriptional level. Thus, this approach provided a comprehensive overview on the interaction by cadmium with distinct signaling pathways, also reflecting molecular modes of action in cadmium-induced carcinogenicity. Therefore, the test system appears to be a promising tool for toxicological risk assessment.
Collapse
Affiliation(s)
- Bettina Maria Fischer
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Daniel Neumann
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Ann Liza Piberger
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Sarah Fremgaard Risnes
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
21
|
Juberg DR, Knudsen TB, Sander M, Beck NB, Faustman EM, Mendrick DL, Fowle JR, Hartung T, Tice RR, Lemazurier E, Becker RA, Fitzpatrick SC, Daston GP, Harrill A, Hines RN, Keller DA, Lipscomb JC, Watson D, Bahadori T, Crofton KM. FutureTox III: Bridges for Translation. Toxicol Sci 2016; 155:22-31. [PMID: 27780885 DOI: 10.1093/toxsci/kfw194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Future Tox III, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2015. Building upon Future Tox I and II, Future Tox III was focused on developing the high throughput risk assessment paradigm and taking the science of in vitro data and in silico models forward to explore the question-what progress is being made to address challenges in implementing the emerging big-data toolbox for risk assessment and regulatory decision-making. This article reports on the outcome of the workshop including 2 examples of where advancements in predictive toxicology approaches are being applied within Federal agencies, where opportunities remain within the exposome and AOP domains, and how collectively the toxicology community across multiple sectors can continue to bridge the translation from historical approaches to Tox21 implementation relative to risk assessment and regulatory decision-making.
Collapse
Affiliation(s)
| | - Thomas B Knudsen
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Nancy B Beck
- American Chemistry Council, Washington, The District of Columbia
| | | | | | - John R Fowle
- Science to Inform, LLC, Pittsboro, North Carolina
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Raymond R Tice
- National Toxicology Program/National Institute of Environmental Health Sciences, Durham, North Carolina
| | | | - Richard A Becker
- American Chemistry Council, Washington, The District of Columbia
| | | | | | - Alison Harrill
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ronald N Hines
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | | | | | - Tina Bahadori
- US Environmental Protection Agency, Washington, The District of Columbia
| | - Kevin M Crofton
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
22
|
Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A 2016; 113:E2231-40. [PMID: 27044092 DOI: 10.1073/pnas.1522556113] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology.
Collapse
|
23
|
Prill S, Bavli D, Levy G, Ezra E, Schmälzlin E, Jaeger MS, Schwarz M, Duschl C, Cohen M, Nahmias Y. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Arch Toxicol 2015; 90:1181-91. [DOI: 10.1007/s00204-015-1537-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023]
|
24
|
Settivari RS, Ball N, Murphy L, Rasoulpour R, Boverhof DR, Carney EW. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:214-223. [PMID: 25836969 PMCID: PMC4382627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/27/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.
Collapse
Affiliation(s)
- Raja S Settivari
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA.
| | - Nicholas Ball
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA
| | - Lynea Murphy
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA
| | - Reza Rasoulpour
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA
| | - Darrell R Boverhof
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA
| | - Edward W Carney
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, USA
| |
Collapse
|
25
|
Knudsen TB, Keller DA, Sander M, Carney EW, Doerrer NG, Eaton DL, Fitzpatrick SC, Hastings KL, Mendrick DL, Tice RR, Watkins PB, Whelan M. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol Sci 2015; 143:256-67. [PMID: 25628403 PMCID: PMC4318934 DOI: 10.1093/toxsci/kfu234] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology.
Collapse
Affiliation(s)
- Thomas B Knudsen
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Douglas A Keller
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Miriam Sander
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Edward W Carney
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Nancy G Doerrer
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - David L Eaton
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Suzanne Compton Fitzpatrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Kenneth L Hastings
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Donna L Mendrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Raymond R Tice
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Paul B Watkins
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Maurice Whelan
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| |
Collapse
|
26
|
Titz B, Elamin A, Martin F, Schneider T, Dijon S, Ivanov NV, Hoeng J, Peitsch MC. Proteomics for systems toxicology. Comput Struct Biotechnol J 2014; 11:73-90. [PMID: 25379146 PMCID: PMC4212285 DOI: 10.1016/j.csbj.2014.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and highlight select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has been successfully employed to address mechanistic questions in toxicology, we summarized several case studies. Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical importance of protein-level measurements and recent technological advances, proteomics will be an integral part of integrative systems toxicology approaches in the future.
Collapse
|
27
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|