1
|
Sayilan Ozgun G, Ozgun E, Karabas T, Suer Gokmen S, Eskiocak S. Piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma: an in-vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7017-7025. [PMID: 39708099 DOI: 10.1007/s00210-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay. Cellular stresses, apoptosis, and JNK signaling markers were measured by Western blotting. Cells were pre-treated with SP600125 as a JNK inhibitor. The inhibitory concentration 50% (IC50) values and interaction of piperine with sorafenib were calculated by using CompuSyn software. IC50 values of piperine were 97 µM for HepG2, 58 µM for Hep3B, and 184 µM for AML12 with incubation for 48 h. Piperine caused a significant concentration-dependent increase in cellular stresses, apoptosis, and activated JNK signaling in hepatocellular carcinoma cells. Pre-treatment with a JNK inhibitor significantly reduced piperine-induced cellular stresses, apoptosis, and cytotoxicity. Piperine had concentration-dependent additive or synergistic effects when combined with sorafenib in both HepG2 and Hep3B cells. We found that piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gulben Sayilan Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey.
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Tugce Karabas
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Selma Suer Gokmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| |
Collapse
|
2
|
Li T, Wang Z, Zhang X, Hao Z, Guo Y, Shen J, Velkov T, Dai C. Natural Product Usnic Acid as an Antibacterial Therapeutic Agent: Current Achievements and Further Prospects. ACS Infect Dis 2025. [PMID: 40371696 DOI: 10.1021/acsinfecdis.5c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant global public health threat, endangering both human and animal health. In clinical environments, AMR often undermines the effectiveness of antibacterial treatments, underscoring the urgent need to discover and develop new antibacterial agents or alternatives to antibiotics. Usnic acid, a secondary metabolite derived from lichens, has emerged as a promising candidate owing to its diverse pharmacological properties, which include antibacterial, immune-regulating, antiaging, and anti-inflammatory activities. Extensive research has shown that usnic acid exhibits strong direct antibacterial effects against Gram-positive bacteria and acts as an antimicrobial adjuvant to enhance the therapeutic efficacy of antibiotic drugs against Gram-negative pathogens. Its mechanisms of action are multifaceted, encompassing the inhibition of RNA, DNA, and protein synthesis; suppression of bacterial efflux pump protein expression and membrane-localized drug-resistant enzyme activity; disruption of cell membrane integrity and metabolic homeostasis; and reduction of virulence factor production and biofilm formation. Despite its potential, the clinical application of usnic acid as an antibacterial agent faces significant challenges including poor aqueous solubility, low bioavailability, and dose-dependent toxicity. To overcome these limitations, nanodelivery systems such as liposomes and polymeric nanoparticles have been developed to enhance solubility, improve targeted delivery, and reduce toxicity, thereby expanding its therapeutic potential. Structural modification can also enhance the antibacterial activity and address solubility issues. This review systematically consolidates current knowledge on usnic acid's antibacterial properties, molecular mechanisms, and combinatorial therapies. It critically evaluates advancements in nanoformulation strategies, assesses safety and toxicity profiles, and identifies obstacles to its development as a clinically viable antibacterial agent. By addressing these aspects, this review aims to provide actionable insights, foster interdisciplinary dialogue, and catalyze further innovation in leveraging this natural product to combat AMR.
Collapse
Affiliation(s)
- Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
| | - Xiuying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan Province, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Galanty A, Paśko P, Koczurkiewicz-Adamczyk P, Siedlarczyk G, Pękala E, Podolak I. Enantiospecific hepatotoxicity of usnic acid in vitro, and the attempt to modify the toxic effect. Toxicology 2025; 516:154189. [PMID: 40368021 DOI: 10.1016/j.tox.2025.154189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Usnic acid, a chiral secondary lichen metabolite, is known for its diverse biological activities, yet concerns about its hepatotoxicity limit its therapeutic potential. Notably, the enantiospecific effects of its two forms, (+)- and (-)-usnic acid, remain underexplored. This study aimed to compare the hepatotoxic potential of the enantiomers of usnic acid in wide range of concentration to HepG2 cells, by evaluating their impact on cell viability, membrane integrity, and mitochondrial function. Additionally, we investigated whether hepatotoxicity could be mitigated by co-treatment with known hepatoprotectants: silybin, squalene, and N-acetylcysteine. Our results demonstrated for the first time that (-)-usnic acid exhibited significantly greater hepatotoxicity than its (+)-enantiomer, particularly after 24-48h of exposure (IC₅₀: 16.0 vs. 28.2µg/mL at 48h). This enantiospecific toxicity was confirmed by LDH leakage and mitochondrial membrane depolarization, with more pronounced effect induced by (-)-usnic acid. Co-treatment with hepatoprotectants partially alleviated toxicity at 48h, with squalene and N-acetylcysteine showing better protective effects than silybin. However, the protective effects diminished after 72h. These findings underscore the importance of enantiospecific analysis in natural compound safety assessments and suggest that the hepatotoxicity of usnic acid is influenced by more than just mitochondrial uncoupling. Further in vivo studies and mechanistic analyses are necessary to evaluate the clinical potential of usnic acid and to identify strategies for safe therapeutic use.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Science and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Departament of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gabriela Siedlarczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Departament of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
5
|
Gimła M, Herman-Antosiewicz A. Multifaceted Properties of Usnic Acid in Disrupting Cancer Hallmarks. Biomedicines 2024; 12:2199. [PMID: 39457512 PMCID: PMC11505503 DOI: 10.3390/biomedicines12102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer, a complex group of diseases marked by uncontrolled cell growth and invasive behavior, is characterized by distinct hallmarks acquired during tumor development. These hallmarks, first proposed by Douglas Hanahan and Robert Weinberg in 2000, provide a framework for understanding cancer's complexity. Targeting them is a key strategy in cancer therapy. It includes inhibiting abnormal signaling, reactivating growth suppressors, preventing invasion and metastasis, inhibiting angiogenesis, limiting replicative immortality, modulating the immune system, inducing apoptosis, addressing genome instability and regulating cellular energetics. Usnic acid (UA) is a natural compound found in lichens that has been explored as a cytotoxic agent against cancer cells of different origins. Although the exact mechanisms remain incompletely understood, UA presents a promising compound for therapeutic intervention. Understanding its impact on cancer hallmarks provides valuable insights into the potential of UA in developing targeted and multifaceted cancer therapies. This article explores UA activity in the context of disrupting hallmarks in cancer cells of different origins based on recent articles that emphasize the molecular mechanisms of this activity.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
6
|
Gao X, Campasino K, Yourick MR, Cao Y, Yourick JJ, Sprando RL. Oxidative DNA damage contributes to usnic acid-induced toxicity in human induced pluripotent stem cell-derived hepatocytes. J Appl Toxicol 2024; 44:1329-1346. [PMID: 38724177 DOI: 10.1002/jat.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 08/16/2024]
Abstract
Dietary supplements containing usnic acid have been increasingly marketed for weight loss over the past decades, even though incidences of severe hepatotoxicity and acute liver failure due to their overuse have been reported. To date, the toxic mechanism of usnic acid-induced liver injury at the molecular level still remains to be fully elucidated. Here, we conducted a transcriptomic study on usnic acid using a novel in vitro hepatotoxicity model employing human induced pluripotent stem cell (iPSC)-derived hepatocytes. Treatment with 20 μM usnic acid for 24 h caused 4272 differentially expressed genes (DEGs) in the cells. Ingenuity Pathway Analysis (IPA) based on the DEGs and gene set enrichment analysis (GSEA) using the whole transcriptome expression data concordantly revealed several signaling pathways and biological processes that, when taken together, suggest that usnic acid caused oxidative stress and DNA damage in the cells, which further led to cell cycle arrest and eventually resulted in cell death through apoptosis. These transcriptomic findings were subsequently corroborated by a variety of cellular assays, including reactive oxygen species (ROS) generation and glutathione (GSH) depletion, DNA damage (pH2AX detection and 8-hydroxy-2'-deoxyguanosine [8-OH-dg] assay), cell cycle analysis, and caspase 3/7 activity. Collectively, the results of the current study accord with previous in vivo and in vitro findings, provide further evidence that oxidative stress-caused DNA damage contributes to usnic acid-induced hepatotoxicity, shed new light on molecular mechanisms of usnic acid-induced hepatotoxicity, and demonstrate the usefulness of iPSC-derived hepatocytes as an in vitro model for hepatotoxicity testing and prediction.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Kayla Campasino
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Miranda R Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Yu Cao
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
7
|
Chen S, Ren Z, Guo L. Hepatotoxicity of usnic acid and underlying mechanisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 43:1-22. [PMID: 38904414 DOI: 10.1080/26896583.2024.2366737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Since usnic acid was first isolated in 1844 as a prominent secondary lichen metabolite, it has been used for various purposes worldwide. Usnic acid has been claimed to possess numerous therapeutic properties, including antimicrobial, anti-inflammatory, antiviral, anti-proliferative, and antipyretic activities. Approximately two decades ago, crude extracts of usnic acid or pure usnic acid were marketed in the United States as dietary supplements for aiding in weight loss as a "fat-burner" and gained popularity in the bodybuilding community; however, hepatotoxicity was documented for some usnic acid containing products. The US Food and Drug Administration (FDA) received numerous reports of liver toxicity associated with the use of dietary supplements containing usnic acid, leading the FDA to issue a warning letter in 2001 on a product, LipoKinetix. The FDA also sent a recommendation letter to the manufacturer of LipoKinetix, resulting in the withdrawal of LipoKinetix from the market. These events triggered investigations into the hepatotoxicity of usnic acid and its mechanisms. In 2008, we published a review article titled "Usnic Acid and Usnea Barbata Toxicity". This review is an updated version of our previous review article and incorporates additional data published since 2008. The purpose of this review is to provide a comprehensive summary of the understanding of the liver toxicity associated with usnic acid, with a particular focus on the current understanding of the putative mechanisms of usnic acid-related hepatotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| |
Collapse
|
8
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
9
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
10
|
Wong KKV, Roney M, Uddin N, Imran S, Gazali AM, Zamri N, Rullah K, Aluwi MFFM. Usnic acid as potential inhibitors of BCL2 and P13K protein through network pharmacology-based analysis, molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:13632-13645. [PMID: 36794726 DOI: 10.1080/07391102.2023.2178506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, including anticancer activity. Here, the mechanism was clarified through network pharmacology,molecular docking and molecular dynamic simulation. Sixteen proteins were selected through network pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered from PPI network analysis based on their significance of interactions (p < 0.05). KEGG pathway analysis has also aided us in determining the three most significant protein targets for UA, which are BCL2, PI3KCA and PI3KCG. Therefore molecular docking and molecular dynamic (MD) simulations throughout 100 ns were performed for usnic acid onto the three proteins mentioned. However, UA's docking score in all proteins is lower than their co-crystalised ligand, especially for BCL2 (-36.5158 kcal/mol) and PI3KCA (-44.5995 kcal/mol) proteins. The only exception is PI3KCG which has comparable results with the co-crystallised ligand with (-41.9351 kcal/mol). Furthermore, MD simulation has also revealed that usnic acid does not stay fit in the protein throughout the simulation trajectory for PI3KCA protein evident from RMSF and RMSD plots. Nevertheless, it still poses good ability in inhibiting BCL2 and PI3KCG protein in MD simulation. In the end, usnic acid has exhibited good potential in the inhibition of PI3KCG proteins, rather than the other proteins mentioned. Thus further study on structural modification of usnic acid could enhance the ability of usnic acid in the inhibition of PI3KCG as anti-colorectal and anti-small cell lung cancer drug candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K K V Wong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
| | - Ahmad Mahfuz Gazali
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Normaiza Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
11
|
Kumari M, Kamat S, Singh SK, Kumar A, Jayabaskaran C. Inhibition of Autophagy Increases Cell Death in HeLa Cells through Usnic Acid Isolated from Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:519. [PMID: 36771602 PMCID: PMC9919968 DOI: 10.3390/plants12030519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The Western Ghats, India, is a hotspot for lichen diversity. However, the pharmacological importance of lichen-associated metabolites remains untapped. This study aimed to evaluate the cytotoxic potential of lichens of this region. For this, sixteen macrolichens were collected and identified from two locations in the Western Ghats. The acetone extract of Usnea cornuta (UC2A) showed significant cytotoxicity towards multiple human cancer cell lines. Interestingly, co-treatment with chloroquine (CQ), an autophagy inhibitor, increased the cytotoxic potential of the UC2A extract. A gas chromatography mass spectrometry (GCMS) study revealed usnic acid (UA), atraric acid and barbatic acid as the dominant cytotoxic compounds in the UC2A extract. Further, UA was purified and identified from the UC2A extract and evaluated for cytotoxicity in HeLa cells. The monodansyl cadaverine and mitotracker red double staining revealed the autophagy-inducing activities of UA, and the inhibition of autophagy was confirmed via CQ treatment. Autophagy inhibition increased the cytotoxicity of UA by 12-16% in a concentration-dependent manner. It also increased lipid peroxidation, ROS levels and mitochondrial depolarization and decreased glutathione availability. A decrease in zeta potential and a 40% increase in caspase 3/7 activity were also noted after CQ treatment of UA-treated cells. Thus, cytotoxicity of UA can be increased by inhibiting autophagy.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - C. Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Toxicity of Usnic Acid: A Narrative Review. J Toxicol 2022; 2022:8244340. [PMID: 36310641 PMCID: PMC9605823 DOI: 10.1155/2022/8244340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Usnic acid (UA) is a dibenzofuran derivative naturally present in lichens, organisms resulting from the symbiosis between a fungus and a cyanobacterium, or an alga. UA shows antimicrobial, antitumor, antioxidant, analgesic, anti-inflammatory as well as UV-protective activities. Its use as pharmacological agent is widely described in traditional medicine, and in the past few years, the product has been marketed as a food supplement for the induction of weight loss. However, the development of severe hepatotoxicity in a limited number of subjects prompted the FDA to issue a warning letter, which led to the withdrawal of the product from the market in November 2001. Data published in literature on UA toxicology, genotoxicity, mutagenesis, and teratogenicity have been reviewed, as well as the case reports of subjects who developed hepatotoxicity following oral administration of UA as a slimming agent. Finally, we reviewed the most recent studies on the topical use of UA, as well as studies aimed at improving UA pharmacologic activity and reducing toxicity. Indeed, advancements in this field of research could open the possibility to reintroduce the use of UA as therapeutical agent.
Collapse
|
13
|
Xu M, Oppong-Danquah E, Wang X, Oddsson S, Abdelrahman A, Pedersen SV, Szomek M, Gylfason AE, Snorradottir BS, Christensen EA, Tasdemir D, Jameson CJ, Murad S, Andresson OS, Magnusson KP, de Boer HJ, Thorsteinsdottir M, Omarsdottir S, Heidmarsson S, Olafsdottir ES. Novel methods to characterise spatial distribution and enantiomeric composition of usnic acids in four Icelandic lichens. PHYTOCHEMISTRY 2022; 200:113210. [PMID: 35439526 DOI: 10.1016/j.phytochem.2022.113210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Usnic acid is an antibiotic metabolite produced by a wide variety of lichenized fungal lineages. The enantiomers of usnic acid have been shown to display contrasting bioactivities, and hence it is important to determine their spatial distribution, amounts and enantiomeric ratios in lichens to understand their roles in nature and grasp their pharmaceutical potential. The overall aim of the study was to characterise the spatial distribution of the predominant usnic acid enantiomer in lichens by combining spatial imaging and chiral chromatography. Specifically, separation and quantification of usnic acid enantiomers in four common lichens in Iceland was performed using a validated chiral chromatographic method. Molecular dynamics simulation was carried out to rationalize the chiral separation mechanism. Spatial distribution of usnic acid in the lichen thallus cross-sections were analysed using Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-IMS) and fluorescence microscopy. DESI-IMS confirmed usnic acid as a cortical compound, and revealed that usnic acid can be more concentrated around the algal vicinity. Fluorescence microscopy complemented DESI-IMS by providing more detailed distribution information. By combining results from spatial imaging and chiral separation, we were able to visualize the distribution of the predominant usnic acid enantiomer in lichen cross-sections: (+)-usnic acid in Cladonia arbuscula and Ramalina siliquosa, and (-)-usnic acid in Alectoria ochroleuca and Flavocetraria nivalis. This study provides an analytical foundation for future environmental and functional studies of usnic acid enantiomers in lichens.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland.
| | - Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106, Kiel, Germany
| | - Xiaoyu Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sebastian Oddsson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | - Asmaa Abdelrahman
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark
| | - Simon Vilms Pedersen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark; Department of Materials, Imperial College London, SW7 2BP, London, UK
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Aron Elvar Gylfason
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | | | - Eva Arnspang Christensen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106, Kiel, Germany; Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Cynthia J Jameson
- Department of Chemistry, University of Illinois at Chicago, Illinois, 60607, USA
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | | | - Kristinn Petur Magnusson
- Icelandic Institute of Natural History, Akureyri Division, 600, Akureyri, Iceland; Faculty of Natural Resource Sciences, University of Akureyri, 600, Akureyri, Iceland
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, 0562, Oslo, Norway
| | | | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, 107, Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, 600, Akureyri, Iceland
| | | |
Collapse
|
14
|
Fu Z, Wu X, Zheng F, Zhang Y. Activation of the AMPK-ULK1 pathway mediated protective autophagy by sevoflurane anesthesia restrains LPS-induced acute lung injury (ALI). Int Immunopharmacol 2022; 108:108869. [DOI: 10.1016/j.intimp.2022.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
15
|
Han SH, Lee JH, Woo JS, Jung GH, Jung SH, Han EJ, Park YS, Kim BS, Kim SK, Park BK, Choi C, Jung JY. Myricetin induces apoptosis through the MAPK pathway and regulates JNK‑mediated autophagy in SK‑BR‑3 cells. Int J Mol Med 2022; 49:54. [PMID: 35234274 PMCID: PMC8904074 DOI: 10.3892/ijmm.2022.5110] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myricetin, a flavonoid found in fruits and vegetables, is known to have antioxidant and anticancer effects. However, the anticancer effects of myricetin on SK-BR-3 human breast cancer cells have not been elucidated. In the present study, the anticancer effects of myricetin were confirmed in human breast cancer SK-BR-3 cells. As the concentration of myricetin increased, the cell viability decreased. DAPI (4′,6-diamidino-2-phenylindole) and Annexin V/PI staining also revealed a significant increase in apoptotic bodies and apoptosis. Western blot analysis was performed to confirm the myricetin-induced expression of apoptosis-related proteins. The levels of cleaved PARP and Bax proteins were increased, and that of Bcl-2 was decreased. The levels of proteins in the mitogen-activated protein kinase (MAPK) pathway were examined to confirm the mechanism of myricetin-induced apoptosis, and it was found that the expression levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated mitogen-activated protein kinases (p-p38) were increased, whereas that of phosphorylated extracellular-regulated kinase (p-ERK) was decreased. It was also demonstrated that myricetin induced autophagy by promoting autophagy-related proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC 3) and beclin 1. In addition, 3-methyladenine (3-MA) was used to evaluate the association between cell viability and autophagy in cells treated with myricetin. The results showed that simultaneous treatment with 3-MA and myricetin promoted the apoptosis of breast cancer cells. Furthermore, treatment with a JNK inhibitor reduced cell viability, promoted Bax expression, and reduced the expression of p-JNK, Bcl-2, and LC 3-II/I. These results suggest that myricetin induces apoptosis via the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. In conclusion, myricetin shows potential as a natural anticancer agent in SK-BR-3 cells.
Collapse
Affiliation(s)
- So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Young-Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byung-Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung‑ang University, Ansung, Gyeonggi-do 17546, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| |
Collapse
|
16
|
Eckstrum K, Striz A, Ferguson M, Zhao Y, Sprando R. Evaluation of the utility of the Beta Human Liver Emulation System (BHLES) for CFSAN's regulatory toxicology program. Food Chem Toxicol 2022; 161:112828. [PMID: 35066125 DOI: 10.1016/j.fct.2022.112828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Microphysiological systems (MPS), such as organ-on-a-chip platforms, are an emerging alternative model that may be useful for predicting human physiology and/or toxicity. Due to the interest in these platforms, the Center for Food Safety and Applied Nutrition partnered with Emulate to evaluate the utility of the Beta Human Liver Emulation System (BHLES) for its regulatory science program. Using known hepatotoxic compounds (usnic acid, benzbromarone, tamoxifen, and acetaminophen) and compounds that have no reported human cases of liver toxicity (dimethyl sulfoxide, theophylline, and aminohippurate) the platforms' performance was evaluated. Chemical toxicity was assessed by albumin secretion, urea and LDH release, nuclei number, mitochondrial membrane potential, and apoptosis. System/platform performance was evaluated in terms of sensitivity and specificity, power, and variability and repeatability. Chemical interactions with the Chip material were also assessed. Preliminary findings suggested that for the model test compounds selected, the BHLES was able to accurately predict toxicity, demonstrated high sensitivity and specificity, high power, and low variability. However, some compounds interacted with the Chip material indicating variable exposure levels that should be accounted for when planning experimentation. The details of the evaluation are presented herein.
Collapse
Affiliation(s)
- Kirsten Eckstrum
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Anneliese Striz
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yang Zhao
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Robert Sprando
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
17
|
Wu W, Gou H, Dong J, Yang X, Zhao Y, Peng H, Chen D, Geng R, Chen L, Liu J. Usnic Acid Inhibits Proliferation and Migration through ATM Mediated DNA Damage Response in RKO Colorectal Cancer Cell. Curr Pharm Biotechnol 2021; 22:1129-1138. [PMID: 33006536 DOI: 10.2174/1389201021666201002155955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Usnic Acid (UA), also known as lichenol, has been reported to have inhibitory effects on a variety of cancer cells, but its specific mechanism remained to be elucidated. Tumor chemotherapy drugs, especially DNA damage chemotherapeutic drugs, target Chromosomal DNA, but their spontaneous and acquired drug resistance are also an urgent problem to be solved. Therefore, drug combination research has become the focus of researchers. METHODS Here, we evaluated the tumor-suppressing molecular mechanism of UA in colorectal cancer cells RKO from the perspective of the ATM-mediated DNA damage signaling pathway through H2O2 simulating DNA damage chemotherapeutic drugs. CCK8 cell proliferation assay was used to determine the inhibition of RKO cells by hydrogen peroxide and UA alone or in combination, and wound healing assay was applied to determine the effect of the drug on cell migration. RESULTS Transfected cells with miRNA18a-5p mimics and inhibitors, MDC and DCFH-DA staining for the measurement of autophagy and ROS, cell cycle and apoptosis were detected by flow cytometry, expressions of microRNA and mRNA were determined by fluorescence quantitative PCR, and protein by Western blot. DISCUSSION We found that UA can upregulate ATM via miR-18a to activate the DNA damage signaling pathway and inhibit the proliferation and migration of RKO cells in a concentration-dependent manner. CONCLUSION At the same time, DNA damage responses, including cell cycle, autophagy, apoptosis and ROS levels, are also regulated by UA. Therefore, UA combined with DNA damage chemotherapeutic drugs may be an effective treatment for cancer.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yanan Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Heng Peng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Kwong SP, Huang Z, Ji L, Wang C. PORIMIN: The key to (+)-Usnic acid-induced liver toxicity and oncotic cell death in normal human L02 liver cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113873. [PMID: 33485970 DOI: 10.1016/j.jep.2021.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes. AIM OF THE STUDY This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection. MATERIALS AND METHODS Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied. RESULTS The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells. CONCLUSIONS In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.
Collapse
Affiliation(s)
- Sukfan P Kwong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhenlin Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
19
|
Krajka-Kuźniak V, Paluszczak J, Kleszcz R, Baer-Dubowska W. (+)-Usnic acid modulates the Nrf2-ARE pathway in FaDu hypopharyngeal carcinoma cells. Mol Cell Biochem 2021; 476:2539-2549. [PMID: 33635505 PMCID: PMC8119403 DOI: 10.1007/s11010-021-04092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
Naturally occurring phytochemicals of different origin and structure, arctigenin, bergenin, usnic acid and xanthohumol, were shown to affect Nrf2 pathway in the context of various diseases, but their effect on this pathway in cancer cells was not extensively investigated. This study aimed to evaluate the effect of these compounds on Nrf2 expression and activation in hypopharyngeal FaDu squamous cell carcinoma cells. FaDu cells were treated with 2 or 10 μM arctigenin, bergenin, (+)-usnic acid or xanthohumol for 24 h. While arctigenin, bergenin, and xanthohumol did not affect either Nrf2 expression or activation, (+)-usnic acid treatment increased its transcript level and increased the nuclear/cytosol Nrf2 protein ratio—the measure of Nrf2 pathway activation. Consequently, (+)-usnic acid enhanced the transcription and translation of Nrf2 target genes: NQO1, SOD, and to a lesser extent, GSTP. The treatment of FaDu cells with (+)-usnic acid decreased both GSK-3β transcript and protein level, indicating its possible involvement in Nrf2 activation. All the tested compounds decreased Bax mRNA but did not change the level of Bax protein. (+)-Usnic acid tended to increase the percentage of early apoptotic cells and LC3 protein, autophagy marker. Significant induction of p53 also was observed after treatment with (+)-usnic acid. In summary, the results of this study indicate that low concentrations of (+)-usnic acid activate Nrf2 transcription factor, most probably as a result of ROS accumulation, but do not lead to FaDu hypopharyngeal carcinoma cells death.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Chen S, Wu Q, Li X, Li D, Mei N, Ning B, Puig M, Ren Z, Tolleson WH, Guo L. Characterization of cytochrome P450s (CYP)-overexpressing HepG2 cells for assessing drug and chemical-induced liver toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:68-86. [PMID: 33576714 PMCID: PMC7931144 DOI: 10.1080/26896583.2021.1880242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hepatic metabolism catalyzed by the cytochrome P450 (CYP) superfamily affects liver toxicity associated with exposures to natural compounds and xenobiotic agents. Previously we generated a battery of HepG2-derived stable cell lines that individually express 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). In this study, we comprehensively characterized each cell line for its CYP expression and enzyme activity. Specifically, we measured the mRNA expression, protein expression, and metabolite formation. Using CYP3A4, 2D6, and 2C9-overexpressing cells as representatives, we examined the stability of these cells in long-term cultures for up to 10 passages. The results showed that CYPs can be stably overexpressed for up to 10 cell culture passages without losing their activities. The robustness of responses to stimuli among the cells at different passages was also investigated in CYP3A4-overexpressing cells and the response to amiodarone and dronedarone showed no difference between the cells at the passage 2 and 10. Moreover, the mRNA expression level of most CYPs was higher in CYP-overexpressing HepG2 cells than that in HepaRG cells and primary human hepatocytes. This study confirmed the stability of CYP-overexpressing HepG2 cell lines and provided useful information for a broader use of these cells in pharmacologic and toxicologic research.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Dongying Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Baitang Ning
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research/U.S. FDA, Silver Spring, Maryland, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - William H. Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas, USA
| |
Collapse
|
21
|
Kwong SP, Wang C. Review: Usnic acid-induced hepatotoxicity and cell death. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103493. [PMID: 32961280 DOI: 10.1016/j.etap.2020.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Increasing prevalence of herbal and dietary supplement-induced hepatotoxicity has been reported worldwide. Usnic acid (UA) is a well-known hepatotoxin derived from lichens. Since 2000, more than 20 incident reports have been received by the US Food and Drug Administration after intake of UA containing dietary supplement resulting in severe complications. Scientists and clinicians have been studying the cause, prevention and treatment of UA-induced hepatotoxicity. It is now known that UA decouples oxidative phosphorylation, induces adenosine triphosphate (ATP) depletion, decreases glutathione (GSH), and induces oxidative stress markedly leading to lipid peroxidation and organelle stress. In addition, experimental rat liver tissues have shown massive vacuolization associated with cellular swellings. Additionally, various signaling pathways, such as c-JNK N-terminal kinase (JNK), store-operated calcium entry, nuclear erythroid 2-related factor 2 (Nrf2), and protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathways are stimulated by UA causing beneficial or harmful effects. Nevertheless, there are controversial issues, such as UA-induced inflammatory or anti-inflammatory responses, cytochrome P450 detoxifying UA into non-toxic or transforming UA into reactive metabolites, and unknown mechanism of the formation of vacuolization and membrane pore. This article focused on the previous and latest comprehensive putative mechanistic findings of UA-induced hepatotoxicity and cell death. New insights on controversial issues and future perspectives are also discussed and summarized.
Collapse
Affiliation(s)
- Sukfan P Kwong
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
22
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
23
|
Kwong SP, Wang H, Shi L, Huang Z, Lu B, Cheng X, Chou G, Ji L, Wang C. Identification of photodegraded derivatives of usnic acid with improved toxicity profile and UVA/UVB protection in normal human L02 hepatocytes and epidermal melanocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111814. [DOI: 10.1016/j.jphotobiol.2020.111814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
|
24
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2020; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
25
|
Emerging club drugs: 5-(2-aminopropyl)benzofuran (5-APB) is more toxic than its isomer 6-(2-aminopropyl)benzofuran (6-APB) in hepatocyte cellular models. Arch Toxicol 2019; 94:609-629. [PMID: 31838565 DOI: 10.1007/s00204-019-02638-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
New phenylethylamine derivatives are among the most commonly abused new psychoactive substances. They are synthesized and marketed in lieu of classical amphetaminic stimulants, with no previous safety testing. Our study aimed to determine the in vitro hepatotoxicity of two benzofurans [6-(2-aminopropyl)benzofuran (6-APB) and 5-(2-aminopropyl)benzofuran (5-APB)] that have been misused as 'legal highs'. Cellular viability was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, following 24-h drug exposure of human hepatoma HepaRG cells (EC50 2.62 mM 5-APB; 6.02 mM 6-APB), HepG2 cells (EC50 3.79 mM 5-APB; 8.18 mM 6-APB) and primary rat hepatocytes (EC50 964 μM 5-APB; 1.94 mM 6-APB). Co-incubation of primary hepatocytes, the most sensitive in vitro model, with CYP450 inhibitors revealed a role of metabolism, in particular by CYP3A4, in the toxic effects of both benzofurans. Also, 6-APB and 5-APB concentration-dependently enhanced oxidative stress (significantly increased reactive species and oxidized glutathione, and decreased reduced glutathione levels) and unsettled mitochondrial homeostasis, with disruption of mitochondrial membrane potential and decline of intracellular ATP. Evaluation of cell death mechanisms showed increased caspase-8, -9, and -3 activation, and nuclear morphological changes consistent with apoptosis; at concentrations higher than 2 mM, however, necrosis prevailed. Concentration-dependent formation of acidic vesicular organelles typical of autophagy was also observed for both drugs. Overall, 5-APB displayed higher hepatotoxicity than its 6-isomer. Our findings provide new insights into the potential hepatotoxicity of these so-called 'safe drugs' and highlight the putative risks associated with their use as psychostimulants.
Collapse
|
26
|
Goga M, Kello M, Vilkova M, Petrova K, Backor M, Adlassnig W, Lang I. Oxidative stress mediated by gyrophoric acid from the lichen Umbilicaria hirsuta affected apoptosis and stress/survival pathways in HeLa cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:221. [PMID: 31426865 PMCID: PMC6701105 DOI: 10.1186/s12906-019-2631-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
Background Lichens produce a huge diversity of bioactive compounds with several biological effects. Gyrophoric acid (GA) is found in high concentrations in the common lichen Umbilicaria hirsuta, however evidence for biological activity was limited to anti-proliferative activity described on several cancer cell lines. Methods We developed and validated a new protocol for GA isolation, resulting in a high yield of highly pure GA (validated by HPLC and NMR) in an easy and time saving manner. Anti-proliferative and pro-apoptotic activity, oxygen radicals formation and stress/survival proteins activity changes was study by flow cytometry. Results The highly purified GA showed anti-proliferative activity against HeLa (human cervix carcinoma) and other tumor cells. Moreover, GA threated cells showed a significant increase in caspase-3 activation followed by PARP cleavage, PS externalization and cell cycle changes mediated by oxidative stress. Production of oxygen radicals led to DNA damage and changes in stress/survival pathways activation. Conclusions GA treatment on HeLa cells clearly indicates ROS production and apoptosis as form of occurred cell death. Moreover, DNA damage and changing activity of stress/survival proteins as p38MAPK, Erk1/2 and Akt mediated by GA treatment confirm pro-apoptotic potential. The pharmacological potential of U. hirsuta derived GA is discussed. Electronic supplementary material The online version of this article (10.1186/s12906-019-2631-4) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Machado NM, Ribeiro AB, Nicolella HD, Ozelin SD, Silva LHDD, Guissone APP, Rinaldi-Neto F, Lemos ILL, Furtado RA, Cunha WR, Rezende AAAD, Spanó MA, Tavares DC. Usnic acid attenuates genomic instability in Chinese hamster ovary (CHO) cells as well as chemical-induced preneoplastic lesions in rat colon. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:401-410. [PMID: 31066341 DOI: 10.1080/15287394.2019.1613274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Usnic acid (UA) is one of the pharmacologically most important compounds produced by several lichen species. To better understand the mechanism of action (MOA) of this important substance, this study examined the genotoxicity attributed to UA and its influence on mutagens with varying MOA using the micronucleus (MN) test in Chinese hamster ovary cells (CHO). Additional experiments were conducted to investigate the effect of UA on colon carcinogenesis in Wistar rats employing the aberrant crypt focus (ACF) assay. In vitro studies showed a significant increase in the frequency of MN in cultures treated with the highest UA concentration tested (87.13 µM). In contrast, UA concentrations of 10.89, 21.78, or 43.56 µM produced an approximate 60% reduction in chromosomal damage induced by doxorubicin, hydrogen peroxide, and etoposide, indicating an antigenotoxic effect. In the ACF assay, male Wistar rats treated with different UA doses (3.125, 12.5, or 50 mg/kg b.w.) and with the carcinogen 1,2-dimethylhydrazine exhibited a significantly lower incidence of neoplastic lesions in the colon than animals treated only with the carcinogen. Data suggest that the MOA responsible for the chemopreventive effect of UA may be related to interaction with DNA topoisomerase II and/or the antioxidant potential of the compound.
Collapse
Affiliation(s)
- Nayane Moreira Machado
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
| | | | | | | | | | | | | | | | | | | | - Alexandre Azenha Alves De Rezende
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
- c Faculty of Integrated Sciences of Pontal , Federal University of Uberlândia , Ituiutaba , MG , Brazil
| | - Mário Antônio Spanó
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
| | | |
Collapse
|
28
|
Guney Eskiler G, Eryilmaz IE, Yurdacan B, Egeli U, Cecener G, Tunca B. Synergistic effects of hormone therapy drugs and usnic acid on hormone receptor-positive breast and prostate cancer cells. J Biochem Mol Toxicol 2019; 33:e22338. [PMID: 30980508 DOI: 10.1002/jbt.22338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the combined effects of usnic acid (UA) and Tamoxifen (Tam) or Enzalutamide (Enz) on hormone receptor-positive breast and prostate cancer (BC and PC), respectively. The antiproliferative and apoptotic effects of Tam or Enz alone and in combination with UA on MCF7 and LNCaP cancer cells were detected. The results of the WST-1 assay indicated that UA was a promising anticancer compound that significantly enhanced the effectiveness of hormone therapy drugs compared with each drug alone (combination index < 1). In addition, the combination of UA with Tam or Enz remarkably induced more cell cycle arrest at the G0/G1 phase and apoptosis than only drug-treated cells (P < 0.01). Consequently, our findings suggest that the combination of UA with Tam or Enz may be a potential therapeutic approach for the treatment of BC and PC and further studies are required to exploit the potential mechanisms of synergistic effects.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Isil Ezgi Eryilmaz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Beste Yurdacan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
29
|
Zhu J, Seo JE, Wang S, Ashby K, Ballard R, Yu D, Ning B, Agarwal R, Borlak J, Tong W, Chen M. The Development of a Database for Herbal and Dietary Supplement Induced Liver Toxicity. Int J Mol Sci 2018; 19:E2955. [PMID: 30274144 PMCID: PMC6213387 DOI: 10.3390/ijms19102955] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
The growing use of herbal dietary supplements (HDS) in the United States provides compelling evidence for risk of herbal-induced liver injury (HILI). Information on HDS products was retrieved from MedlinePlus of the U.S. National Library of Medicine and the herbal monograph of the European Medicines Agency. The hepatotoxic potential of HDS was ascertained by considering published case reports. Other relevant data were collected from governmental documents, public databases, web sources, and the literature. We collected information for 296 unique HDS products. Evidence of hepatotoxicity was reported for 67, that is 1 in 5, of these HDS products. The database revealed an apparent gender preponderance with women representing 61% of HILI cases. Culprit hepatotoxic HDS were mostly used for weight control, followed by pain and inflammation, mental stress, and mood disorders. Commonly discussed mechanistic events associated with HILI are reactive metabolites and oxidative stress, mitochondrial injury, as well as inhibition of transporters. HDS⁻drug interactions, causing both synergistic and antagonizing effects of drugs, were also reported for certain HDS. The database contains information for nearly 300 commonly used HDS products to provide a single-entry point for better comprehension of their impact on public health.
Collapse
Affiliation(s)
- Jieqiang Zhu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Ji-Eun Seo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Sanlong Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, China's State Food and Drug Administration, Beijing 100176, China.
| | - Kristin Ashby
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Rodney Ballard
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Baitang Ning
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Rajiv Agarwal
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jürgen Borlak
- Center of Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
30
|
Wu W, Hou B, Tang C, Liu F, Yang J, Pan T, Si K, Lu D, Wang X, Wang J, Xiong X, Liu J, Xie C. (+)-Usnic Acid Inhibits Migration of c-KIT Positive Cells in Human Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5149436. [PMID: 30298093 PMCID: PMC6157178 DOI: 10.1155/2018/5149436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/22/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022]
Abstract
Inhibition of tumor cell migration is a treatment strategy for patients with colorectal cancer (CRC). SCF-dependent activation of c-KIT is responsible for migration of c-KIT positive [c-KIT(+)] cells of CRC. Drug resistance to Imatinib Mesylate (c-KIT inhibitor) has emerged. Inhibition of mTOR can induce autophagic degradation of c-KIT. (+)-usnic acid [(+)-UA], isolated from lichens, has two major functions including induction of proton shuttle and targeting inhibition of mTOR. To reduce hepatotoxicity, the treatment concentration of (+)-UA should be lower than 10 μM. HCT116 cells and LS174 cells were employed to investigate the inhibiting effect of (+)-UA (<10 μM) on SCF-mediated migration of c-KIT(+) CRC cells. HCT116 cells were employed to investigate the molecular mechanisms. The results indicated that firstly, 8 μM (+)-UA decreased ATP content via uncoupling; secondly, 8 μM (+)-UA induced mTOR inhibition, thereby mediated activation suppression of PKC-A, and induced the autophagy of the completed autophagic flux that resulted in the autophagic degradation and transcriptional inhibition of c-KIT and the increase in LDH release; ultimately, 8 μM (+)-UA inhibited SCF-mediated migration of CRC c-KIT(+) cells. Taken together, 8 μM could be determined as the effective concentration for (+)-UA to inhibit SCF-mediated migration of CRC c-KIT(+) cells.
Collapse
Affiliation(s)
- Wei Wu
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Chengdu Easton Biopharmaceuticals Ltd., Chengdu 611731, China
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Remeadjohn Technology Co., Ltd., Chengdu 610044, China
| | - Bing Hou
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Changli Tang
- Chengdu Easton Biopharmaceuticals Ltd., Chengdu 611731, China
- Pharmacy Department, Xichang People's Hospital, Xichang 615000, China
| | - Fucheng Liu
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Jie Yang
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Tao Pan
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Ke Si
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Deyun Lu
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Xiaoxiang Wang
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Jing Wang
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Xing Xiong
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
| | - Ji Liu
- Department of Gastroenterology, Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Chengdu University of Traditional Chinese Medicine/Chengdu First People's Hospital, Chengdu 610041, China
- Chengdu Easton Biopharmaceuticals Ltd., Chengdu 611731, China
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chunguang Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
31
|
Yurdacan B, Egeli U, Eskiler GG, Eryilmaz IE, Cecener G, Tunca B. The role of usnic acid-induced apoptosis and autophagy in hepatocellular carcinoma. Hum Exp Toxicol 2018; 38:201-215. [DOI: 10.1177/0960327118792052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Usnic acid (UA) is a multifunctional bioactive lichen secondary metabolite with potential anti-cancer properties. Although the promising therapeutic effects of UA have been investigated in different cancer cell lines, the mechanism driving UA-induced cell death has yet to be elucidated. As the type of cell death (apoptosis or autophagy) induced by UA may vary depending on the cancer cell type, we first studied the cytotoxic effects of UA in HEPG2 (HBV(−)) and SNU-449(HBV(+)) hepatocellular carcinoma (HCC) cell lines. HCC cell viability was considerably reduced in a dose-dependent manner at 12, 24, and 48 h after treatment with UA ( p < 0.05). However, SNU-449 cells were more sensitive to UA than HEPG2 cells. UA also induced apoptotic cell death in HCC cells with cell cycle arrest at G0/G1 and G2/M phase depending on the genetic profile of each cell type. On the other hand, we observed acidic vesicular organelles in HCC cells after 36 h of UA treatment. Taken together, these findings suggest that UA stimulates apoptosis and autophagy in HEPG2 and SNU-449 cells without damaging normal control cells. Thus, UA might be a potential therapeutic compound for HCC treatment. However, there is a need for further studies investigating the death-promoting or preventing roles for autophagy and the molecular signaling mechanisms induced by UA treatment.
Collapse
Affiliation(s)
- B Yurdacan
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - U Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - G Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - IE Eryilmaz
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - G Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - B Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
32
|
Chen S, Ren Z, Yu D, Ning B, Guo L. DNA damage-induced apoptosis and mitogen-activated protein kinase pathway contribute to the toxicity of dronedarone in hepatic cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:278-289. [PMID: 29399883 PMCID: PMC7941192 DOI: 10.1002/em.22173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 01/02/2018] [Indexed: 05/22/2023]
Abstract
Dronedarone, an antiarrhythmic drug, has been marketed as an alternative to amiodarone. The use of dronedarone has been associated with severe liver injury; however, the mechanisms remain unclear. In this study, the possible mechanisms of dronedarone induced liver toxicity were characterized in HepG2 cells. Dronedarone decreased cells viability and induced apoptosis and DNA damage in a concentration- and time-dependent manner. Pretreatment of the HepG2 cells with apoptosis inhibitors (caspase-3, -8, and -9) or the necrosis inhibitor (Necrox-5), partially, but significantly, reduced the release of lactate dehydrogenase. Dronedarone caused the release of cytochrome c from mitochondria to cytosol, a prominent feature of apoptosis. In addition, the activation of caspase-2 was involved in dronedarone induced DNA damage and the activation of JNK and p38 signaling pathways. Inhibition of JNK and p38 by specific inhibitors attenuated dronedarone-induced cell death, apoptosis, and DNA damage. Additionally, suppression of caspase-2 decreased the activities of JNK and p38. Dronedarone triggered DNA damage was regulated by downregulation of topoisomerase IIα at both transcriptional and post-transcriptional levels. Taken together, our data show that DNA damage, apoptosis, and the activation of JNK and p38 contribute to dronedarone-induced cytotoxicity. Environ. Mol. Mutagen. 59:278-289, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- Correspondence to: Si Chen, Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), Jefferson, AR 72079. or Lei Guo, Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079.
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- School of Public Health, Qingdao University, Qingdao, China
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
- Correspondence to: Si Chen, Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), Food and Drug Administration (FDA), Jefferson, AR 72079. or Lei Guo, Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079.
| |
Collapse
|
33
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
ROS generation and JNK activation contribute to 4-methoxy-TEMPO-induced cytotoxicity, autophagy, and DNA damage in HepG2 cells. Arch Toxicol 2017; 92:717-728. [PMID: 28993908 DOI: 10.1007/s00204-017-2084-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023]
Abstract
4-Methoxy-TEMPO, a derivative of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), is a stable nitroxide radical and is generally used in organic and pharmaceutical syntheses for the oxidation of alcohols. Previously, we reported the involvement of reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) in TEMPO-induced apoptosis in mouse L5178Y cells. In this study, we investigated 4-methoxy-TEMPO induced toxicity in human HepG2 hepatoma cells and its underlying mechanisms. Treatments with 4-methoxy-TEMPO (0.5-5 mM for 2-6 h) caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, decreased levels of glutathione. 4-Methoxy-TEMPO treatment also induced DNA damage as characterized by increased levels of DNA tail intensity in the Comet assay, increased phosphorylation of related proteins including γ-H2A.X, p-Chk1, and p-Chk2, and activation of MAPK signaling pathways. In addition, 4-methoxy-TEMPO also induced autophagy as demonstrated by the conversion of LC3B-I to II, decreased level of p62, and the appearance of GFP-LC3B punctae. To investigate the crosstalk between different signaling pathways, pretreatment of HepG2 with N-acetylcysteine, an ROS scavenger, attenuated 4-methoxy-TEMPO-induced DNA damage, suppressed JNK activation, and diminished autophagy induction. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased DNA damage levels induced by 4-methoxy-TEMPO. These results suggest that multiple mechanisms including ROS generation, DNA damage, and MAPK activation contribute to 4-methoxy-TEMPO-induced toxicity.
Collapse
|
35
|
Ren Z, Chen S, Qing T, Xuan J, Couch L, Yu D, Ning B, Shi L, Guo L. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology 2017; 392:11-21. [PMID: 28988120 DOI: 10.1016/j.tox.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Tao Qing
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Letha Couch
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Leming Shi
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
36
|
Wang YF, Tang ZH, Li T, Xu XH, Chen X, Wang Y, Wang YT, Lu JJ. Baicalein protects tert‑butyl hydroperoxide‑induced hepatotoxicity dependent of reactive oxygen species removal. Mol Med Rep 2017; 16:8392-8398. [PMID: 28944883 DOI: 10.3892/mmr.2017.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Baicalein (BA), one of the major bioactive flavonoids isolated from Scutellariae Radix, possesses various pharmacological activities. The present study aimed to investigate the protective effects of BA on tert‑butyl hydroperoxide (t‑BHP)‑induced hepatotoxicity, and to investigate the potential mechanisms in LO2 cells. BA was demonstrated to possess protective properties against t‑BHP injury in LO2 cells, as evidenced by MTT and lactate dehydrogenase assays. BA significantly prevented t‑BHP‑induced depolarization of mitochondrial membrane potential (MMP), decreased the percentage of apoptotic cells caused by t‑BHP, and prevented intracellular reactive oxygen species (ROS) generation in LO2 cells. Furthermore, BA slightly triggered autophagy in LO2 cells, as evidenced by the elevation of LC3‑II expression, while BA combined treatment with an autophagy inhibitor (chloroquine) or activator (rapamycin) did not alter the hepatoprotective properties. In conclusion, BA may possess a hepatoprotective effect against t‑BHP‑induced liver cell injury, dependent on ROS removal. Therefore, BA may represent a potential drug candidate in protecting hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
37
|
Teratogenic Effect of Usnic Acid from Cladonia substellata Vainio during Organogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5948936. [PMID: 28337452 PMCID: PMC5350305 DOI: 10.1155/2017/5948936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
Studies about toxicological potential of usnic acid are limited. This way, the vast majority of data available in the literature are related only to biological activities. This is the first study that aimed to evaluate the oral toxicity of usnic acid during the period of organogenesis. Females rats were distributed in the control groups, treated I and II, at doses of 15 and 25 mg/kg, administered by gavage during the 6° to 15° days of pregnancy. After 20 days the fetuses were removed and analyzed. A reduction in weight gain during pregnancy, increased resorption, reduction in the number of viable fetuses, and their body weight were observed. Morphological changes in the litter were visualized as exposure of the eye and atrophy of the limbs at the dose of 25 mg/kg. Histological analysis of the liver of the fetus showed reduction in the number of megakaryocytes between experimental groups and increase in the number of hepatocytes in a dose of 25 mg/kg. The experimental model used in this study reveals teratogenic effect of usnic acid in the period of organogenesis. Since this achievement, the importance of evaluating the toxic effects of natural substances is imperative, in order to elucidate the care in their indication as drug.
Collapse
|
38
|
DİNÇSOY AB, CANSARAN DUMAN D. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk J Biol 2017. [DOI: 10.3906/biy-1609-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
39
|
Ren Z, Chen S, Zhang J, Doshi U, Li AP, Guo L. Endoplasmic Reticulum Stress Induction and ERK1/2 Activation Contribute to Nefazodone-Induced Toxicity in Hepatic Cells. Toxicol Sci 2016; 154:368-380. [PMID: 27613715 DOI: 10.1093/toxsci/kfw173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nefazodone, an antagonist for the 5-hydroxytryptanine receptor, has been used for the treatment of depression. Acute liver injury has been documented to be associated with the use of nefazodone; however, the mechanisms of nefazodone-induced liver toxicity are not well defined. In this report, using biochemical and molecular analyses, we characterized the molecular mechanisms underlying the hepatotoxicity of nefazodone. We found that nefazodone induced endoplasmic reticulum (ER) stress in HepG2 cells, as the expression of typical ER stress markers, including CHOP, ATF-4, and p-eIF2α, was significantly increased, and splicing of XBP1 was observed. Nefazodone-suppressed protein secretion was evaluated using a Gaussia luciferase reporter assay that measures ER stress. The ER stress inhibitors (4-phenylbutyrate and salubrinal) and knockdown of ATF-4 gene attenuated nefazodone-induced ER stress and cytotoxicity. Nefazodone activated the MAPK signaling pathway, as indicated by increased phosphorylation of JNK, ERK1/2, and p38. Inhibition of ERK1/2 reduced ER stress caused by nefazodone. Taken together, our findings suggest that ER stress contributes to nefazodone-induced toxicity in HepG2 cells and that the MAPK signaling pathway plays an important role in ER stress.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Jie Zhang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | | | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas;
| |
Collapse
|
40
|
Lee Y. Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe. Toxicol Res 2016; 32:225-30. [PMID: 27437089 PMCID: PMC4946420 DOI: 10.5487/tr.2016.32.3.225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, α-zingiberene, was extracted from Zingiber officinale Roscoe, and α-zingiberene makes up 35.02 ± 0.30% of its total essential oil. α-Zingiberene showed low IC50 values, 60.6 ± 3.6, 46.2 ± 0.6, 172.0 ± 6.6, 80.3 ± 6.6 (μg/mL) in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than IC50 values of general essential oil in those cells. The treatment of α-zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of α-zingiberene, which mediates cell death. These results suggest that the apoptotic effect of α-zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of α-zingiberene is a result of apoptotic effects, and α-zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongkyu Lee
- Department of Energy and Bio Engineering, Dongseo University, Busan, Korea
| |
Collapse
|
41
|
Chen S, Zhang Z, Qing T, Ren Z, Yu D, Couch L, Ning B, Mei N, Shi L, Tolleson WH, Guo L. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol 2016; 91:1293-1307. [PMID: 27369375 DOI: 10.1007/s00204-016-1775-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023]
Abstract
Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6 h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Zhuhong Zhang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA.,Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tao Qing
- School of Pharmacy, School of Life Sciences, Fudan-Zhangjiang Center for Clinical Genomics and Zhanjiang Center for Translational Medicine, Fudan University, Shanghai, 200438, China
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Dianke Yu
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Letha Couch
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Leming Shi
- School of Pharmacy, School of Life Sciences, Fudan-Zhangjiang Center for Clinical Genomics and Zhanjiang Center for Translational Medicine, Fudan University, Shanghai, 200438, China
| | - William H Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
42
|
Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis 2016; 7:e2283. [PMID: 27362801 PMCID: PMC5108337 DOI: 10.1038/cddis.2016.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL.
Collapse
Affiliation(s)
- R Ma
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - T Li
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - M Cao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Y Si
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - X Wu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - L Zhao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Z Yao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Y Zhang
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - S Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - R Deng
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - V A Novakovic
- Department of Research, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| | - Y Bi
- Department of Cardiology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, Harbin, China
| | - B Yu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - S Yang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - J Wang
- Department of Hematology of the Second Hospital, Harbin Medical University, Harbin, China
| | - J Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Shi
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- Department of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:441-459. [PMID: 27064003 DOI: 10.1016/j.phymed.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. PURPOSE This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. CHAPTERS The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. CONCLUSION While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized, the knowledge of a large number of lichen substances with interesting structures is still limited to various in vitro assays with insufficient biological annotations, and this area still deserves more research in bioactivity, drug targets and screening. Attention should be paid on the accurate interpretation of their bioactivity for further applications avoiding over-interpretations from various in vitro bioassays.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
44
|
Zugic A, Jeremic I, Isakovic A, Arsic I, Savic S, Tadic V. Evaluation of Anticancer and Antioxidant Activity of a Commercially Available CO2 Supercritical Extract of Old Man's Beard (Usnea barbata). PLoS One 2016; 11:e0146342. [PMID: 26745885 PMCID: PMC4706385 DOI: 10.1371/journal.pone.0146342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022] Open
Abstract
There is a worldwide ongoing investigation for novel natural constituents with cytotoxic and antioxidant properties. The aim of this study was to investigate chemical profile and stated biological activities of the supercritical CO2 extract (SCE) of old man’s beard compared to the extracts obtained using the conventional techniques (Soxhlet extracts and macerate). The most abundant compound identified was usnic acid, which content was inversely proportional to the polarity of the solvent used and was the highest in the SCE, which was the sample revealing the highest cytotoxic activity in tested tumor cell lines (B16 mouse melanoma and C6 rat glioma), with lower IC50 values compared to pure usnic acid. Further investigations suggested both SCE and usnic acid to induce apoptosis and/or autophagy in B16 and C6, indicating higher cytotoxicity of SCE to be related to the higher degree of ROS production. A good correlation of usnic acid content in the extracts and their antioxidant capacity was established, extricating SCE as the most active one. Presented results support further investigations of SCE of old man’s beard as a prospective therapeutic agent with potential relevance in the treatment of cancer and/or in oxidative stress-mediated conditions.
Collapse
Affiliation(s)
- Ana Zugic
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Belgrade, Serbia
| | - Ivica Jeremic
- Institute of Rheumatology, University of Belgrade, Belgrade, Serbia
- Institute of Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Arsic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Vanja Tadic
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
45
|
Chen S, Zhang Z, Wu Y, Shi Q, Yan H, Mei N, Tolleson WH, Guo L. Endoplasmic Reticulum Stress and Store-Operated Calcium Entry Contribute to Usnic Acid-Induced Toxicity in Hepatic Cells. Toxicol Sci 2015; 146:116-26. [PMID: 25870318 DOI: 10.1093/toxsci/kfv075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of usnic acid as a weight loss agent is a safety concern due to reports of acute liver failure in humans. Previously we demonstrated that usnic acid induces apoptosis and cytotoxicity in hepatic HepG2 cells. We also demonstrated that usnic acid induces autophagy as a survival mechanism against its cytotoxicity. In this study, we investigated and characterized further molecular mechanisms underlying the toxicity of usnic acid in HepG2 cells. We found that usnic acid causes endoplasmic reticulum (ER) stress demonstrated by the increased expression of typical ER stress markers, including CHOP, ATF-4, p-eIF2α, and spliced XBP1. Usnic acid inhibited the secretion of Gaussia luciferase measured by an ER stress reporter assay. An ER stress inhibitor 4-phenylbutyrate attenuated usnic acid-induced apoptosis. Moreover, usnic acid significantly increased the cytosolic free Ca(2+) concentration. Usnic acid increased the expression of calcium release-activated calcium channel protein 1 (CRAM1 or ORAI1) and stromal interaction molecule 1, two key components of store-operated calcium entry (SOCE), which is the major Ca(2+) influx pathway in non-excitable cells, this finding was also confirmed in primary rat hepatocytes. Furthermore, knockdown of ORAI1 prevented ER stress and ATP depletion in response to usnic acid. In contrast, overexpression of ORAI1 increased ER stress and ATP depletion caused by usnic acid. Taken together, our results suggest that usnic acid disturbs calcium homeostasis, induces ER stress, and that usnic acid-induced cellular damage occurs at least partially via activation of the Ca(2+) channel of SOCE.
Collapse
Affiliation(s)
- Si Chen
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Zhuhong Zhang
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079 *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Yuanfeng Wu
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Qiang Shi
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Hua Yan
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Nan Mei
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - William H Tolleson
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Lei Guo
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| |
Collapse
|
46
|
Reactive oxygen species and c-Jun N-terminal kinases contribute to TEMPO-induced apoptosis in L5178Y cells. Chem Biol Interact 2015; 235:27-36. [PMID: 25882087 DOI: 10.1016/j.cbi.2015.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 01/14/2023]
Abstract
The biological consequences of exposure to piperidine nitroxides is a concern, given their widespread use in manufacturing processes and their potential use in clinical applications. Our previous study reported that TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), a low molecular weight free radical, possesses pro-oxidative activity in L5178Y cells. In this study, we investigated and characterized the role of reactive oxygen species (ROS) in TEMPO-induced toxicity in L5178Y cells. We found that TEMPO induced time- and concentration-dependent intracellular ROS production and glutathione depletion. TEMPO also induced apoptosis as demonstrated by increased caspase-3/7 activity, an increased proportion of annexin V stained cells, and decreased expression of anti-apoptotic proteins including Bcl-2, Bcl-xL and Mcl-1. N-acetylcysteine, a ROS scavenger, attenuated the ROS production and apoptosis induced by TEMPO. Moreover, Western blot analyses revealed that TEMPO activated γ-H2A.X, a hallmark of DNA damage, and c-Jun N-terminal kinases (JNK), a key member in the mitogen-activated protein kinase (MAPK) signaling pathway. Addition of SP600125, a JNK-specific inhibitor, blocked TEMPO-mediated JNK phosphorylation and also attenuated TEMPO-induced apoptosis. These findings indicate that both ROS production and JNK activation are involved in TEMPO-induced apoptosis, and may contribute to the toxicity of TEMPO in L5178Y cells.
Collapse
|
47
|
Wu Y, Beland FA, Chen S, Liu F, Guo L, Fang JL. Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochem Pharmacol 2015; 95:324-36. [PMID: 25858412 DOI: 10.1016/j.bcp.2015.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
Tolvaptan, a vasopressin receptor 2 antagonist used to treat hyponatremia, has recently been reported to be associated with an increased risk of liver injury. In this study, we explored the underlying mechanisms of hepatotoxicity of tolvaptan using human HepG2 cells. Tolvaptan inhibited cell growth and caused cell death in a concentration- and time-dependent manner. Tolvaptan treatment led to delayed cell cycle progression, accompanied by decreased levels of several cyclins and cyclin-dependent kinases. Tolvaptan was found to cause DNA damage, as assessed by alkaline comet assays; this was confirmed by increased levels of 8-oxoguanine and phosphorylation of histone H2AX. Exposure of HepG2 cells to tolvaptan enhanced cytochrome C release and triggered apoptosis by modulating Bcl-2 family members. The activation of p38 contributed to tolvaptan-mediated apoptosis via down-regulation of Bcl-2. Proteasome inhibition altered tolvaptan-induced cell cycle deregulation and enhanced tolvaptan-induced apoptosis and cytotoxicity. Moreover, tolvaptan treatment induced autophagy. Inhibition of autophagy by knocking-down an autophagy-related gene increased tolvaptan-induced apoptosis and cytotoxicity. Taken together, our findings suggest that the cytotoxicity of tolvaptan results from delayed cell cycle progression, the induction of DNA damage, and the execution of apoptosis. In addition, a number of signaling pathways were perturbed by tolvaptan and played an important role in its cytotoxicity.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|