1
|
Mino Y, Hoshikawa K, Naito T, Akutsu S, Imoto Y, Nakatsugawa E, Saotome M, Maekawa Y, Kawakami J. Potential amelioration of liver function by low-dose tolvaptan in heart failure patients. Toxicol Rep 2025; 14:102009. [PMID: 40226810 PMCID: PMC11987637 DOI: 10.1016/j.toxrep.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Aim This study aimed to evaluate the relationships between the pharmacokinetics of tolvaptan and its metabolites (DM-4103 and DM-4107) and liver injury in heart failure patients, using relevant laboratory test values and markers of hepatocyte injury and biliary cholestasis. Method The plasma concentrations of tolvaptan, DM-4103, and DM-4107 were determined using LC-MS/MS in 51 Japanese heart failure patients. The relationships between the concentrations and the N-terminal fragment of pro-B-type natriuretic peptide (NT-proBNP), AST, and ALT were assessed. K18 and glutamate dehydrogenase as a marker of liver injury and CP-I and CP-III as indicators of OATP activity were also determined. Results The median concentrations of tolvaptan, DM-4103, and DM-4107 were 16.2, 287, and 38.0 ng/mL, respectively. AST, ALT, and T-Bil were significantly decreased after tolvaptan administration. They were negatively correlated with tolvaptan concentration. AST was also negatively correlated with DM-4107 concentration. CP-III was positively correlated with DM-4103 concentration; however, CP-I was negatively correlated with DM-4103 concentration. K18 and glutamate dehydrogenase were not correlated with tolvaptan concentration. Conclusion Low-dose tolvaptan did not cause liver injury. Pharmacokinetics of tolvaptan may be associated with potential amelioration of liver function in heart failure patients.
Collapse
Affiliation(s)
- Yasuaki Mino
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Kohei Hoshikawa
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Takafumi Naito
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shunta Akutsu
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Yumi Imoto
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Emi Nakatsugawa
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Masao Saotome
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Yuichiro Maekawa
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy and Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
2
|
Uno T, Hosomi K, Yokoyama S. Evaluation of tolvaptan-associated hepatic disorder using different national pharmacovigilance databases. Sci Rep 2024; 14:25943. [PMID: 39472632 PMCID: PMC11522566 DOI: 10.1038/s41598-024-77052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Tolvaptan-associated hepatic disorder is a rare, but lethal adverse event; however, the precise risk and time of onset remain unclear. This study aimed to characterize the severity, time‑to‑onset, and outcomes of hepatic disorder based on patient age and sex. Patient data were acquired from the Japanese Adverse Drug Event Report database (JADER) and the JAPIC AERS database, which consists of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) processed by the Japan Pharmaceutical Information Center. Hepatic disorder was classified as severe or nonsevere. Tolvaptan use was associated with hepatic disorder in analyses using the FAERS [Severe hepatic disorder: reporting odds ratio (ROR) 4.93, 95% confidence interval (CI) 4.33‒5.61; information component (IC) 2.11, 95% CI 1.92‒2.29; nonsevere hepatic disorder: ROR 6.78, 95% CI 6.01‒7.65; IC 2.51, 95% CI 2.33‒2.68] and the JADER (severe hepatic disorder: ROR 4.21, 95% CI 3.57‒4.97; IC 1.86, 95% CI 1.63‒2.10; nonsevere hepatic disorder: ROR 4.27, 95% CI 3.68‒4.95; IC 1.83, 95% CI 1.62‒2.04). A time‑to‑onset analysis revealed that the median onset time was significantly longer in patients aged < 60 years compared with patients aged ≥ 60, regardless of the severity (FAERS: severe hepatic disorder 7 vs. 58 days, p < 0.0001; nonsevere hepatic disorder 8 vs. 52.5 days, p < 0.0001; JADER: severe hepatic disorder 9.5 vs. 32 days, p = 0.0017; nonsevere hepatic disorder 9 vs. 89 days, p < 0.0001). Severe outcomes were observed, regardless of the severity of hepatic disorder. Patients should be monitored for liver function based on age to prevent fatal outcomes.
Collapse
Affiliation(s)
- Takaya Uno
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Kouichi Hosomi
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Satoshi Yokoyama
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
3
|
McGill MP, Threadgill DW. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J Clin Invest 2023; 133:e173750. [PMID: 37712424 PMCID: PMC10503792 DOI: 10.1172/jci173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Michael P. McGill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
| | - David W. Threadgill
- Interdisciplinary Graduate Program in Genetics and Genomics
- Department of Cell Biology and Genetics
- Department of Nutrition, and
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Keele GR. Which mouse multiparental population is right for your study? The Collaborative Cross inbred strains, their F1 hybrids, or the Diversity Outbred population. G3 (BETHESDA, MD.) 2023; 13:jkad027. [PMID: 36735601 PMCID: PMC10085760 DOI: 10.1093/g3journal/jkad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.
Collapse
Affiliation(s)
- Gregory R Keele
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
5
|
Zhang T, Keele GR, Gyuricza IG, Vincent M, Brunton C, Bell TA, Hock P, Shaw GD, Munger SC, de Villena FPM, Ferris MT, Paulo JA, Gygi SP, Churchill GA. Multi-omics analysis identifies drivers of protein phosphorylation. Genome Biol 2023; 24:52. [PMID: 36944993 PMCID: PMC10031968 DOI: 10.1186/s13059-023-02892-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.
Collapse
Affiliation(s)
- Tian Zhang
- Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
6
|
Cao X, Wang P, Yuan H, Zhang H, He Y, Fu K, Fang Q, Liu H, Su L, Yin L, Xu P, Xie Y, Xiong X, Wang J, Zhu X, Guo D. Benzodiazepine Derivatives as Potent Vasopressin V 2 Receptor Antagonists for the Treatment of Autosomal Dominant Kidney Disease. J Med Chem 2022; 65:9295-9311. [PMID: 35579344 DOI: 10.1021/acs.jmedchem.2c00567] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyst formation and enlargement in autosomal dominant kidney disease (ADPKD) is mainly driven by aberrantly increased cytosolic cAMP in renal tubule epithelial cells. Because the vasopressin V2 receptor (V2R) regulates intracellular cAMP levels in kidneys, a series of benzodiazepine derivatives were developed targeting the V2R. Among these derivatives, compound 25 exhibited potent binding affinity to the V2R (Ki = 9.0 ± 1.5 nM) and efficacious cAMP inhibition (IC50 = 9.2 ± 3.0 nM). This led to the suppression of cyst formation and growth in both an MDCK cell model and an embryonic kidney cyst model. Further advancing compound 25 in a murine model of ADPKD demonstrated a significantly improved in vivo efficacy compared with the reference compound tolvaptan. Overall, compound 25 holds therapeutic potential for the treatment of ADPKD.
Collapse
Affiliation(s)
- Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Peng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yan He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Qian Fang
- The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou 221002, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yuyang Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiaochun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Junqi Wang
- The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou 221002, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
7
|
Tovar A, Crouse WL, Smith GJ, Thomas JM, Keith BP, McFadden KM, Moran TP, Furey TS, Kelada SNP. Integrative analysis reveals mouse strain-dependent responses to acute ozone exposure associated with airway macrophage transcriptional activity. Am J Physiol Lung Cell Mol Physiol 2022; 322:L33-L49. [PMID: 34755540 PMCID: PMC8721896 DOI: 10.1152/ajplung.00237.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
Acute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across individuals in human populations and inbred mouse strains. However, molecular determinants of response, including susceptibility biomarkers that distinguish who will develop severe injury and inflammation, are not well characterized. We and others have demonstrated that airway macrophages (AMs) are an important resident immune cell type that are functionally and transcriptionally responsive to O3 inhalation. Here, we sought to explore influences of strain, exposure, and strain-by-O3 exposure interactions on AM gene expression and identify transcriptional correlates of O3-induced inflammation and injury across six mouse strains, including five Collaborative Cross (CC) strains. We exposed adult mice of both sexes to filtered air (FA) or 2 ppm O3 for 3 h and measured inflammatory and injury parameters 21 h later. Mice exposed to O3 developed airway neutrophilia and lung injury with strain-dependent severity. In AMs, we identified a common core O3 transcriptional response signature across all strains, as well as a set of genes exhibiting strain-by-O3 exposure interactions. In particular, a prominent gene expression contrast emerged between a low- (CC017/Unc) and high-responding (CC003/Unc) strain, as reflected by cellular inflammation and injury. Further inspection indicated that differences in their baseline gene expression and chromatin accessibility profiles likely contribute to their divergent post-O3 exposure transcriptional responses. Together, these results suggest that aspects of O3-induced respiratory responses are mediated through altered AM transcriptional signatures and further confirm the importance of gene-environment interactions in mediating differential responsiveness to environmental agents.
Collapse
Affiliation(s)
- Adelaide Tovar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wesley L Crouse
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gregory J Smith
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph M Thomas
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin P Keith
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathryn M McFadden
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy P Moran
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terrence S Furey
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Samir N P Kelada
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics & Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Bellos I. Safety Profile of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease. Ther Clin Risk Manag 2021; 17:649-656. [PMID: 34234441 PMCID: PMC8254589 DOI: 10.2147/tcrm.s286952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease constitutes the most prevalent hereditary kidney disease, associated with high rates of morbidity leading eventually to end-stage renal disease. Tolvaptan is a selective vasopressin antagonist and has emerged as a promising therapeutic option for patients with autosomal dominant polycystic kidney disease. The present review summarized current evidence regarding the safety profile of tolvaptan in patients with the disease. Consistent with its pharmacological action, aquaretic adverse events represent the most common side effects of tolvaptan, consisting of polyuria, pollakiuria and polydipsia. Gradual dose titration based on urinary osmolality, as well as dietary interventions aiming to reduce solute excretion, have been proposed as potential strategies to mitigate polyuria. In addition, tolvaptan administration may be complicated by liver injury, characterized by alanine aminotransferase and bilirubin elevations. Hepatotoxicity has been suggested to be triggered by impaired biliary clearance, activation of innate immunity and increased oxidative stress. Frequent monitoring of liver function tests has been shown to be effective in preventing Hy’s Law and liver failure cases. Uric acid elevation due to reduced renal excretion may lead to hyperuricemia and gout, although no drug discontinuations have been linked to these events. Future studies should confirm the safety profile of tolvaptan in large-scale real-world studies, clarify the pathogenetic pathways leading to hepatotoxicity and define its role in special populations, especially pediatric patients.
Collapse
Affiliation(s)
- Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Gibson A, Hammond S, Jaruthamsophon K, Roth S, Mosedale M, Naisbitt DJ. Tolvaptan- and Tolvaptan-Metabolite-Responsive T Cells in Patients with Drug-Induced Liver Injury. Chem Res Toxicol 2020; 33:2745-2748. [PMID: 33085478 PMCID: PMC7672698 DOI: 10.1021/acs.chemrestox.0c00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Tolvaptan is an effective drug for
the treatment of autosomal dominant
polycystic kidney disease, but its use is associated with a significant
risk of liver injury in a small number of patients. Herein we describe
the presence of tolvaptan- and tolvaptan-metabolite-responsive T cell
clones within the peripheral circulation of patients with liver injury.
Drug treatment of the clones resulted in a proliferative response
and secretion of IFN-γ, IL-13, and the cytolytic molecule granzyme
B. Future work should explore pathways of tolvaptan driven T cell
activation and the role of T cells in the disease pathogenesis.
Collapse
Affiliation(s)
- Andrew Gibson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Sharin Roth
- Otsuka Pharmaceutical Development & Commercialization, Inc., Research Boulevard, Rockville, Maryland 20882, United States
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| |
Collapse
|
10
|
Mosedale M, Cai Y, Eaddy JS, Corty RW, Nautiyal M, Watkins PB, Valdar W. Identification of Candidate Risk Factor Genes for Human Idelalisib Toxicity Using a Collaborative Cross Approach. Toxicol Sci 2020; 172:265-278. [PMID: 31501888 DOI: 10.1093/toxsci/kfz199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idelalisib is a phosphatidylinositol 3-kinase inhibitor highly selective for the delta isoform that has shown good efficacy in treating chronic lymphocytic leukemia and follicular lymphoma. In clinical trials, however, idelalisib was associated with rare, but potentially serious liver and lung toxicities. In this study, we used the Collaborative Cross (CC) mouse population to identify genetic factors associated with the drug response that may inform risk management strategies for idelalisib in humans. Eight male mice (4 matched pairs) from 50 CC lines were treated once daily for 14 days by oral gavage with either vehicle or idelalisib at a dose selected to achieve clinically relevant peak plasma concentrations (150 mg/kg/day). The drug was well tolerated across all CC lines, and there were no observations of overt liver injury. Differences across CC lines were seen in drug concentration in plasma samples collected at the approximate Tmax on study Days 1, 7, and 14. There were also small but statistically significant treatment-induced alterations in plasma total bile acids and microRNA-122, and these may indicate early hepatocellular stress required for immune-mediated hepatotoxicity in humans. Idelalisib treatment further induced significant elevations in the total cell count of terminal bronchoalveolar lavage fluid, which may be analogous to pneumonitis observed in the clinic. Genetic mapping identified loci associated with interim plasma idelalisib concentration and the other 3 treatment-related endpoints. Thirteen priority candidate quantitative trait genes identified in CC mice may now guide interrogation of risk factors for adverse drug responses associated with idelalisib in humans.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yanwei Cai
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics
| | - John Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | | | - Manisha Nautiyal
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine. Psychopharmacology (Berl) 2020; 237:979-996. [PMID: 31897574 PMCID: PMC7542678 DOI: 10.1007/s00213-019-05429-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.
Collapse
|
12
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Real M, Barnhill MS, Higley C, Rosenberg J, Lewis JH. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 2020; 42:365-387. [PMID: 30343418 DOI: 10.1007/s40264-018-0743-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium-glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017-2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.
Collapse
Affiliation(s)
- Mark Real
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA
| | - Michele S Barnhill
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Cory Higley
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Jessica Rosenberg
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
14
|
Woodhead JL, Pellegrini L, Shoda LKM, Howell BA. Comparison of the Hepatotoxic Potential of Two Treatments for Autosomal-Dominant Polycystic Kidney DiseaseUsing Quantitative Systems Toxicology Modeling. Pharm Res 2020; 37:24. [PMID: 31909447 PMCID: PMC6944674 DOI: 10.1007/s11095-019-2726-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Purpose Autosomal-dominant polycystic kidney disease (ADPKD) is an orphan disease with few current treatment options. The vasopressin V2 receptor antagonist tolvaptan is approved in multiple countries for the treatment of ADPKD, however its use is associated with clinically significant drug-induced liver injury. Methods In prior studies, the potential for hepatotoxicity of tolvaptan was correctly predicted using DILIsym®, a quantitative systems toxicology (QST) mathematical model of drug-induced liver injury. In the current study, we evaluated lixivaptan, another proposed ADPKD treatment and vasopressin V2 receptor antagonist, using DILIsym®. Simulations were conducted that assessed the potential for lixivaptan and its three main metabolites to cause hepatotoxicity due to three injury mechanisms: bile acid accumulation, mitochondrial dysfunction, and oxidative stress generation. Results of these simulations were compared to previously published DILIsym results for tolvaptan. Results No ALT elevations were predicted to occur at the proposed clinical dose for lixivaptan, in contrast to previously published simulation results for tolvaptan. As such, lixivaptan was predicted to have a markedly lower risk of hepatotoxicity compared to tolvaptan with respect to the hepatotoxicity mechanisms represented in DILIsym. Conclusions These results demonstrate the potential for using QST methods to differentiate drugs in the same class for their potential to cause hepatotoxicity. Electronic supplementary material The online version of this article (10.1007/s11095-019-2726-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J L Woodhead
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA.
| | - L Pellegrini
- Palladio Biosciences, Inc., Newtown, Pennsylvania, USA
| | - L K M Shoda
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Sukoff Rizzo SJ, McTighe S, McKinzie DL. Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies. Handb Exp Pharmacol 2020; 257:147-162. [PMID: 31595415 DOI: 10.1007/164_2019_282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal models consisting of inbred laboratory rodent strains have been a powerful tool for decades, helping to unravel the underpinnings of biological problems and employed to evaluate potential therapeutic treatments in drug discovery. While inbred strains demonstrate relatively reliable and predictable responses, using a single inbred strain alone or as a background to a mutation is analogous to running a clinical trial in a single individual and their identical twins. Indeed, complex etiologies drive the most common human diseases, and a single inbred strain that is a surrogate of a single genome, or data generated from a single sex, is not representative of the genetically diverse patient populations. Further, pharmacological and toxicology data generated in otherwise healthy animals may not translate to disease states where physiology, metabolism, and general health are compromised. The purpose of this chapter is to provide guidance for improving generalizability of preclinical studies by providing insight into necessary considerations for introducing systematic variation within the study design, such as genetic diversity, the use of both sexes, and selection of appropriate age and disease model. The outcome of implementing these considerations should be that reproducibility and generalizability of significant results are significantly enhanced leading to improved clinical translation.
Collapse
|
16
|
Raschi E, De Ponti F. Strategies for Early Prediction and Timely Recognition of Drug-Induced Liver Injury: The Case of Cyclin-Dependent Kinase 4/6 Inhibitors. Front Pharmacol 2019; 10:1235. [PMID: 31708776 PMCID: PMC6821876 DOI: 10.3389/fphar.2019.01235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
The idiosyncratic nature of drug-induced liver injury (DILI) represents a current challenge for drug developers, regulators and clinicians. The myriad of agents (including medications, herbals, and dietary supplements) with recognized DILI potential not only strengthens the importance of the post-marketing phase, when urgent withdrawal sometimes occurs for rare unanticipated liver toxicity, but also shows the imperfect predictivity of pre-clinical models and the lack of validated biomarkers beyond traditional, non-specific liver function tests. After briefly reviewing proposed key mechanisms of DILI, we will focus on drug-related risk factors (physiochemical and pharmacokinetic properties) recently proposed as predictors of DILI and use cyclin-dependent kinase 4/6 inhibitors, relatively novel oral anticancer medications approved for breast cancer, as a case study to discuss the feasibility of early detection of DILI signals during drug development: published data from pivotal clinical trials, unpublished post-marketing reports of liver adverse events, and pharmacokinetic properties will be used to provide a comparative evaluation of their liver safety and gain insight into drug-related risk factors likely to explain the observed differences.
Collapse
Affiliation(s)
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Khan MY, Rawala MS, Siddiqui M, Abid W, Aslam A. Tolvaptan-induced Liver Injury: Who is at Risk? A Case Report and Literature Review. Cureus 2019; 11:e4842. [PMID: 31410325 PMCID: PMC6684126 DOI: 10.7759/cureus.4842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyponatremia is a common clinical condition encountered in the hospital setting. Syndrome of inappropriate antidiuretic hormone (SIADH) is an important and one of the most common causes of hyponatremia. SIADH accounts for approximately one-third of all cases of hyponatremia. Tolvaptan is a vasopressin receptor antagonist used to treat SIADH. Hepatoxicity is a rare yet dangerous side effect from Tolvaptan use. We present a case of cholestatic liver injury in an elderly female who presented with hyponatremia. She received two doses of tolvaptan 15mg and developed worsening in her total bilirubin (T Bili) and alkaline phosphatase (Alk Phos) levels. Tolvaptan is known to cause elevated transaminase levels and the mechanism of action is thought to be idiosyncratic. Fortunately, the patient responded with an improvement in T Bili and Alk Phos levels after stopping tolvaptan. This case highlights the cautious use of tolvaptan in elderly patients with SIADH as even small doses can potentiate hepatotoxicity.
Collapse
Affiliation(s)
| | | | | | - Waqas Abid
- Interventional Radiology, Christiana Hospital, Newark, USA
| | - Aysha Aslam
- Internal Medicine, Louis A. Weiss Memorial Hospital, Chicago, USA
| |
Collapse
|
18
|
Luo YS, Cichocki JA, Hsieh NH, Lewis L, Wright FA, Threadgill DW, Chiu WA, Rusyn I. Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67011. [PMID: 31246107 PMCID: PMC6792382 DOI: 10.1289/ehp5105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism-associated genes [ Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 ( Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism-associated genes ( Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/ Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/ Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism-toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Joseph A. Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Lauren Lewis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Fred A. Wright
- Bioinformatics Research Center and Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - David W. Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
19
|
Abstract
The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.
Collapse
|
20
|
Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, Kashfeen A, Kirchoff KE, Linnertz CL, Sigmon JS, Miller DR, McMillan L, Pardo-Manuel de Villena F. Whole Genome Sequencing and Progress Toward Full Inbreeding of the Mouse Collaborative Cross Population. G3 (BETHESDA, MD.) 2019; 9:1303-1311. [PMID: 30858237 PMCID: PMC6505143 DOI: 10.1534/g3.119.400039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Two key features of recombinant inbred panels are well-characterized genomes and reproducibility. Here we report on the sequenced genomes of six additional Collaborative Cross (CC) strains and on inbreeding progress of 72 CC strains. We have previously reported on the sequences of 69 CC strains that were publicly available, bringing the total of CC strains with whole genome sequence up to 75. The sequencing of these six CC strains updates the efforts toward inbreeding undertaken by the UNC Systems Genetics Core. The timing reflects our competing mandates to release to the public as many CC strains as possible while achieving an acceptable level of inbreeding. The new six strains have a higher than average founder contribution from non-domesticus strains than the previously released CC strains. Five of the six strains also have high residual heterozygosity (>14%), which may be related to non-domesticus founder contributions. Finally, we report on updated estimates on residual heterozygosity across the entire CC population using a novel, simple and cost effective genotyping platform on three mice from each strain. We observe a reduction in residual heterozygosity across all previously released CC strains. We discuss the optimal use of different genetic resources available for the CC population.
Collapse
Affiliation(s)
| | | | - Timothy A Bell
- Department of Genetics
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lewis L, Borowa-Mazgaj B, de Conti A, Chappell GA, Luo YS, Bodnar W, Konganti K, Wright FA, Threadgill DW, Chiu WA, Pogribny IP, Rusyn I. Population-Based Analysis of DNA Damage and Epigenetic Effects of 1,3-Butadiene in the Mouse. Chem Res Toxicol 2019; 32:887-898. [PMID: 30990016 DOI: 10.1021/acs.chemrestox.9b00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.
Collapse
Affiliation(s)
- Lauren Lewis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Grace A Chappell
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27516 , United States
| | - Kranti Konganti
- Department of Molecular and Cellular Medicine, College of Medicine , Texas A&M University , College Station , Texas 77843-1114 , United States
| | - Fred A Wright
- Bioinformatics Research Center , North Carolina State University , Raleigh , North Carolina 27695-7566 , United States
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, College of Medicine , Texas A&M University , College Station , Texas 77843-1114 , United States
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
22
|
Mosedale M, Eaddy JS, Trask OJ, Holman NS, Wolf KK, LeCluyse E, Ware BR, Khetani SR, Lu J, Brock WJ, Roth SE, Watkins PB. miR-122 Release in Exosomes Precedes Overt Tolvaptan-Induced Necrosis in a Primary Human Hepatocyte Micropatterned Coculture Model. Toxicol Sci 2019; 161:149-158. [PMID: 29029277 DOI: 10.1093/toxsci/kfx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is thought to often result from an adaptive immune attack on the liver. However, it has been proposed that the cascade of events culminating in an adaptive immune response begins with drug-induced hepatocyte stress, release of exosomal danger signals, and innate immune activation, all of which may occur in the absence of significant hepatocelluar death. A micropatterned coculture model (HepatoPac) was used to explore the possibility that changes in exosome content precede overt necrosis in response to the IDILI drug tolvaptan. Hepatocytes from 3 human donors were exposed to a range of tolvaptan concentrations bracketing plasma Cmax or DMSO control continuously for 4, 24, or 72 h. Although alanine aminotransferase release was not significantly affected at any concentration, tolvaptan exposures at approximately 30-fold median plasma Cmax resulted in increased release of exosomal microRNA-122 (miR-122) into the medium. Cellular imaging and microarray analysis revealed that the most significant increases in exosomal miR-122 were associated with programmed cell death and small increases in membrane permeability. However, early increases in exosome miR-122 were more associated with mitochondrial-induced apoptosis and oxidative stress. Taken together, these data suggest that tolvaptan treatment induces cellular stress and exosome release of miR-122 in primary human hepatocytes in the absence of overt necrosis, providing direct demonstration of this with a drug capable of causing IDILI. In susceptible individuals, these early events may occur at pharmacologic concentrations of tolvaptan and may promote an adaptive immune attack that ultimately results in clinically significant liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - J Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - O Joseph Trask
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Natalie S Holman
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kristina K Wolf
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,QPS DMPK Hepatic Biosciences, Research Triangle Park, North Carolina 27709
| | - Edward LeCluyse
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Brenton R Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Jingtao Lu
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - William J Brock
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland 20850.,Brock Scientific Consulting, Montgomery Village, Maryland 20886
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland 20850
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
23
|
Corty RW, Valdar W. QTL Mapping on a Background of Variance Heterogeneity. G3 (BETHESDA, MD.) 2018; 8:3767-3782. [PMID: 30389794 DOI: 10.1101/276980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard procedures can falter: in testing for QTL associations, they attribute too much weight to observations that are noisy and too little to those that are precise, resulting in reduced power and and increased susceptibility to false positives. The negative effects of such "background variance heterogeneity" (BVH) on standard QTL mapping have received little attention until now, although the subject is closely related to work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both (mvQTL). We compare linear regression for mQTL and Levene's test for vQTL, with tests more recently developed, including tests based on the double generalized linear model (DGLM), which can model BVH explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based tests accurately control false positive rate and are more powerful than the other tests. We also find that some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our novel approach, which we term "mean-variance QTL mapping", to publicly available data on a mouse backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight.
Collapse
Affiliation(s)
- Robert W Corty
- Department of Genetics
- Bioinformatics and Computational Biology Curriculum
| | - William Valdar
- Department of Genetics
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
24
|
Corty RW, Valdar W. QTL Mapping on a Background of Variance Heterogeneity. G3 (BETHESDA, MD.) 2018; 8:3767-3782. [PMID: 30389794 PMCID: PMC6288843 DOI: 10.1534/g3.118.200790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022]
Abstract
Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard procedures can falter: in testing for QTL associations, they attribute too much weight to observations that are noisy and too little to those that are precise, resulting in reduced power and and increased susceptibility to false positives. The negative effects of such "background variance heterogeneity" (BVH) on standard QTL mapping have received little attention until now, although the subject is closely related to work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both (mvQTL). We compare linear regression for mQTL and Levene's test for vQTL, with tests more recently developed, including tests based on the double generalized linear model (DGLM), which can model BVH explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based tests accurately control false positive rate and are more powerful than the other tests. We also find that some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our novel approach, which we term "mean-variance QTL mapping", to publicly available data on a mouse backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight.
Collapse
Affiliation(s)
- Robert W Corty
- Department of Genetics
- Bioinformatics and Computational Biology Curriculum
| | - William Valdar
- Department of Genetics
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
25
|
Common variation near IRF6 is associated with IFN-β-induced liver injury in multiple sclerosis. Nat Genet 2018; 50:1081-1085. [PMID: 30013178 DOI: 10.1038/s41588-018-0168-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system treated with disease-modifying therapies, including the biologic, interferon-β (IFN-β). Up to 60% of IFN-β-exposed MS patients develop abnormal biochemical liver test results1,2, and 1 in 50 experiences drug-induced liver injury3. Since genomic variation contributes to other forms of drug-induced liver injury4,5, we aimed to identify biomarkers of IFN-β-induced liver injury using a two-stage genome-wide association study. The rs2205986 variant, previously linked to differential expression of IRF6, surpassed genome-wide significance in the combined two-stage analysis (P = 2.3 × 10-8, odds ratio = 8.3, 95% confidence interval = 3.6-19.2). Analysis of an independent cohort of IFN-β-treated MS patients identified via electronic medical records showed that rs2205986 was also associated with increased peak levels of aspartate aminotransferase (P = 7.6 × 10-5) and alkaline phosphatase (P = 4.9 × 10-4). We show that these findings may be applicable to predicting IFN-β-induced liver injury, offering insight into its safer use.
Collapse
|
26
|
Makabe S, Mochizuki T, Mitobe M, Aoyama Y, Kataoka H, Tsuchiya K, Nitta K. Elevation of the serum liver enzyme levels during tolvaptan treatment in patients with autosomal dominant polycystic kidney disease (ADPKD). Clin Exp Nephrol 2018; 22:1079-1087. [PMID: 29508162 DOI: 10.1007/s10157-018-1545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND In 2014, tolvaptan, a vasopressin receptor antagonist, was approved for the treatment of autosomal dominant polycystic kidney disease (ADPKD) in Japan. Clinical trials of tolvaptan revealed frequent occurrence of the liver function abnormality. According to the package insert in Japan, liver function tests should be performed once a month in patients receiving tolvaptan. Furthermore, immediate discontinuation of tolvaptan is recommended in the appearance of liver function abnormalities. METHODS Seven patients of ADPKD who was discontinued tolvaptan because of elevation of the serum liver enzyme levels were described in detail and analyzed. RESULTS None of them fulfilled the criteria for applicability of Hy's law, which predicts a high risk of severe, potentially fatal, drug-induced liver injury (DILI). In our patients, the rate of increase of total kidney volume (TKV) significantly decreased during tolvaptan administration, but increased after discontinuation; in Cases 1-5, mean annual growth rate of TKV during administration was - 10.15%/year, and during discontinuation was + 23.72%/year. After the serum liver enzyme levels returned to normal range, tolvaptan was resumed in six patients with informed consent. Except one patient, tolvaptan has been continued without increase of the serum liver enzyme levels. CONCLUSION In patients with mild elevation of the serum liver enzyme, as is less than three times the upper limit of normal (ULN), resumption of tolvaptan may be considered after the serum liver enzyme levels return to normal range.
Collapse
Affiliation(s)
- Shiho Makabe
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshio Mochizuki
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Michihiro Mitobe
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yumi Aoyama
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Kataoka
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Tsuchiya
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kosaku Nitta
- Department of Internal Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
27
|
Chiu WA, Rusyn I. Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities. Mamm Genome 2018; 29:182-189. [PMID: 29299621 PMCID: PMC5849521 DOI: 10.1007/s00335-017-9731-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Characterizing population variability, including identifying susceptible populations and quantifying their increased susceptibility, is an important aspect of chemical risk assessment, but one that is challenging with traditional experimental models and risk assessment methods. New models and methods to address population variability can be used to advance the human health assessments of chemicals in three key areas. First, with respect to hazard identification, evaluating toxicity using population-based in vitro and in vivo models can potentially reduce both false positive and false negative signals. Second, with respect to evaluating mechanisms of toxicity, enhanced ability to do genetic mapping using these models allows for the identification of key biological pathways and mechanisms that may be involved in toxicity and/or susceptibility. Third, with respect to dose-response assessment, population-based toxicity data can serve as a surrogate for human variability, and thus be used to quantitatively estimate the degree of human toxicokinetic/toxicodynamic variability and thereby increase confidence in setting health-protective exposure limits. A number of case studies have been published that demonstrate the potential opportunities for improving risk assessment and decision-making, and include studies using Collaborative Cross and Diversity Outbred mice, as well as populations of human cell lines from the 1000 Genomes project. Key challenges include the need to apply more sophisticated computational and statistical models analyzing population-based toxicity data, and the need to integrate these more complex analyses into risk assessments and decision-making.
Collapse
Affiliation(s)
- Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Israel JW, Chappell GA, Simon JM, Pott S, Safi A, Lewis L, Cotney P, Boulos HS, Bodnar W, Lieb JD, Crawford GE, Furey TS, Rusyn I. Tissue- and strain-specific effects of a genotoxic carcinogen 1,3-butadiene on chromatin and transcription. Mamm Genome 2018; 29:153-167. [PMID: 29429127 PMCID: PMC6095468 DOI: 10.1007/s00335-018-9739-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/03/2018] [Indexed: 12/27/2022]
Abstract
Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.
Collapse
Affiliation(s)
- Jennifer W Israel
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Grace A Chappell
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Alexias Safi
- Department of Pediatrics, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Lauren Lewis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Paul Cotney
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hala S Boulos
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Gregory E Crawford
- Department of Pediatrics, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Terrence S Furey
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
29
|
Venkatratnam A, House JS, Konganti K, McKenney C, Threadgill DW, Chiu WA, Aylor DL, Wright FA, Rusyn I. Population-based dose-response analysis of liver transcriptional response to trichloroethylene in mouse. Mamm Genome 2018; 29:168-181. [PMID: 29353386 DOI: 10.1007/s00335-018-9734-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Studies of gene expression are common in toxicology and provide important clues to mechanistic understanding of adverse effects of chemicals. Most prior studies have been performed in a single strain or cell line; however, gene expression is heavily influenced by the genetic background, and these genotype-expression differences may be key drivers of inter-individual variation in response to chemical toxicity. In this study, we hypothesized that the genetically diverse Collaborative Cross mouse population can be used to gain insight and suggest mechanistic hypotheses for the dose- and genetic background-dependent effects of chemical exposure. This hypothesis was tested using a model liver toxicant trichloroethylene (TCE). Liver transcriptional responses to TCE exposure were evaluated 24 h after dosing. Transcriptomic dose-responses were examined for both TCE and its major oxidative metabolite trichloroacetic acid (TCA). As expected, peroxisome- and fatty acid metabolism-related pathways were among the most dose-responsive enriched pathways in all strains. However, nearly half of the TCE-induced liver transcriptional perturbation was strain-dependent, with abundant evidence of strain/dose interaction, including in the peroxisomal signaling-associated pathways. These effects were highly concordant between the administered TCE dose and liver levels of TCA. Dose-response analysis of gene expression at the pathway level yielded points of departure similar to those derived from the traditional toxicology studies for both non-cancer and cancer effects. Mapping of expression-genotype-dose relationships revealed some significant associations; however, the effects of TCE on gene expression in liver appear to be highly polygenic traits that are challenging to positionally map. This study highlights the usefulness of mouse population-based studies in assessing inter-individual variation in toxicological responses, but cautions that genetic mapping may be challenging because of the complexity in gene exposure-dose relationships.
Collapse
Affiliation(s)
- Abhishek Venkatratnam
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas, 77843, USA.,Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Kranti Konganti
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas, 77843, USA
| | - Connor McKenney
- NCSU Undergraduate program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David W Threadgill
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas, 77843, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas, 77843, USA
| | - David L Aylor
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas, 77843, USA.
| |
Collapse
|
30
|
Schoenrock SA, Oreper D, Farrington J, McMullan RC, Ervin R, Miller DR, Pardo-Manuel de Villena F, Valdar W, Tarantino LM. Perinatal nutrition interacts with genetic background to alter behavior in a parent-of-origin-dependent manner in adult Collaborative Cross mice. GENES BRAIN AND BEHAVIOR 2017; 17:e12438. [PMID: 29125223 DOI: 10.1111/gbb.12438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
Abstract
Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent-of-origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress-induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety-like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet-by-PO effects on body weight, stress response, anxiety- and depressive-like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.
Collapse
Affiliation(s)
- S A Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D Oreper
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Bioinformatics and Computational Biology Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - J Farrington
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R C McMullan
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R Ervin
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D R Miller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - F Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - W Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Identification of trans Protein QTL for Secreted Airway Mucins in Mice and a Causal Role for Bpifb1. Genetics 2017; 207:801-812. [PMID: 28851744 DOI: 10.1534/genetics.117.300211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B.
Collapse
|
32
|
Oreper D, Cai Y, Tarantino LM, de Villena FPM, Valdar W. Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3 (BETHESDA, MD.) 2017; 7:1623-1630. [PMID: 28592645 PMCID: PMC5473744 DOI: 10.1534/g3.117.041491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The Collaborative Cross (CC) is a panel of recently established multiparental recombinant inbred mouse strains. For the CC, as for any multiparental population (MPP), effective experimental design and analysis benefit from detailed knowledge of the genetic differences between strains. Such differences can be directly determined by sequencing, but until now whole-genome sequencing was not publicly available for individual CC strains. An alternative and complementary approach is to infer genetic differences by combining two pieces of information: probabilistic estimates of the CC haplotype mosaic from a custom genotyping array, and probabilistic variant calls from sequencing of the CC founders. The computation for this inference, especially when performed genome-wide, can be intricate and time-consuming, requiring the researcher to generate nontrivial and potentially error-prone scripts. To provide standardized, easy-to-access CC sequence information, we have developed the Inbred Strain Variant Database (ISVdb). The ISVdb provides, for all the exonic variants from the Sanger Institute mouse sequencing dataset, direct sequence information for CC founders and, critically, the imputed sequence information for CC strains. Notably, the ISVdb also: (1) provides predicted variant consequence metadata; (2) allows rapid simulation of F1 populations; and (3) preserves imputation uncertainty, which will allow imputed data to be refined in the future as additional sequencing and genotyping data are collected. The ISVdb information is housed in an SQL database and is easily accessible through a custom online interface (http://isvdb.unc.edu), reducing the analytic burden on any researcher using the CC.
Collapse
Affiliation(s)
- Daniel Oreper
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Yanwei Cai
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Lisa M Tarantino
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Lineberger Comprehensive Cancer Center
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Lineberger Comprehensive Cancer Center
| |
Collapse
|
33
|
Mosedale M, Watkins PB. Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther 2017; 101:469-480. [PMID: 27861792 DOI: 10.1002/cpt.564] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) is a major public health problem. Intrinsic (dose-dependent) DILI associated with acetaminophen overdose is the number one cause of acute liver failure in the US. However, the most problematic type of DILI impacting drug development is idiosyncratic, occurring only very rarely among treated patients and often only after several weeks or months of treatment with the offending drug. Recent advances in our understanding of the pathogenesis of DILI suggest that three mechanisms may underlie most hepatocyte effects in response to both intrinsic and idiosyncratic DILI drugs: mitochondrial dysfunction, oxidative stress, and alterations in bile acid homeostasis. However, in some cases hepatocyte stress promotes an immune response that results in clinically important idiosyncratic DILI. This review discusses recent advances in our understanding of the pathogenesis of both intrinsic and idiosyncratic DILI as well as emerging tools and techniques that will likely improve DILI risk identification and management.
Collapse
Affiliation(s)
- M Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - P B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|