1
|
Bauer AK, Romo D, Friday F, Cho K, Velmurugan K, Upham BL. Non-Genotoxic and Environmentally Relevant Lower Molecular Weight Polycyclic Aromatic Hydrocarbons Significantly Increase Tumorigenicity of Benzo[ a]pyrene in a Lung Two-Stage Mouse Model. TOXICS 2024; 12:882. [PMID: 39771097 PMCID: PMC11679119 DOI: 10.3390/toxics12120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[a]pyrene (B[a]P), a legacy PAH. We specifically determined the effects of an LMW PAH mixture containing 1-methylanthracene (1MeA), fluoranthene (Flthn), and phenanthrene (Phe) combined with B[a]P on lung tumor promotion. To test this hypothesis, we used a two-stage, initiation/promotion BALB/ByJ female lung tumor mouse model. The mice were initiated with 3-methylcholanthrene followed by exposures to B[a]P, the LMW PAH mixture, and the combination of the LMW PAH mixture plus B[a]P, all at 10 mg/kg. The LMW PAHs combined with B[a]P significantly increased the promotion and incidence of lung tumors over that of B[a]P alone. The LMW PAHs in the absence of B[a]P did not significantly promote tumors, indicating strong co-promotional activities. We further assessed the effects of these PAHs on other hallmarks of cancer, namely, bronchoalveolar lavage fluid inflammatory infiltrates, pro-inflammatory transcripts, KC protein content, and mRNA expression of the gap junction (Gja1) and epiregulin (Ereg) genes. The LMW PAHs increased the biomarkers of inflammation, decreased Gja1 expression, and increased Ereg expression, all consistent with tumor promotion. This study indicates that non-genotoxic LMW PAHs can contribute to the cancer process and warrants further studies to assess the carcinogenic risks of other LMW PAHs.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Deedee Romo
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Finnegan Friday
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kaila Cho
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
2
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
3
|
Lee CY, Wu SW, Yang JJ, Chen WY, Chen CJ, Chen HH, Lee YC, Su CH, Kuan YH. Vascular endothelial dysfunction induced by 3-bromofluoranthene via MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation. Arch Toxicol 2024; 98:2247-2259. [PMID: 38635053 PMCID: PMC11169047 DOI: 10.1007/s00204-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
- School of Medicine, Institute of Medicine and Public Health, Chung Shan Medical University, Taichung, Taiwan
- Chung Sheng Clinic, Nantou, Taiwan
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Monteiro V, Dias da Silva D, Martins M, Guedes de Pinho P, Pinto J. Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. ENVIRONMENTAL RESEARCH 2024; 249:118394. [PMID: 38307181 DOI: 10.1016/j.envres.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Collapse
Affiliation(s)
- Vânia Monteiro
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Diana Dias da Silva
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Marta Martins
- MARE ‒ Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Colvin VC, Bramer LM, Rivera BN, Pennington JM, Waters KM, Tilton SC. Modeling PAH Mixture Interactions in a Human In Vitro Organotypic Respiratory Model. Int J Mol Sci 2024; 25:4326. [PMID: 38673911 PMCID: PMC11050152 DOI: 10.3390/ijms25084326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.
Collapse
Affiliation(s)
- Victoria C. Colvin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M. Bramer
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brianna N. Rivera
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Jamie M. Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Katrina M. Waters
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Zhou M, Yang S, Cao L, Dai W, Nie X, Mu G, Zhang X, Wang B, Ma J, Wang D, Shi T, Wang C, Hao X, Chen W. Longitudinal association of polycyclic aromatic hydrocarbons and genetic risk with lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122801. [PMID: 37890693 DOI: 10.1016/j.envpol.2023.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
To quantify the association of polycyclic aromatic hydrocarbons (PAHs) and the polygenic risk score (PRS) with lung function decline, we developed a repeated-measures study with 4681 observations from baseline and 6-year follow-up of the Wuhan-Zhuhai cohort. Lung function and urinary monohydroxylated PAH metabolites (OH-PAHs) were measured for each observation. The PRS was derived from 246 lung function-associated genetic variants weighted by the effect size of the decreasing ratio of forced expiratory volume in 1 s by forced vital capacity (FEV1/FVC). Linear mixed models were used to estimate the longitudinal exposure-response relationships between OH-PAHs and lung function, and to evaluate the interactions between OH-PAHs and PRS on the longitudinal change of lung function. We found that each 1-unit increase in log-transformed values of 9-hydroxyfluorene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene, 2-hydroxyphenanthrene, 1-hydroxyphenanthrene, 1-hydroxypyrene, low molecular weight OH-PAHs (ΣLMW-OH-PAHs), and total OH-PAHs (ΣOH-PAHs) was associated with an annual change in FEV1/FVC of -0.140, -0.112, -0.260, -0.300, -0.159, -0.220, -0.145, -0.156, and -0.177 %/year, respectively. Interactions on the annual decline of FEV1/FVC were detected between ΣLMW-OH-PAHs and PRS (-0.010 %/year, 95% confidence interval -0.018 to -0.001, Pint = 0.0228), and between ΣOH-PAHs and PRS (-0.010 %/year, -0.018 to -0.001, Pint = 0.0203). These results indicated that specific and total urinary OH-PAHs were associated with the longitudinal FEV1/FVC decline, and ΣLMW-OH-PAHs as well as ΣOH-PAHs interacted with PRS on the annual decline of FEV1/FVC.
Collapse
Affiliation(s)
- Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Tianjin Third Central Hospital, Tianjin 300170, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong 519060, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaokang Zhang
- Gannan Medical University, No.1 Harmonious Road, RongJiang District, Ganzhou, Jiangxi 341000, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Chaolong Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xingjie Hao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Jiang G, Song X, Xie J, Shi T, Yang Q. Polycyclic aromatic hydrocarbons (PAHs) in ambient air of Guangzhou city: Exposure levels, health effects and cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115308. [PMID: 37544068 DOI: 10.1016/j.ecoenv.2023.115308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 pose potentially serious threats to human health. In this study, the distribution characteristics of 16 priority controlled, fine PM (PM2.5)-bound PAHs in the ambient air of Guangzhou city were analysed from 2016 to 2019. Four high-molecular-weight PAHs with the highest annual average concentrations were benzo[ghi]perylene (BghiP; 0.757 ng/m3), indeno(1,2,3-cd)pyrene (IcdP; 0.627 ng/m3), benzo[b]fluoranthene (BbF, 0.519 ng/m3) and 3,4-benzopyrene (BaP; 0.426 ng/m3). Increasing concentrations of BghiP, IcdP, BbF and BaP were associated with increasing numbers of outpatient visits for respiratory diseases, indicating that exposure to these PAHs potentially causes acute respiratory injury in residents. Acute exposure of the human bronchial epithelial cell line BEAS-2B cells to BghiP, IcdP, BbF and BaP in vitro resulted in acute inflammation, DNA damage and apoptosis. Further bioinformatic analysis indicated that nuclear receptor subfamily 1 group D member 1 (NR1D1) may be a key target gene involved in mediating the toxic effects of BghiP. Collectively, our results suggest that BghiP and the other PAHs represented by it can damage the respiratory system and induce lung cancer. This study provides valuable evidence regarding the potential health risks posed by local ambient PAHs pollution.
Collapse
Affiliation(s)
- Guanqing Jiang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Xu Song
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jiaying Xie
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Tongxing Shi
- Guangzhou Center for Disease Control and Prevention, No. 1 Qide Road, Baiyun District, Guangzhou 510440, PR China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
8
|
Park SH, Yoon SJ, Choi S, Jung J, Park JY, Park YH, Seo J, Lee J, Lee MS, Lee SJ, Son MY, Cho YL, Kim JS, Lee HJ, Jeong J, Kim DS, Park YJ. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. Exp Mol Med 2022; 54:1901-1912. [PMID: 36352257 PMCID: PMC9722902 DOI: 10.1038/s12276-022-00886-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Although many cohort studies have reported that long-term exposure to particulate matter (PM) can cause lung cancer, the molecular mechanisms underlying the PM-induced increase in cancer metastasis remain unclear. To determine whether PM contributes to cancer metastasis, cancer cells were cultured with conditioned medium from PM-treated THP1 cells, and the migration ability of the treated cancer cells was assessed. The key molecules involved were identified using RNA-seq analysis. In addition, metastatic ability was analyzed in vivo by injection of cancer cells into the tail vein and intratracheal injection of PM into the lungs of C57BL/6 mice. We found that PM enhances the expression of heparin-binding EGF-like growth factor (HBEGF) in macrophages, which induces epithelial-to-mesenchymal transition (EMT) in cancer cells, thereby increasing metastasis. Macrophage stimulation by PM results in activation and subsequent nuclear translocation of the aryl hydrocarbon receptor and upregulation of HBEGF. Secreted HBEGF activates EGFR on the cancer cell surface to induce EMT, resulting in increased migration and invasion in vitro and increased metastasis in vivo. Therefore, our study reveals a critical PM-macrophage-cancer cell signaling axis mediating EMT and metastasis and provides an effective therapeutic approach for PM-induced malignancy.
Collapse
Affiliation(s)
- Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Song Choi
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jaeeun Jung
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jun-Young Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center, KRIBB, Ochang, Republic of Korea
| | - Jinho Seo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mi-Young Son
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Republic of Korea
| | - Young-Lai Cho
- Metabolic Regulation Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Dae-Soo Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Yang M, Chang X, Gao Q, Gong X, Zheng J, Liu H, Li K, Zhan H, Wang X, Li S, Sun X, Feng S, Sun Y. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory damage via suppressing the p38 mitogen activated protein kinases pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1058-1070. [PMID: 35006638 DOI: 10.1002/tox.23464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The lung inflammatory damage could result from the nickel oxide nanoparticles (NiO NPs), in which the underlying mechanism is still unclear. This article explored the roles of long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) and p38 mitogen activated protein kinases (p38 MAPK) pathway in pulmonary inflammatory injury induced by NiO NPs. Wistar rats were treated with NiO NPs suspensions (0.015, 0.06, and 0.24 mg/kg) by intratracheal instillation twice-weekly for 9 weeks. Meanwhile, A549 cells were treated with NiO NPs suspensions (25, 50, and 100 μg/ml) for 24 h. It can be concluded that the NiO NPs did trigger pulmonary inflammatory damage, which was confirmed by the histopathological examination, abnormal changes of inflammatory cells and inflammatory cytokines (IL-1β, IL-6, TGF-β1, TNF-α, IFN-γ, IL-10, CXCL-1 and CXCL-2) in bronchoalveolar lavage fluid (BALF), pulmonary tissue and cell culture supernatant. Furthermore, NiO NPs activated the p38 MAPK pathway and downregulated MEG3 in vivo and in vitro. However, p38 MAPK pathway inhibitor (10 μM SB203580) reversed the alterations in the expression levels of inflammatory cytokines induced by NiO NPs. Meanwhile, over-expressed MEG3 significantly suppressed NiO NPs-induced p38 MAPK pathway activation and inflammatory cytokines changes. Overall, the above results proved that over-expression of lncRNA MEG3 reduced NiO NPs-induced inflammatory damage by preventing the activation of p38 MAPK pathway.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Yawer A, Sychrová E, Raška J, Babica P, Sovadinová I. Endocrine-disrupting chemicals affect sertoli TM4 cell functionality through dysregulation of gap junctional intercellular communication in vitro. Food Chem Toxicol 2022; 164:113004. [PMID: 35413382 DOI: 10.1016/j.fct.2022.113004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 04/06/2022] [Indexed: 01/10/2023]
Abstract
The frequencies of adverse outcomes associated with male reproductive health, including infertility and testicular cancer, are increasing. These adverse trends are partially attributed to increased exposure to environmental agents such as endocrine-disrupting chemicals (EDCs). This study addresses effects on EDCs on adjacent prepubertal Sertoli TM4 cells, specifically on 1) testicular gap junctional intercellular communication (GJIC), one of the hallmarks of non-genotoxic carcinogenicity, 2) GJIC building blocks connexins (Cx), and 3) mitogen-activated protein kinases MAPKs. We selected eight representatives of EDCs: bisphenol A and organochlorine chemicals such as pesticides dichlorodiphenyltrichloroethane, lindane, methoxychlor, and vinclozolin, industrial chemical 2,2',4,4',5,5'-hexachlorobiphenyl, and components of personal care products, triclocarban and triclosan. EDCs rapidly dysregulated GJIC in Sertoli TM4 cells mainly via MAPK p38 and/or Erk1/2/pathways by the intermediate hyper- or de-phosphorylation of Cx43 (Ser368, Ser282) and translocalization of Cx43 from the plasma membrane, suggesting disturbed intracellular trafficking of Cx43 protein. Surprisingly, EDCs did not rapidly activate MAPK Erk1/2 or p38; on the contrary, TCC and TCS decreased their activity (phosphorylation). Our results indicate that EDCs might disrupt testicular homeostasis and development via testicular GJIC, junctional and non-junctional functions of Cx43 and MAPK-signalling pathways in Sertoli cells.
Collapse
Affiliation(s)
- Affiefa Yawer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Jan Raška
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
11
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
12
|
Bauer AK, Siegrist KJ, Wolff M, Nield L, Brüning T, Upham BL, Käfferlein HU, Plöttner S. The Carcinogenic Properties of Overlooked yet Prevalent Polycyclic Aromatic Hydrocarbons in Human Lung Epithelial Cells. TOXICS 2022; 10:28. [PMID: 35051070 PMCID: PMC8779510 DOI: 10.3390/toxics10010028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
The WHO classified air pollution as a human lung carcinogen and polycyclic aromatic hydrocarbons (PAHs) are components of both indoor (e.g., tobacco smoke and cookstoves) and outdoor (e.g., wildfires and industrial and vehicle emissions) air pollution, thus a human health concern. However, few studies have evaluated the adverse effects of low molecular weight (LMW) PAHs, the most abundant PAHs in the environment. We hypothesized that LMW PAHs combined with the carcinogenic PAH benzo[a]pyrene (B[a]P) act as co-carcinogens in human lung epithelial cell lines (BEAS-2B and A549). Therefore, in this paper, we evaluate several endpoints, such as micronuclei, gap junctional intercellular communication (GJIC) activity, cell cycle analysis, anti-BPDE-DNA adduct formation, and cytotoxicity after mixed exposures of LMW PAHs with B[a]P. The individual PAH doses used for each endpoint did not elicit cytotoxicity nor cell death and were relevant to human exposures. The addition of a binary mixture of LMW PAHs (fluoranthene and 1-methylanthracene) to B[a]P treated cells resulted in significant increases in micronuclei formation, dysregulation of GJIC, and changes in cell cycle as compared to cells treated with either B[a]P or the binary mixture alone. In addition, anti-BPDE-DNA adducts were significantly increased in human lung cells treated with B[a]P combined with the binary mixture of LMW PAHs as compared to cells treated with B[a]P alone, further supporting the increased co-carcinogenic potential by LMW PAHs. Collectively, these novel studies using LMW PAHs provide evidence of adverse pulmonary effects that should warrant further investigation.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Katelyn J. Siegrist
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Melanie Wolff
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Lindsey Nield
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.J.S.); (L.N.)
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany; (M.W.); (T.B.); (H.U.K.)
| |
Collapse
|
13
|
Ishihara N, Okuda T, Hagino H, Oguro A, Tani Y, Okochi H, Tokoro C, Fujii-Kuriyama Y, Itoh K, Vogel CF, Ishihara Y. Involvement of polycyclic aromatic hydrocarbons and endotoxin in macrophage expression of interleukin-33 induced by exposure to particulate matter. J Toxicol Sci 2022; 47:201-210. [PMID: 35527008 PMCID: PMC9469799 DOI: 10.2131/jts.47.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollutants are important factors that contribute to the development and/or exacerbation of allergic inflammation accompanied by asthma, but experimental evidence still needs to be collected. Interleukin 33 (IL-33) is closely involved in the onset and progression of asthma. In this study, we examined the effects of particulate matter (PM) on IL-33 expression in macrophages. PM2.5 collected in Yokohama, Japan by the cyclone device significantly induced IL-33 expression in human THP-1 macrophages, and the induction was clearly suppressed by pretreatment with the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the Toll-like receptor 4 (TLR4) antagonist TAK-242. PM2.5-induced IL-33 expression was significantly attenuated in AhR-knockout or TLR4-mutated macrophages, suggesting an important role of polycyclic aromatic hydrocarbons (PAHs) and endotoxin in IL-33 stimulation. PM samples derived from tunnel dust slightly but significantly induced IL-33 expression, while road dust PM did not affect IL-33 expression. The PAH concentration in tunnel dust was higher than that in road dust. Tunnel dust or road dust PM contained less endotoxin than PM2.5 collected in Yokohama. These data suggest that the potency of IL-33 induction could depend on the concentration of PAHs as well as endotoxin in PMs. Caution regarding PAHs and endotoxin levels in air pollutants should be taken to prevent IL-33-induced allergic inflammation.
Collapse
Affiliation(s)
- Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2101, Japan
| | - Christoph F.A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan,Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett 2021; 351:53-64. [PMID: 34454013 DOI: 10.1016/j.toxlet.2021.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Benzo[a]pyrene(B[a]P) is a known human carcinogen. The ability of B[a]P to form stable DNA adducts has been repeatedly demonstrated. However, the relationship between DNA adduct formation and cell damage and its underlying molecular mechanisms are less well understood. In this study, we determined the cytotoxicity of benzo[a]pyrenediolepoxide, a metabolite of B[a]P, in human bronchial epithelial cells (BEAS-2B). The formation of BPDE-DNA adducts was quantified using a dot blot. DNA damage resulting from the formation of BPDE-DNA adducts was detected by chromatin immuneprecipitation sequencing (ChIP-Seq), with minor modifications, using specific antibodies against BPDE. In total, 1846 differentially expressed gene loci were detected between the treatment and control groups. The distribution of the BPDE-bound regions indicated that BPDE could covalently bind with both coding and non-coding regions to cause DNA damage. However, the majority of binding occurred at protein-coding genes. Furthermore, among the BPDE-bound genes, we found 16 protein-coding genes related to DNA damage repair. We explored the response to BPDE exposure at the transcriptional level using qRT-PCR and observed a strong inhibition of EIF4A3. We then established an EIF4A3 overexpression cell model and performed comet assays, which revealed that the levels of DNA damage in EIF4A3-overexpressing cells were lower than those in normal cells following BPDE exposure. This suggests that the BPDE-DNA adduct-induced reduction in EIF4A3 expression contributed to the DNA damage induced by BPDE exposure in BEAS-2B cells. These novel findings indicate that ChIP-Seq combined with BPDE specific antibody may be used for exploring the underlying mechanism of DNA adduct-induced genomic damage.
Collapse
Affiliation(s)
- Mengcheng Li
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jiayu Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Anfei Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Enzhao Chen
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China; The State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
16
|
Guo H, Huang Y, Wang H, Zhang Z, Li C, Hu F, Zhang W, Liu Y, Zeng Y, Wang J. Low molecular weight-PAHs induced inflammation in A549 cells by activating PI3K/AKT and NF-κB signaling pathways. Toxicol Res (Camb) 2021; 10:150-157. [PMID: 33613982 DOI: 10.1093/toxres/tfaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Our previous study has demonstrated that two low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs), phenanthrene (Phe) and fluorene (Flu), alone and as a mixture could induce oxidative damage and inflammation in A549 cells. However, the associated mechanisms have not been well discussed. The aim of this study was to further investigate the roles of PI3K/AKT and NF-κB signaling pathways in the inflammatory effects in A549 cells induced by Phe, Flu and their mixture. The results indicated that Phe, Flu and their mixture significantly activated PI3K/AKT and NF-κB signaling pathways by increasing the phosphorylation levels of PI3K, AKT, IκBα and NF-κB p65. In addition, pro-inflammatory cytokine expressions of TNF-α and IL-6 induced by the binary mixture of Phe and Flu were all alleviated by co-treatment with PI3K/AKT and NF-κB specific inhibitors (LY294002 and BAY11-7082). The results suggested that PI3K/AKT and NF-κB signaling pathways played an important role in LMW-PAHs induced inflammation in A549 cells.
Collapse
Affiliation(s)
- Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, No. 143 Qilihe North Street, Lanzhou 730000, Gansu, China
| | - Zhewen Zhang
- School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
17
|
Guo H, Zhang Z, Wang H, Ma H, Hu F, Zhang W, Liu Y, Huang Y, Zeng Y, Li C, Wang J. Oxidative stress and inflammatory effects in human lung epithelial A549 cells induced by phenanthrene, fluorene, and their binary mixture. ENVIRONMENTAL TOXICOLOGY 2021; 36:95-104. [PMID: 32856796 DOI: 10.1002/tox.23015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Low molecular weight-Polycyclic aromatic hydrocarbons (LMW-PAHs) are ubiquitous environmental pollutants, which may contribute to respiratory diseases. However, studies of the relative mechanisms are limited. This study aimed to explore the effects of two LMW-PAHs [phenanthrene (Phe) and fluorene (Flu)], separately and as binary PAH mixture on oxidative stress and inflammation in A549 cells. Cell viability was firstly detected at various concentrations (200-800 μM) by Phe, Flu, and the mixture of Phe and Flu. ROS level, MDA content, SOD and CAT activities were then determined to evaluate oxidative damage. The protein and mRNA expressions of IL-6, TNF-α, TGF-β, and the protein content of SP-A were further determined to evaluate inflammation. Results showed that Phe, Flu, and their mixture triggered ROS generation and induced abnormal productions of MDA, SOD, and CAT. And the protein and mRNA expressions of TNF-α and IL-6 were increased by Phe, Flu, and their mixture, respectively. In addition, SP-A was also increased by Phe and Flu, while it was decreased by their mixture at 600 μM. The results demonstrated that Phe, Flu, and their mixture could induce oxidative stress and subsequent inflammation in A549 cells, while combined inflammatory response was stronger than single actions.
Collapse
Affiliation(s)
- Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhewen Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, China
| | - Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Brózman O, Novák J, Bauer AK, Babica P. Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103422. [PMID: 32492535 PMCID: PMC7486243 DOI: 10.1016/j.etap.2020.103422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with various adverse health effects, including chronic lung diseases and cancer. Using human bronchial epithelial cell line HBE1, we investigated the effects of structurally different PAHs on tissue homeostatic processes, namely gap junctional intercellular communication (GJIC) and MAPKs activity. Rapid (<1 h) and sustained (up to 24 h) inhibition of GJIC was induced by low/middle molecular weight (MW) PAHs, particularly by those with a bay- or bay-like region (1- and 9-methylanthracene, fluoranthene), but also by fluorene and pyrene. In contrast, linear low MW (anthracene, 2-methylanthracene) or higher MW (chrysene) PAHs did not affect GJIC. Fluoranthene, 1- and 9-methylanthracene induced strong and sustained activation of MAPK ERK1/2, whereas MAPK p38 was activated rather nonspecifically by all tested PAHs. Low/middle MW PAHs can disrupt tissue homeostasis in human airway epithelium via structure-dependent nongenotoxic mechanisms, which can contribute to their human health hazards.
Collapse
Affiliation(s)
- Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado, Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
20
|
Yawer A, Sychrová E, Labohá P, Raška J, Jambor T, Babica P, Sovadinová I. Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. Toxicol Appl Pharmacol 2020; 404:115177. [PMID: 32739526 DOI: 10.1016/j.taap.2020.115177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023]
Abstract
A decline in male fertility possibly caused by environmental contaminants, namely endocrine-disrupting chemicals (EDCs), is a topic of public concern and scientific interest. This study addresses a specific role of testicular gap junctional intercellular communication (GJIC) between adjacent prepubertal Leydig cells in endocrine disruption and male reproductive toxicity. Organochlorine pesticides (lindane, methoxychlor, DDT), industrial chemicals (PCB153, bisphenol A, nonylphenol and octylphenol) as well as personal care product components (triclosan, triclocarban) rapidly dysregulated GJIC in murine Leydig TM3 cells. The selected GJIC-inhibiting EDCs (methoxychlor, triclosan, triclocarban, lindane, DDT) caused the immediate GJIC disruption by the relocation of gap junctional protein connexin 43 (Cx43) from the plasma membrane and the alternation of Cx43 phosphorylation pattern (Ser368, Ser279, Ser282) of its full-length and two N-truncated isoforms. After more prolonged exposure (24 h), EDCs decreased steady-state levels of full-length Cx43 protein and its two N-truncated isoforms, and eventually (triclosan, triclocarban) also tight junction protein Tjp-1. The disturbance of GJIC was accompanied by altered activity of mitogen-activated protein kinases MAPK-Erk1/2 and MAPK-p38, and a decrease in stimulated progesterone production. Our results indicate that EDCs might disrupt testicular homeostasis and development via disruption of testicular GJIC, a dysregulation of junctional and non-junctional functions of Cx43, activation of MAPKs, and disruption of an early stage of steroidogenesis in prepubertal Leydig cells. These critical disturbances of Leydig cell development and functions during a prepubertal period might be contributing to impaired male reproduction health later on.
Collapse
Affiliation(s)
- Affiefa Yawer
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Jan Raška
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovac Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Duszenko N, van Willigen DM, Welling MM, de Korne CM, van Schuijlenburg R, Winkel BM, van Leeuwen FW, Roestenberg M. A Supramolecular Platform Technology for Bacterial Cell Surface Modification. ACS Infect Dis 2020; 6:1734-1744. [PMID: 32364374 PMCID: PMC7359023 DOI: 10.1021/acsinfecdis.9b00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 01/23/2023]
Abstract
In an era of antimicrobial resistance, a better understanding of the interaction between bacteria and the sentinel immune system is needed to discover new therapeutic targets for combating bacterial infectious disease. Sentinel immune cells such as macrophages phagocytose intact bacteria and thereby initiate ensuing immune responses. The bacterial surface composition is a key element that determines the macrophage signaling. To study the role of the bacterial cell surface composition in immune recognition, we developed a platform technology for altering bacterial surfaces in a controlled manner with versatile chemical scaffolds. We show that these scaffolds are efficiently loaded onto both Gram-positive and -negative bacteria and that their presence does not impair the capacity of monocyte-derived macrophages to phagocytose bacteria and subsequently signal to other components of the immune system. We believe this technology thus presents a useful tool to study the role of bacterial cell surface composition in disease etiology and potentially in novel interventions utilizing intact bacteria for vaccination.
Collapse
Affiliation(s)
- Nikolas Duszenko
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Clarize M. de Korne
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Roos van Schuijlenburg
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Beatrice M.F. Winkel
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Fijs W.B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, Amsterdam 1066 CX, The Netherlands
| | - Meta Roestenberg
- Department
of Parasitology, Leiden University Medical
Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
22
|
Cocozzelli AG, White TW. Connexin 43 Mutations Lead to Increased Hemichannel Functionality in Skin Disease. Int J Mol Sci 2019; 20:ijms20246186. [PMID: 31817921 PMCID: PMC6940829 DOI: 10.3390/ijms20246186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Gap junctional channels are specialized components of the cellular membrane that allow the intercellular passage of small metabolites, ions, and second messengers to maintain homeostasis. They are comprised of members of the connexin gene family that encode a wide array of proteins that are expressed in nearly every tissue type. Cx43 is perceived to be the most broadly expressed connexin in humans, with several genetic skin diseases being linked to Cx43 mutations specifically. These mutations, in large, produce a gain of functional hemichannels that contribute to the phenotypes of Erythrokeratoderma Variabilis et Progressiva (EKVP), Palmoplantar Keratodemra Congenital Alopecia-1 (PPKCA1), and others that produce large conductance and increased permselectivity in otherwise quiescent structures. Gaining functional hemichannels can have adverse effects in the skin, inducing apoptosis via Ca2+ overload or increased ATP permeability. Here, we review the link between Cx43 and skin disease. We aim to provide insight into the mechanisms regulating the normal and pathophysiological gating of these essential proteins, as well as address current therapeutic strategies. We also demonstrate that transient transfection of neuro-2a (N2a) cells with mutant Cx43 cDNA resulted in increased hemichannel activity compared to wild-type Cx43 and untransfected cells, which is consistent with other studies in the current literature.
Collapse
|
23
|
Shin N, Velmurugan K, Su C, Bauer AK, Tsai CSJ. Assessment of fine particles released during paper printing and shredding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1342-1352. [PMID: 31049512 DOI: 10.1039/c9em00015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the airborne particles released during paper printing and paper shredding processes in an attempt to characterize and differentiate these particles. Particle characteristics were studied with real time instruments (RTIs) to measure concentrations and with samplers to collect particles for subsequent microscopy and cytotoxicity analysis. The particles released by paper shredding were evaluated for cytotoxicity by using in vitro human lung epithelial cell models. A substantial amount of particles were released during both the shredding and printing processes. We found that the printing process caused substantial release of particles with sizes of less than 300 nm in the form of metal granules and graphite. These released particles contained various elements including Al, Ca, Cu, Fe, Mg, N, K, P, S and Si. The particles released by the paper shredding processes were primarily nanoparticles and had a peak size between 27.4 nm and 36.5 nm. These paper particles contained elements including Al, Br Ca, Cl, Cr, Cu, Fe, Mg, N, Na, Ni P, S and Si, as determined by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) and single-particle inductively coupled plasma-mass spectroscopy (SP-ICP-MS) analysis. Although various metals were identified in the paper particles, these particles did not elicit cytotoxicity to simian virus-transformed bronchial epithelial cells (BEAS2B) and immortalized normal human bronchial epithelial cells (HBE1). However, future studies should investigate other cytotoxicity effects of these paper particles in various types of lung cells to identify potential health effects of the particles.
Collapse
Affiliation(s)
- Nara Shin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80528, USA
| | | | | | | | | |
Collapse
|
24
|
Siegrist KJ, Romo D, Upham BL, Armstrong M, Quinn K, Vanderlinden L, Osgood RS, Velmurugan K, Elie M, Manke J, Reinhold D, Reisdorph N, Saba L, Bauer AK. Early Mechanistic Events Induced by Low Molecular Weight Polycyclic Aromatic Hydrocarbons in Mouse Lung Epithelial Cells: A Role for Eicosanoid Signaling. Toxicol Sci 2019; 169:180-193. [PMID: 30690640 PMCID: PMC6484882 DOI: 10.1093/toxsci/kfz030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are under regulated environmental contaminants (eg, secondhand smoke) that lead to gap junction dysregulation, p38 MAPK activation, and increased mRNA production of inflammatory mediators, such as cytokines and cyclooxygenase (COX2), in lung epithelial cells. However, the early mechanisms involving lipid signaling through the arachidonic acid pathway and subsequent eicosanoid production leading to these downstream events are not known. Common human exposures are to mixtures of LMW PAHs, thus C10 cells (a mouse lung epithelial cell line) were exposed to a representative binary PAH mixture, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), for 30 min-24 h with and without p38 and cytosolic phospholipase A2 (cPLA2) inhibitors. Cytosolic phospholipase A2 inhibition reversed PAH-induced phospho-p38 MAPK activation and gap junction dysregulation at 30 min. A significant biphasic increase in cPLA2 protein was observed at 30 min, 2, and 4 h, as well as COX2 protein at 2 and 8 h. Untargeted metabolomics demonstrated a similar trend with significantly changing metabolites at 30 min and 4 h of exposure relative to 1 h; a "cPLA2-like" subset of metabolites within the biphasic response were predominately phospholipids. Targeted metabolomics showed several eicosanoids (eg, prostaglandin D2 (PGD2), PGE2α) were significantly increased at 4, 8, and 12 h following exposure to the binary PAH mixture and this effect was p38-dependent. Finally, PAH metabolism was not observed until after 8 h. These results indicate an early lipid signaling mechanism of LMW PAH toxicity in lung epithelial cells due to parent PAH compounds.
Collapse
Affiliation(s)
- Katelyn J Siegrist
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - DeeDee Romo
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ross S Osgood
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Harvard T.H. Chan School of Public Health, Cambridge
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marc Elie
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Romo D, Velmurugan K, Upham BL, Dwyer-Nield LD, Bauer AK. Dysregulation of Gap Junction Function and Cytokine Production in Response to Non-Genotoxic Polycyclic Aromatic Hydrocarbons in an In Vitro Lung Cell Model. Cancers (Basel) 2019; 11:E572. [PMID: 31018556 PMCID: PMC6521202 DOI: 10.3390/cancers11040572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), prevalent contaminants in our environment, in many occupations, and in first and second-hand smoke, pose significant adverse health effects. Most research focused on the genotoxic high molecular weight PAHs (e.g., benzo[a]pyrene), however, the nongenotoxic low molecular weight (LMW) PAHs are emerging as potential co-carcinogens and tumor promoters known to dysregulate gap junctional intercellular communication (GJIC), activate mitogen activated protein kinase pathways, and induce the release of inflammatory mediators. We hypothesize that inflammatory mediators resulting from LMW PAH exposure in mouse lung epithelial cell lines are involved in the dysregulation of GJIC. We used mouse lung epithelial cell lines and an alveolar macrophage cell line in the presence of a binary PAH mixture (1:1 ratio of fluoranthene and 1-methylanthracene; PAH mixture). Parthenolide, a pan-inflammation inhibitor, reversed the PAH-induced inhibition of GJIC, the decreased CX43 expression, and the induction of KC and TNF. To further determine the direct role of a cytokine in regulating GJIC, recombinant TNF (rTNF) was used to inhibit GJIC and this response was further enhanced in the presence of the PAH mixture. Collectively, these findings support a role for inflammation in regulating GJIC and the potential to target these early stage cancer pathways for therapeutics.
Collapse
Affiliation(s)
- Deedee Romo
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA.
| | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Kubincová P, Sychrová E, Raška J, Basu A, Yawer A, Dydowiczová A, Babica P, Sovadinová I. Polycyclic Aromatic Hydrocarbons and Endocrine Disruption: Role of Testicular Gap Junctional Intercellular Communication and Connexins. Toxicol Sci 2019; 169:70-83. [DOI: 10.1093/toxsci/kfz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Ambient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes. Lower MW PAHs with a bay or bay-like region rapidly dysregulated GJIC in Leydig TM3 cells by relocalization of major testicular gap junctional protein connexin 43 (Cx43) from plasma membrane to cytoplasm. This was associated with colocalization between Cx43 and ubiquitin in intracellular compartments, but without any effect on Cx43 degradation rate or steady-state Cx43 mRNA levels. A longer exposure to active PAHs decreased steady-state levels of full-length Cx43 protein and its 2 N-truncated isoforms. Inhibition of GJIC by PAHs, similarly to a prototypic GJIC-inhibitor TPA, was mediated via the MAP kinase-Erk1/2 and PKC pathways. Polycyclic aromatic hydrocarbon-induced GJIC dysregulation in testes was cell-type-specific because neither PAH dysregulated GJIC in Sertoli TM4 cells, despite PAHs were rapidly taken up by both Leydig TM3 as well as Sertoli TM4 cells. Because TPA effectively dysregulated GJIC in both testicular cell types, a unique regulator of GJIC targeted by PAHs might exist in Leydig TM3 cells. Our results indicate that PAHs could be a potential etiological agent contributing to reproductive dysfunctions in males through an impairment of testicular GJIC and junctional and/or nonjunctional functions of Cx43.
Collapse
Affiliation(s)
- Petra Kubincová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Eliška Sychrová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Jan Raška
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Amrita Basu
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Affiefa Yawer
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
27
|
Bauer AK, Umer M, Richardson VL, Cumpian AM, Harder AQ, Khosravi N, Azzegagh Z, Hara NM, Ehre C, Mohebnasab M, Caetano MS, Merrick DT, van Bokhoven A, Wistuba II, Kadara H, Dickey BF, Velmurugan K, Mann PR, Lu X, Barón AE, Evans CM, Moghaddam SJ. Requirement for MUC5AC in KRAS-dependent lung carcinogenesis. JCI Insight 2018; 3:120941. [PMID: 30089720 PMCID: PMC6129115 DOI: 10.1172/jci.insight.120941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022] Open
Abstract
With more than 150,000 deaths per year in the US alone, lung cancer has the highest number of deaths for any cancer. These poor outcomes reflect a lack of treatment for the most common form of lung cancer, non-small cell lung carcinoma (NSCLC). Lung adenocarcinoma (ADC) is the most prevalent subtype of NSCLC, with the main oncogenic drivers being KRAS and epidermal growth factor receptor (EGFR). Whereas EGFR blockade has led to some success in lung ADC, effective KRAS inhibition is lacking. KRAS-mutant ADCs are characterized by high levels of gel-forming mucin expression, with the highest mucin levels corresponding to worse prognoses. Despite these well-recognized associations, little is known about roles for individual gel-forming mucins in ADC development causatively. We hypothesized that MUC5AC/Muc5ac, a mucin gene known to be commonly expressed in NSCLC, is crucial in KRAS/Kras-driven lung ADC. We found that MUC5AC was a significant determinant of poor prognosis, especially in patients with KRAS-mutant tumors. In addition, by using mice with lung ADC induced chemically with urethane or transgenically by mutant-Kras expression, we observed significantly reduced tumor development in animals lacking Muc5ac compared with controls. Collectively, these results provide strong support for MUC5AC as a potential therapeutic target for lung ADC, a disease with few effective treatments.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Misha Umer
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vanessa L. Richardson
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Amber M. Cumpian
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Q. Harder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nasim Khosravi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zoulikha Azzegagh
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoko M. Hara
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Camille Ehre
- Marsico Lung Institute/CF Center, Department of Pediatrics, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maedeh Mohebnasab
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mauricio S. Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel T. Merrick
- Department of Pathology, University of Colorado, Aurora, Colorado, USA
| | | | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Humam Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Patrick R. Mann
- Department of Pathology, University of Colorado, Aurora, Colorado, USA
| | - Xian Lu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Anna E. Barón
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
28
|
Bauer AK, Velmurugan K, Plöttner S, Siegrist KJ, Romo D, Welge P, Brüning T, Xiong KN, Käfferlein HU. Environmentally prevalent polycyclic aromatic hydrocarbons can elicit co-carcinogenic properties in an in vitro murine lung epithelial cell model. Arch Toxicol 2018; 92:1311-1322. [PMID: 29170806 PMCID: PMC5866845 DOI: 10.1007/s00204-017-2124-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/15/2017] [Indexed: 02/03/2023]
Abstract
Low molecular weight (LMW) polycyclic aromatic hydrocarbons (PAH) are the most abundant PAHs environmentally, occupationally, and are in cigarette smoke; however, little is known about their carcinogenic potential. We hypothesized that LMW PAHs act as co-carcinogens in the presence of a known carcinogen (benzo[a]pyrene (B[a]P)) in a mouse non-tumorigenic type II cell line (C10 cells). Gap junctions are commonly suppressed and inflammation induced during tumor promotion, while DNA-adduct formation is observed during the initiation stage of cancer. We used these endpoints together as markers of carcinogenicity in these lung adenocarcinoma progenitor cells. LMW PAHs (1-methylanthracene and fluoranthene, 1-10 µM total in a 1:1 ratio) were used based on previous studies as well as B[a]P (0-3 µM) as the classic carcinogen; non-cytotoxic doses were used. B[a]P-induced inhibition of gap junctional intercellular communication (GJIC) was observed at low doses and further reduced in the presence of the LMW PAH mixture (P < 0.05), supporting a role for GJIC suppression in cancer development. Benzo[a]pyrene diol-epoxide (BPDE)-DNA adduct levels were significantly induced in B[a]P-treated C10 cells and additionally increased with the LMW PAH mixture (P < 0.05). Significant increases in cyclooxygenase (Cox-2) were observed in response to the B[a]P/LMW PAH mixture combinations. DNA adduct formation coincided with the inhibition of GJIC and increase in Cox-2 mRNA expression. Significant cytochrome p4501b1 increases and connexin 43 decreases in gene expression were also observed. These studies suggest that LMW PAHs in combination with B[a]P can elicit increased carcinogenic potential. Future studies will further address the mechanisms of co-carcinogenesis driving these responses.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mailstop V-20, Rm 3125, 12850 E. Montview Blvd, Aurora, CO, 80045, USA.
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mailstop V-20, Rm 3125, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789, Bochum, Germany
| | - Katelyn J Siegrist
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mailstop V-20, Rm 3125, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Deedee Romo
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mailstop V-20, Rm 3125, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Peter Welge
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789, Bochum, Germany
| | - Ka-Na Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mailstop V-20, Rm 3125, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789, Bochum, Germany
| |
Collapse
|