1
|
Suzuki M, Nilsson S, Shepherd CE, Zammit I, Suryana E, Mueller N, Halliday G, Wang X, Symeonides C, Dunlop S, Mueller JF. Number of Carbons Is a Critical Parameter for Accumulation of Per- and Polyfluoroalkyl Substances in the Human Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3366-3375. [PMID: 39927984 DOI: 10.1021/acs.est.4c09458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a large group of manmade chemicals, have been detected extensively in the blood of people living in developed countries. Although it has been suggested that PFAS exposure might be associated with harmful effects on the brain, few studies have assessed the presence of PFAS in brain tissues. This study aimed to evaluate the concentrations of a broad range of PFAS in paired postmortem human brain and serum samples and investigate brain-to-serum concentration ratios. A partitioning experiment using PFAS-fortified animal brain samples additionally investigated differences in distribution between lipid-rich brain and water for different PFAS. Out of the 43 PFAS analyzed, 5 were detected in all paired human brain and serum samples, 11 were found in all serum, and 7 were found in all brain samples. Two PFAS compounds were observed at notably higher detection frequencies in brain samples compared to serum. The brain-to-serum ratios of PFAS concentrations ranged from approximately 0.04 for perfluorohexanesulfonate (PFHxS) to 1.3 for N-methyl perfluorooctanesulfonamido acetic acid (N-MeFOSAA) with a clear increase in PFAS brain-to-serum ratios with the total number of carbons. There were no differences between the two cortical brain regions analyzed. Results underscore the necessity of a better understanding of individual PFAS, as the difference in their properties can influence their behavior within the human brain.
Collapse
Affiliation(s)
- Marina Suzuki
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Minderoo Centre - Plastics and Human Health, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Claire E Shepherd
- NeuRA, Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Ian Zammit
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Minderoo Centre - Plastics and Human Health, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Eurwin Suryana
- NeuRA, Neuroscience Research Australia, Randwick, New South Wales 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Nicole Mueller
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Glenda Halliday
- School of Biomedical Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Minderoo Centre - Plastics and Human Health, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Christos Symeonides
- Minderoo Foundation, Perth, WA 6009, Australia
- Centre for Community Child Health, Royal Children's Hospital Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Minderoo Centre - Plastics and Human Health, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
2
|
Wang SM, Wen HJ, Huang F, Sun CW, Huang CM, Wang SL. White matter microstructural integrity mediates associations between prenatal endocrine-disrupting chemicals exposure and intelligence in adolescents. Neuroimage Clin 2025; 45:103758. [PMID: 39983551 PMCID: PMC11889738 DOI: 10.1016/j.nicl.2025.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) and phthalic acid esters (PAEs) are well-known endocrine-disrupting chemicals (EDCs) that potentially affect child neurodevelopment. We aimed to investigate the effects of prenatal exposure to PFAS and PAEs on macro- and micro-structural brain development and intelligence in adolescents using multimodal neuroimaging techniques. We employed structural magnetic resonance imaging (MRI) and various diffusion MRI techniques, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI), to assess the gray-matter macrostructure and white-matter microstructural integrity and complexity. Participants were drawn from a birth cohort of 52 mother-child pairs in central Taiwan recruited in 2001, and the adolescent intelligence quotient (IQ) scores were assessed using the Wechsler Intelligence Scale. Nine PFAS concentrations of cord blood and maternal serum samples were obtained from the children's mothers during the third trimester of pregnancy (27-40 weeks) using a liquid chromatography system coupled to a triple-quadrupole mass spectrometer, while maternal urinary phthalates were used to evaluate PAEs exposure. Our results showed significant associations between prenatal exposure to PFAS and phthalates with changes in specific fronto-parietal regions of the adolescent male brain, including reduced cortical thickness in the inferior frontal gyrus and right superior parietal cortex, which are involved in language, memory, and executive function. A dose-response association was observed, with higher levels of PFAS and PAE exposure modulating altered white-matter fiber integrity in the superior cerebellar peduncle and inferior cerebellar peduncle of the male and female adolescent brains. In addition, higher levels of prenatal exposure to EDCs were associated with lower IQ scores in adolescents. Mediation analyses further revealed that white-matter microstructure of inter-hemispheric and cerebellar fibers mediated the association between prenatal EDC exposure and adolescent IQ scores in female adolescents. Our multimodal human neuroimaging findings suggest that prenatal exposure to EDCs may have long-lasting effects on neuroanatomical development, neural fiber connectivity, and intelligence in adolescents, and highlight the importance of using advanced diffusion imaging techniques, including DKI and NODDI, to detect neurodevelopmental changes and their brain-behavioral consequences with the risks associated with these environmental exposures.
Collapse
Affiliation(s)
- Shi-Ming Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan
| | - Hui-Ju Wen
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Fan Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; International Ph.D. Program in Interdisciplinary Neuroscience (University System of Taiwan), National Yang Ming Chiao Tung University, Taiwan
| | - Chien-Wen Sun
- Institute of Earth Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Taiwan; International Ph.D. Program in Interdisciplinary Neuroscience (University System of Taiwan), National Yang Ming Chiao Tung University, Taiwan.
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
3
|
Marchese MJ, Zhu T, Hawkey AB, Wang K, Yuan E, Wen J, Be SE, Levin ED, Feng L. Prenatal and perinatal exposure to Per- and polyfluoroalkyl substances (PFAS)-contaminated drinking water impacts offspring neurobehavior and development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170459. [PMID: 38290673 PMCID: PMC10923173 DOI: 10.1016/j.scitotenv.2024.170459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants ubiquitous in the environment and humans. In-utero PFAS exposure is associated with numerous adverse health impacts. However, little is known about how prenatal PFAS mixture exposure affects offspring's neurobehavioral function. This study aims to determine the causal relationship between in-utero PFAS mixture exposure and neurobehavioral changes in Sprague-Dawley rat offspring. Dams were exposed via drinking water to the vehicle (control), an environmentally relevant PFAS mixture, or a high-dose PFAS mixture. The environmentally relevant mixture was formulated to resemble measured tap water levels in Pittsboro, NC, USA (10 PFAS compounds; sum PFAS =758.6 ng/L). The high-dose PFAS load was 3.8 mg/L (5000×), within the range of exposures in the experimental literature. Exposure occurred seven days before mating until birth. Following exposure to PFAS-laden water or the vehicle during fetal development, neurobehavioral toxicity was assessed in male and female offspring with a battery of motor, cognitive, and affective function tests as juveniles, adolescents, and adults. Just before weaning, the environmentally relevant exposure group had smaller anogenital distances compared to the vehicle and high-dose groups on day 17, and males in the environmentally relevant exposure group demonstrated lower weights than the high-dose group on day 21 (p < 0.05). Reflex development delays were seen in negative geotaxis acquisition for both exposure groups compared to vehicle-exposed controls (p = 0.009). Our post-weaning behavioral measures of anxiety, depression, and memory were not found to be affected by maternal PFAS exposure. In adolescence (week five) and adulthood (week eight), the high PFAS dose significantly attenuated typical sex differences in locomotor activity. Maternal exposure to an environmentally relevant PFAS mixture produced developmental delays in the domains of pup weight, anogenital distance, and reflex acquisition for rat offspring. The high-dose PFAS exposure significantly decreased typical sex differences in locomotor activity.
Collapse
Affiliation(s)
| | - Tianyi Zhu
- Duke University Global Health Institute, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL, USA
| | | | - Emi Yuan
- Duke University, Durham, NC, USA
| | | | | | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Ko MY, Park H, Chon SH, Kim YB, Cha SW, Lee BS, Hyun SA, Ka M. Differential regulations of neural activity and survival in primary cortical neurons by PFOA or PFHpA. CHEMOSPHERE 2024; 352:141379. [PMID: 38316277 DOI: 10.1016/j.chemosphere.2024.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Perfluorinated compounds (PFCs), organofluoride compounds comprising carbon-fluorine and carbon-carbon bonds, are used as water and oil repellents in textiles and pharmaceutical tablets; however, they are associated with potential neurotoxic effects. Moreover, the impact of PFCs on neuronal survival, activity, and regulation within the brain remains unclear. Additionally, the mechanisms through which PFCs induce neuronal toxicity are not well-understood because of the paucity of data. This study elucidates that perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) exert differential effects on the survival and activity of primary cortical neurons. Although PFOA triggers apoptosis in cortical neurons, PFHpA does not exhibit this effect. Instead, PFHpA modifies dendritic spine morphogenesis and synapse formation in primary cortical neuronal cultures, additionally enhancing neural activity and synaptic transmission. This research uncovers a novel mechanism through which PFCs (PFHpA and PFOA) cause distinct alterations in dendritic spine morphogenesis and synaptic activity, shedding light on the molecular basis for the atypical behaviors noted following PFC exposure. Understanding the distinct effects of PFHpA and PFOA could guide regulatory policies on PFC usage and inform clinical approaches to mitigate their neurotoxic effects, especially in vulnerable population.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Collage of Veterinary of Medicine, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
5
|
Gao XX, Zuo QL, Fu XH, Song LL, Cen MQ, Wu J. Association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in children: Evidence based on birth cohort. ENVIRONMENTAL RESEARCH 2023; 236:116812. [PMID: 37536558 DOI: 10.1016/j.envres.2023.116812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although numerous studies have examined the effect of prenatal per- and polyfluoroalkyl substances (PFAS) exposure on neurodevelopment in children, findings have been inconsistent. OBJECTIVE To better understand the effects of PFAS exposure during pregnancy on offspring neurodevelopment, we conducted a systematic review of prenatal exposure to different types of PFAS and neurodevelopment in children. METHODS A comprehensive search was conducted in the PubMed, Web of Science, and EMBASE electronic databases up to March 2023. Only birth cohort studies that report a specific association between PFAS exposure during pregnancy and neurodevelopment were included in this review. RESULTS 31 birth cohort studies that met the inclusion criteria were qualitatively integrated. Among these, 14 studies investigated the impact of PFAS exposure during pregnancy on cognition, 13 on neurobehavior, and 4 on both cognition and neurobehavior. Additionally, 4 studies explored the influence of PFAS on children's comprehensive development. CONCLUSION Prenatal PFAS exposure was associated with poor neurodevelopment in children, including psychomotor development, externalizing behavior, and comprehensive development. However, conclusive evidence regarding its effects on other neurological outcomes remains limited. In addition, sex-specific effects on social behavior and sleep problems were identified.
Collapse
Affiliation(s)
- Xin-Xin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Lin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Hang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Ling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man-Qiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Tillaut H, Monfort C, Rouget F, Pelé F, Lainé F, Gaudreau E, Cordier S, Warembourg C, Saint-Amour D, Chevrier C. Prenatal Exposure to Perfluoroalkyl Substances and Child Behavior at Age 12: A PELAGIE Mother-Child Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117009. [PMID: 37971539 PMCID: PMC10653211 DOI: 10.1289/ehp12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are chemical substances spread throughout the environment worldwide. Exposure during pregnancy represents a specific window of vulnerability for child health. OBJECTIVE Our objective was to assess the impact of prenatal exposure to multiple PFAS on emotional and behavioral functions in 12-y-old children. METHOD In the PELAGIE mother-child cohort (France), prenatal exposure to nine PFAS was measured from concentrations in cord serum samples. Behavior was assessed at age 12 y using the parent-reported Strengths and Difficulties Questionnaire (SDQ) and the self-reported Dominic Interactive for Adolescents (DIA) for 444 children. Associations were estimated using negative binomial models for each PFAS. Bayesian kernel machine regression (BKMR) models were performed to assess the exposure mixture effect on children's behavior. RESULTS In our study population, 73% of mothers had spent more than 12 y in education. Higher scores on SDQ externalizing subscale were observed with increasing cord-serum concentration of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) [adjusted mean ratio ( aMR ) = 1.18 , 95% confidence interval (CI): 1.03, 1.34, and aMR = 1.14 (95% CI: 1.00, 1.29) for every doubling of concentration, respectively]. Results for the hyperactivity score were similar [aMR = 1.20 (95% CI: 1.04, 1.40) and aMR = 1.18 (95% CI: 1.02, 1.36), respectively]. With regard to major depressive disorder and internalizing subscales, perfluorodecanoic acid (PFDA) was associated with higher self-reported DIA scores [aMR = 1.14 (95% CI: 1.01, 1.27) and aMR = 1.11 (95% CI: 1.02, 1.21), respectively]. In terms of the anxiety subscale, PFDA and PFNA were associated with higher scores [aMR = 1.11 (95% CI: 1.02, 1.21) and aMR = 1.10 (95% CI: 1.01, 1.19), respectively]. Concurrent increases in the PFAS concentrations included in the BKMR models showed no change in the SDQ externalizing and DIA internalizing subscales scores. CONCLUSION Prenatal exposure to PFNA and PFOA were associated with increasing scores for measures of externalizing behaviors, specifically hyperactivity. We also identified associations between PFNA and PFDA prenatal exposure levels and increasing scores related to internalizing behaviors (general anxiety and major depressive disorder), which adds to the as yet sparse literature examining the links between prenatal exposure to PFAS and internalizing disorders. https://doi.org/10.1289/EHP12540.
Collapse
Affiliation(s)
- Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Florence Rouget
- Irset - UMR_S 1085, Centre hospitalier universitaire (CHU) de Rennes, Université de Rennes, Inserm, EHESP, Rennes, France
| | - Fabienne Pelé
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Fabrice Lainé
- CIC 1414, Université de Rennes, CHU Rennes, Inserm, Rennes, France
| | - Eric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Québec, Canada
| | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier, Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Université de Rennes, Institut national de la santé et de la recherche médicale (Inserm), École des hautes études en santé publique (EHESP), Rennes, France
| |
Collapse
|
7
|
Hilz EN, Gore AC. Endocrine-Disrupting Chemicals: Science and Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:142-150. [PMID: 39758979 PMCID: PMC11698485 DOI: 10.1177/23727322231196794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that disrupt the normal functioning of endocrine system hormones, leading to a range of adverse health effects in humans and wildlife. Exposure to EDCs is ubiquitous and occurs through contaminated food and water, air, consumer products, and transfer from parents to offspring. Effective regulation has been challenging due to a limited understanding of EDCs' complex and nonlinear dose-response relationships, as well as difficulty in attributing specific health effects to individual EDC exposures in real-world scenarios. Current EDC policies face limitations in terms of the diversity and complexity of EDCs, the lack of comprehensive testing requirements, and the need for more robust regulatory frameworks that consider cumulative and mixture effects of EDCs. Understanding these aspects is crucial for developing effective and evidence-based EDC policies that can safeguard public health and the environment.
Collapse
|
8
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
9
|
Wang H, Luo F, Zhang Y, Yang X, Zhang S, Zhang J, Tian Y, Zheng L. Prenatal exposure to perfluoroalkyl substances and child intelligence quotient: Evidence from the Shanghai birth cohort. ENVIRONMENT INTERNATIONAL 2023; 174:107912. [PMID: 37023630 DOI: 10.1016/j.envint.2023.107912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Epidemiological evidence on the association between prenatal exposure to Perfluoroalkyl substances (PFAS) and child cognition remains unclear. Thus, we aimed to investigate whether prenatal exposure to PFAS is associated with intelligence quotient (IQ) in offspring. METHOD This study population included 2031 mother-child pairs in the Shanghai Birth Cohort (SBC) enrolled during 2013-2016. Ten PFAS were measured by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in maternal plasma samples collected in early gestation between 9 and 16 weeks of gestation. Child IQ was assessed using the Wechsler Preschool and Primary Scales of Intelligence-Fourth Edition (WPPSI-IV) at 4 years of age. Multivariable linear regression models were used to estimate the associations between individual PFAS concentrations (as a continuous variable or categorized into tertiles) and child IQ. A quantile g-computation approach was used to evaluate the joint and independent effects of PFAS on IQ. We also examined whether the associations varied by child sex. RESULTS We found no significant associations between ln-transformed nine individual PFAS and child full scale IQ (FSIQ) or subscale IQ after adjusting for potential confounders. The observed associations were not modified by child sex. PFAS in tertiles showed the same pattern. Results from quantile g-computation showed that PFAS mixture was not associated with child IQ; perfluorobutane sulfonate was negatively associated with FSIQ (β, -0.81; 95 % CI: -1.55, -0.07), and perfluorooctane sulfonate was also associated with lower fluid reasoning index scores (β, -1.61; 95 % CI: -3.07, -0.16) while adjusting for the other PFAS. CONCLUSION PFAS mixture during early pregnancy was not associated with child IQ. For certain individual PFAS, there were inverse associations with FSIQ or subscale IQ. Considering the evidence is still inconsistent, further research is needed to confirm or refute these results in other populations and to elucidate the potential neurotoxicology of PFAS.
Collapse
Affiliation(s)
- Hui Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Luo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuchen Yang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Pickard HM, Ruyle BJ, Thackray CP, Chovancova A, Dassuncao C, Becanova J, Vojta S, Lohmann R, Sunderland EM. PFAS and Precursor Bioaccumulation in Freshwater Recreational Fish: Implications for Fish Advisories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15573-15583. [PMID: 36280234 PMCID: PMC9670858 DOI: 10.1021/acs.est.2c03734] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Colin P. Thackray
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Adela Chovancova
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Eastern
Research Group, Inc., Arlington, Virginia 22201, United States
| | - Jitka Becanova
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Department
of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
12
|
Bil W, Zeilmaker MJ, Bokkers BG. Internal Relative Potency Factors for the Risk Assessment of Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) in Human Biomonitoring. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:77005. [PMID: 35881550 PMCID: PMC9320915 DOI: 10.1289/ehp10009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND In human biomonitoring, blood is often used as a matrix to measure exposure to per- and polyfluoroalkyl substances (PFAS). Because the toxicokinetics of a substance (determining the steady-state blood concentration) may affect the toxic potency, the difference in toxicokinetics among PFAS has to be accounted for when blood concentrations are used in mixture risk assessment. OBJECTIVES This research focuses on deriving relative potency factors (RPFs) at the blood serum level. These RPFs can be applied to PFAS concentrations in human blood, thereby facilitating mixture risk assessment with primary input from human biomonitoring studies. METHODS Toxicokinetic models are generated for 10 PFAS to estimate the internal exposure in the male rat at the blood serum level over time. By applying dose-response modeling, these internal exposures are used to derive quantitative internal RPFs based on liver effects. RESULTS Internal RPFs were successfully obtained for nine PFAS. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoDA), perfluorooctane sulfonic acid (PFOS), and hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX) were found to be more potent than perfluorooctanoic acid (PFOA) at the blood serum level in terms of relative liver weight increase, whereas perfluorobutane sulfonic acid (PFBS) and perfluorohexane sulfonic acid (PFHxS) were found to be less potent. The practical implementation of these internal RPFs is illustrated using the National Health and Nutrition Examination Survey (NHANES) biomonitoring data of 2017-2018. DISCUSSION It is recommended to assess the health risk resulting from exposure to PFAS as combined, aggregate exposure to the extent feasible. https://doi.org/10.1289/EHP10009.
Collapse
Affiliation(s)
- Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marco J. Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bas G.H. Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
13
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
14
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
15
|
Cao Y, Ng C. Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1623-1640. [PMID: 34533150 DOI: 10.1039/d1em00228g] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals colloquially known as "forever chemicals" because of their high persistence. PFAS have been detected in the blood, liver, kidney, heart, muscle and brain of various species. Although brain is not a dominant tissue for PFAS accumulation compared to blood and liver, adverse effects of PFAS on brain functions have been identified. Here, we review studies related to the absorption, accumulation, distribution and toxicity of PFAS in the brain. We summarize evidence on two potential mechanisms of PFAS entering the brain: initiating blood-brain barrier (BBB) disassembly through disrupting tight junctions and relying on transporters located at the BBB. PFAS with diverse structures and properties enter and accumulate in the brain with varying efficiencies. Compared to long-chain PFAS, short-chain PFAS may not cross cerebral barriers effectively. According to biomonitoring studies and PFAS exposure experiments, PFAS can accumulate in the brain of humans and wildlife species. With respect to the distribution of PFAS in specific brain regions, the brain stem, hippocampus, hypothalamus, pons/medulla and thalamus are dominant for PFAS accumulation. The accumulation and distribution of PFAS in the brain may lead to toxic effects in the central nervous system (CNS), including PFAS-induced behavioral and cognitive disorders. The specific mechanisms underlying such PFAS-induced neurotoxicity remain to be explored, but two major potential mechanisms based on current understanding are PFAS effects on calcium homeostasis and neurotransmitter alterations in neurons. Based on the information available about PFAS uptake, accumulation, distribution and impacts on the brain, PFAS have the potential to enter and accumulate in the brain at varying levels. The balance of existing studies shows there is some indication of risk in animals, while the human evidence is mixed and warrants further scrutiny.
Collapse
Affiliation(s)
- Yuexin Cao
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Liu C, Cheng ZY, Xia QP, Hu YH, Wang C, He L. GPR40 receptor agonist TAK-875 improves cognitive deficits and reduces β-amyloid production in APPswe/PS1dE9 mice. Psychopharmacology (Berl) 2021; 238:2133-2146. [PMID: 34173034 DOI: 10.1007/s00213-021-05837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. G protein-coupled receptor 40 (GPR40) is expressed in brain in addition to periphery and is associated with cognitive function such as space orientation, memory, and learning. However, the effects and mechanisms of GPR40 agonist in improving the AD progression remain largely unknown. OBJECTIVES The present study aimed to investigate the therapeutic effects and mechanisms of a potent and selective GPR40 agonist TAK-875 on the APPswe/PS1dE9 mice. RESULTS The results showed that intracerebroventricular administration of TAK-875 significantly rescued cognitive deficits in APPswe/PS1dE9 mice, and these effects may be mediated by the regulation of phospholipase C/protein kinase C signaling pathway, which enhanced α-secretase ADAM10 activity, promoted amyloid precursor protein non-amyloidogenic processing pathway, and reduced β-amyloid production. CONCLUSIONS These results suggest that GPR40 may be a potential therapeutic target for AD, and GPR40 agonists may become promising AD drugs in the future.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Yu-Hui Hu
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Chen Wang
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009, Jiang Su Province, China.
| |
Collapse
|
17
|
Shen CY, Weng JC, Tsai JD, Su PH, Chou MC, Wang SL. Prenatal Exposure to Endocrine-Disrupting Chemicals and Subsequent Brain Structure Changes Revealed by Voxel-Based Morphometry and Generalized Q-Sampling MRI. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094798. [PMID: 33946254 PMCID: PMC8125311 DOI: 10.3390/ijerph18094798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023]
Abstract
Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We recruited 49 mother–child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs—including phthalate esters, perfluorochemicals (PFCs), and heavy metals (lead, arsenic, cadmium, and mercury)—in maternal urine and/or serum. MRI voxel-based morphometry (VBM) and generalized q-sampling imaging (GQI) mapping—including generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO)—were obtained in teenagers 13–16 years of age in order to find the association between maternal EDC concentrations and possible brain structure alterations in the teenagers’ brains. We found that there are several specific vulnerable brain areas/structures associated with prenatal exposure to EDCs, including decreased focal brain volume, primarily in the frontal lobe; high frontoparietal lobe, temporooccipital lobe and cerebellum; and white matter structural alterations, which showed a negative association with GFA/NQA and a positive association with ISO, primarily in the corpus callosum, external and internal capsules, corona radiata, superior fronto-occipital fasciculus, and superior longitudinal fasciculus. Prenatal exposure to EDCs may be associated with specific brain structure alterations in teenagers.
Collapse
Affiliation(s)
- Chao-Yu Shen
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jun-Cheng Weng
- Bachelor Program in Artificial Intelligence, Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| | - Jeng-Dau Tsai
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pen-Hua Su
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| |
Collapse
|
18
|
Fang X, Zhang X, Li H. Oxidative stress and mitochondrial membrane potential are involved in the cytotoxicity of perfluorododecanoic acid to neurons. Toxicol Ind Health 2020; 36:892-897. [PMID: 32955411 DOI: 10.1177/0748233720957534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perfluorododecanoic acid (PFDoA), used in numerous commercial products, was recently demonstrated to accumulate in the brain more easily than other perfluorinated compounds and to cause cognitive deficits. In this study, pheochromocytoma 12 (PC12) cells were exposed to doses of PFDoA to explore the cytotoxicity of this compound to neurons. The results showed that treatment with PFDoA decreased PC12 cell viability dose-dependently. Treatment with 50 and 100 µM PFDoA significantly increased reactive oxygen species (p < 0.01) and malondialdehyde (p < 0.01) and decreased total antioxidant capacity (p < 0.05 and p < 0.01, respectively) in PC12 cells. The administration of 50 and 100 µM PFDoA led to a loss of mitochondrial membrane potential (MMP) (p < 0.05 and p < 0.01, respectively) in PC12 cells. The activity of caspase 3 was obviously increased (p < 0.05) in 100 µM PFDoA-treated PC12 cells. In general, the results demonstrated that PFDoA exposure could result in the disruption of MMP, which may contribute to the increase of oxidative stress and activation of the apoptotic signaling cascade in PC12 cells.
Collapse
Affiliation(s)
| | | | - Hongxia Li
- School of Biological and Food Engineering, 177544Suzhou University, Suzhou, People's Republic of China
| |
Collapse
|
19
|
Cheng ZY, Xia QP, Hu YH, Wang C, He L. Dopamine D1 receptor agonist A-68930 ameliorates Aβ 1-42-induced cognitive impairment and neuroinflammation in mice. Int Immunopharmacol 2020; 88:106963. [PMID: 33182028 DOI: 10.1016/j.intimp.2020.106963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. Dopamine is an important catecholaminergic neurotransmitter that controls movement, reward, motivation, and cognition. Recently, dopamine receptors were reported to regulate immune system in both periphery and central nervous system. However, whether dopamine D1 receptor (DRD1) activation could improve neuroinflammation in AD conditions remains unknown. The present study aimed to investigate the therapeutic effects and underlying mechanisms of a potent and selective DRD1 agonist A-68930 on Aβ1-42-induced mice. Here we showed that intraperitoneal injection of A-68930 significantly ameliorated Aβ1-42-induced cognitive dysfunction in mice. Moreover, both in vivo and in vitro data showed that A-68930-induced DRD1 activation significantly inhibited NLRP3 inflammasome-dependent neuroinflammation induced by Aβ1-42, and this effect may be mediated by the activation of AMPK/autophagy signaling pathway, which enhanced NLRP3 inflammasome degradation and thus decreased the secretion of IL-1β and IL-18. The present study suggests that A-68930-induced DRD1 signaling efficiently alleviates Aβ1-42-induced cognitive impairment and neuroinflammation in mice and BV2 cells, and DRD1 may become a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yu-Hui Hu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
21
|
Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. Neurotoxicology 2020; 77:155-168. [DOI: 10.1016/j.neuro.2020.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 02/01/2023]
|
22
|
Xu T, Yin D. The unlocking neurobehavioral effects of environmental endocrine-disrupting chemicals. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Endocrine disruptors of inhibiting testicular 3β-hydroxysteroid dehydrogenase. Chem Biol Interact 2019; 303:90-97. [PMID: 30826252 DOI: 10.1016/j.cbi.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023]
Abstract
Testicular 3β-hydroxysteroid dehydrogenase (HSD3B) is a steroidogenic enzyme, catalyzing the conversion of 3β-hydroxysteroids into 3-keto-steroids. Two distinct isoforms in the human are cloned, HSD3B1 and HSD3B2, and HSD3B2 is located in the testis. HSD3B2 is a two-substrate enzyme, which binds to cofactor NAD+ and a 3β-steroid. Many endocrine disruptors, including industrial compounds (phthalates, bisphenols, and perfluoroalkyl substances), insecticides and biocides (organochlorine insecticides and organotins), food additives (butylated hydroxyanisole, resveratrol, gossypol, flavones, and isoflavones), and drugs (etomidate, troglitazone, medroxyprogesterone acetate, and ketoconazole) inhibit testicular HSD3B, possibly interfering with androgen synthesis. In this review, we discuss the distinct testicular isoform of HSD3B, its gene, chemistry, subcellular location, and the endocrine disruptors that directly inhibit testicular HSD3B and their inhibitory modes.
Collapse
|
24
|
Chen Y, Li H, Mo J, Chen X, Wu K, Ge F, Ma L, Li X, Guo X, Zhao J, Ge RS. Perfluorododecanoic Acid Blocks Rat Leydig Cell Development during Prepuberty. Chem Res Toxicol 2018; 32:146-155. [DOI: 10.1021/acs.chemrestox.8b00241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Guo X, Zhang S, Lu S, Zheng B, Xie P, Chen J, Li G, Liu C, Wu Q, Cheng H, Sang N. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1018-1026. [PMID: 30029309 DOI: 10.1016/j.envpol.2018.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shengnan Zhang
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
26
|
Zhang H, Yolton K, Webster GM, Ye X, Calafat AM, Dietrich KN, Xu Y, Xie C, Braun JM, Lanphear BP, Chen A. Prenatal and childhood perfluoroalkyl substances exposures and children's reading skills at ages 5 and 8years. ENVIRONMENT INTERNATIONAL 2018; 111:224-231. [PMID: 29241079 PMCID: PMC5801149 DOI: 10.1016/j.envint.2017.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/06/2017] [Accepted: 11/28/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFASs) may impact children's neurodevelopment. OBJECTIVE To examine the association of prenatal and early childhood serum PFAS concentrations with children's reading skills at ages 5 and 8years. METHODS We used data from 167 mother-child pairs recruited during pregnancy (2003-2006) in Cincinnati, OH, quantified prenatal serum PFAS concentrations at 16±3weeks of gestation and childhood sera at ages 3 and 8years. We assessed children's reading skills using Woodcock-Johnson Tests of Achievement III at age 5years and Wide Range Achievement Test-4 at age 8years. We used general linear regression to quantify the covariate-adjusted associations between natural log-transformed PFAS concentrations and reading skills, and used multiple informant model to identify the potential windows of susceptibility. RESULTS Median serum PFASs concentrations were PFOS>PFOA>PFHxS>PFNA in prenatal, 3-year, and 8-year children. The covariate-adjusted general linear regression identified positive associations between serum PFOA, PFOS and PFNA concentrations and children's reading scores at ages 5 and 8years, but no association between any PFHxS concentration and reading skills. The multiple informant model showed: a) Prenatal PFOA was positively associated with higher children's scores in Reading Composite (β: 4.0, 95% CI: 0.6, 7.4 per a natural log unit increase in exposure) and Sentence Comprehension (β: 4.2, 95% CI: 0.5, 8.0) at age 8years; b) 3-year PFOA was positively associated with higher children's scores in Brief Reading (β: 7.3, 95% CI: 0.9, 13.8), Letter Word Identification (β: 6.6, 95% CI: 1.1, 12.0), and Passage Comprehension (β: 5.9, 95% CI: 1.5, 10.2) at age 5years; c) 8-year PFOA was positively associated with higher children's Word Reading scores (β: 5.8, 95% CI: 0.8, 10.7) at age 8years. Prenatal PFOS and PFNA were positively associated with children's reading abilities at age 5years, but not at age 8years; 3-year PFOS and PFNA were positively associated with reading scores at age 5years. But PFHxS concentrations, at any exposure windows, were not associated with reading skills. CONCLUSION Prenatal and childhood serum PFOA, PFOS and PFNA concentrations were positively associated with better children's reading skills at ages 5 and 8years, but no association was found between serum PFHxS and reading skills.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim N Dietrich
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|