1
|
Hao H, Bao F, Wang Y, Li N, Gong Y. Peptide therapy: new promising therapeutics for acute kidney injury. Drug Discov Today 2025; 30:104377. [PMID: 40348078 DOI: 10.1016/j.drudis.2025.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Acute kidney injury (AKI) is a common fatal condition among hospitalized patients. AKI may be induced by a variety of complicating factors such as sepsis, ischemia-reperfusion injury, nephrotoxic substances, and rhabdomyolysis. At present, symptomatic treatment is mainly used, and there are no US Food and Drug Administration (FDA)-approved drugs for the prevention or treatment of AKI. Peptides have become a promising area of research in AKI treatment because of their high efficiency and low toxicity. In this paper, we systematically review the experimental advancements of peptide therapy for AKI, analyze the mechanism of peptide action in different pathological models, discuss the challenges facing peptide therapy, and provide a scientific basis for further clinical research.
Collapse
Affiliation(s)
- Herui Hao
- School of Disaster and Emergency Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Fengjiao Bao
- School of Disaster and Emergency Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Yuru Wang
- School of Disaster and Emergency Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China
| | - Ning Li
- School of Disaster and Emergency Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Faculty of Medicine, Tianjin University, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
2
|
Fragkou K, Ketsekioulafis I, Tousia A, Piagkou M, Bacopoulou F, Ferentinos P, Peyron PA, Baccino E, Martrille L, Papadodima S. From Fragile Lives to Forensic Truth: Multimodal Forensic Approaches to Pediatric Homicide and Suspect Death. Diagnostics (Basel) 2025; 15:1383. [PMID: 40506955 PMCID: PMC12155358 DOI: 10.3390/diagnostics15111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 05/24/2025] [Accepted: 05/29/2025] [Indexed: 06/16/2025] Open
Abstract
Background: Forensic investigation of child homicides presents unique challenges due to the vulnerability of children and the complexity of distinguishing between natural, accidental, and intentional manner of death. A multidisciplinary approach integrating traditional forensic methods with emerging technologies is crucial to ensure accurate diagnosis and effective legal outcomes. Methods: This review examines current and emerging forensic techniques used in neonate, infant, and older child homicide investigations. It highlights advancements in postmortem imaging, histological examination, microbiological analysis, toxicology, and molecular autopsy. Results: Traditional forensic autopsy remains the cornerstone of child homicide investigations, providing critical insights into external and internal injuries. Histological examination enhances diagnostic accuracy by detecting microscopic evidence of trauma and infectious diseases. Postmortem imaging techniques are complementary for better identifying fractures, soft tissue injuries, and vascular abnormalities. Forensic toxicology plays a key role in detecting poisoning, while postmortem microbiology aids in identifying infectious causes of death. Furthermore, advancements in molecular autopsy and genetic testing have significantly enhanced the identification of hereditary conditions linked to sudden unexplained deaths in children, especially in cases involving multiple child fatalities within the same family, where forensic investigations are needed to accurately differentiate between natural causes and potential criminal involvement. Conclusions: A multidisciplinary approach incorporating traditional autopsy with postmortem imaging, histological examination, toxicology, postmortem microbiology, and molecular autopsy is essential for comprehensive forensic analysis, promoting both justice and prevention of fatal child abuse/homicide. Future research should focus on standardizing forensic protocols and exploring the potential of artificial intelligence (AI) in forensic investigations.
Collapse
Affiliation(s)
- Kallirroi Fragkou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.F.); (I.K.); (A.T.)
| | - Ioannis Ketsekioulafis
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.F.); (I.K.); (A.T.)
| | - Athina Tousia
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.F.); (I.K.); (A.T.)
| | - Maria Piagkou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescence Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 115 27 Athens, Greece;
| | - Panagiotis Ferentinos
- Affective Disorders and Suicide Unit, 2nd Department of Psychiatry, “Attikon” University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Pierre-Antoine Peyron
- Department of Legal Medicine, CHU Reunion, University of Reunion, 97400 Saint-Denis, France;
| | - Eric Baccino
- EDPFM, Department of Legal Medicine CHU Montpellier, University of Montpellier, 34000 Montpellier, France; (E.B.); (L.M.)
| | - Laurent Martrille
- EDPFM, Department of Legal Medicine CHU Montpellier, University of Montpellier, 34000 Montpellier, France; (E.B.); (L.M.)
| | - Stavroula Papadodima
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.F.); (I.K.); (A.T.)
| |
Collapse
|
3
|
Chenga H, Garg A, Das SS, Ramamurthi N. Prediction of Drug-Induced Nephrotoxicity Using Chemical Information and Transcriptomics Data. J Chem Inf Model 2025; 65:5139-5151. [PMID: 40340383 DOI: 10.1021/acs.jcim.5c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Prediction of drug-induced nephrotoxicity is an important task in the drug discovery and development pipeline. Chemical information-based machine learning models are used in general for nephrotoxicity prediction as a part of computational modeling. Currently, gene expression data are being considered increasingly for prediction of different toxicities, as they can provide mechanistic understanding by which the drug causes specific organ toxicity. Here, we demonstrate the use of gene expression data for nephrotoxicity prediction using multiple machine learning methods such as LightGBM, random forest, support vector machine, and XGBoost. Apart from the models built with all the gene expression profiles for selected compounds, the sample selection technique is used to select three different subsets of gene expression profiles of sizes 6000, 9000, and 12,000 and models are generated using them also. Considering the imbalanced class distribution in gene expression data, different techniques such as optimal probability thresholds determination, data balancing, and cost-sensitive learning are considered during model generation. We have also generated chemical information-based models to compare the performance of gene expression-based models. Multiple data division techniques are applied to enhance the performance of chemical information-based models. The best chemical information-based model (CIM19) and best gene expression-based model (GEM9) (generated without any data balancing techniques) have similar AUC values of 0.89 and 0.9, respectively. To further enhance the performance of gene expression-based models, we have developed a model GEM20 with all the 6162 toxic gene expression profiles and the same number of nontoxic profiles selected using the SPXY method from 18,825 nontoxic profiles. This model provides the highest AUC score of 0.94 among all of the chemical information- and gene expression-based models. Additionally, SHAP analysis has been performed on a gene expression-based model and identified several genes such as cell division cycle 20, RPS6, DNA damage-inducible transcript 4, GAPDH, CCNF, and MRPL12, which could be associated with nephrotoxicity.
Collapse
Affiliation(s)
- Hemanth Chenga
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Chennai 600113, India
| | - Ayush Garg
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Noida 201303, India
| | - Shyam Sundar Das
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Kolkata 700160, India
| | - Narayanan Ramamurthi
- TCS Research (Life Sciences Division), Tata Consultancy Services Limited, Chennai 600113, India
| |
Collapse
|
4
|
Jagua-Gualdrón A, García-Reyes NA, Africano-Lopez HL. Apitherapy for drug-induced kidney disease: a narrative review on its mechanisms. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2025-0082. [PMID: 40178599 DOI: 10.1515/jcim-2025-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVES The use of medications for the treatment of various diseases often results in kidney damage. Apitherapy is a natural therapeutic tool with potential utility for this purpose. This narrative review analyzes and summarizes the scientific evidence on the use of apitherapy in drug-induced kidney disease. CONTENT This review summarizes and analyzes recent advances in drug-induced kidney disease and explores, based on the available scientific evidence, how apitherapy can modify these mechanisms and be utilized for prevention and treatment. SUMMARY Apitherapy (the complementary and integrative use of beehive products) is a potentially useful therapeutic system for the treatment of various diseases. This review examines the preclinical and clinical evidence available regarding its potential use in drug-induced kidney disease. OUTLOOK Apitherapy has effects on various pathophysiological mechanisms of drug-induced kidney disease, including oxidative stress, inflammation, decreased renal blood flow, glomerular damage, increased membrane permeability, activity of the renin-angiotensin-aldosterone axis, mitochondrial dysfunction, and apoptosis. Further studies in humans are needed to evaluate its efficacy in the clinical setting, but the available evidence is promising.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- National University of Colombia, Bogotá D.C., Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogotá D.C., Colombia
- International College of Apitherapy, Bogotá D.C., Colombia
| | - Nicolai Andrés García-Reyes
- National University of Colombia, Bogotá D.C., Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogotá D.C., Colombia
| | - Holman Leonardo Africano-Lopez
- Fundación Universitaria de Ciencias de la Salud, Sociedad de Cirugía de Bogotá, Hospital San José Sede Centro, Bogotá D.C., Colombia
| |
Collapse
|
5
|
Hamza A, Zadi SSF, Salar MZ, Ijaz MU, Al-Ghanim KA, Ishtiaq A. Mitigative effects of didymin against cadmium-induced renal injury via regulating Nrf-2/Keap-1, apoptosis, inflammation and oxidative stress. J Trace Elem Med Biol 2025; 88:127597. [PMID: 39874776 DOI: 10.1016/j.jtemb.2025.127597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Cadmium (Cd) is a toxic heavy metal present in environment that has potential to instigate renal toxicity. Didymin (DDM) is a natural flavone, which shows anti-oxidant, anti-inflammatory and antiapoptotic nature. Therefore, the current study was formulated to appraise attenuative potential of DDM against Cd instigated nephrotoxicity. METHODS Forty-eight albino rats were divided into four equal groups, including control, Cd (5 mg/kg) inebriated group, Cd + DDM (5 mg/kg + 1 mg/kg) concurrent-treated group, as well as DDM (1 mg/kg) alone treated group. The trial was conducted for 30 days and then the rats were anesthetized, decapitated and further analyses were performed. RESULTS The results demonstrated that Cd treatment lowered the expressions of Nrf-2 and its anti-oxidant genes while escalating Keap-1 expression. Cd exposure downregulated the activities of antioxidant enzymes, SOD, GSR, CAT, HO-1, GPx, GST & GSH contents, while the levels of MDA and ROS were escalated. Furthermore, Cd exposure lowered the levels of creatinine clearance and albumin, while increasing the levels of urobilinogen, urinary proteins, urea, creatinine, NGAL and KIM-1. Moreover, Cd intoxication also augmented the levels of inflammatory indices including, IL-1β, NF-κB, TNF-α, IL-6 and COX-2. Additionally, Cd exposure reduced the expressions of Bcl-2, while increasing Bax and caspase-3 expressions. In addition to this, Cd also provoked multiple histological injuries in the renal tissues of the rats. However, DDM supplementation markedly recovered the renal tissues from the Cd induced damages. CONCLUSION In conclusion, DDM protected the renal tissues from Cd-provoked damages due to its antiapoptotic, anti-oxidant and anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Zaid Salar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayesha Ishtiaq
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
6
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
7
|
Zhang M, Ma Y, Jin Y, Wang Y, Wu X. Acute kidney injury and energy metabolism. Clin Chim Acta 2025; 570:120208. [PMID: 39986590 DOI: 10.1016/j.cca.2025.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Acute kidney injury (AKI) predominantly affects hospitalized patients, particularly those in intensive care units, and has emerged as a significant global public health concern. Several factors, including severe cardiovascular disease, surgery-induced renal ischemia, nephrotoxic drugs, and sepsis, contribute to the development of AKI. Despite the implementation of various clinical strategies to prevent or treat AKI, its morbidity and mortality remain high, and there are no clinically effective therapeutic agents available. The limitations of traditional renal function markers (such as urine output, serum creatinine, and urea nitrogen levels), including their delayed response and insensitivity, underscore the urgent need for novel early biomarkers to facilitate the timely diagnosis of AKI. The proximal tubular epithelial cells in the kidney play a central role in both the onset and progression of AKI. These cells are highly metabolically active and have a substantial energy demand, primarily relying on fatty acid oxidation to meet their energy needs. Acylcarnitines are crucial in transporting fatty acids from the cytoplasm into the mitochondrial matrix for β-oxidation, which generates energy essential for maintaining cellular function and viability. This review aims to summarize the current understanding of AKI, including its triggers, classification, underlying mechanisms, and potential biomarkers. Special emphasis is placed on the role of fatty acid and carnitine metabolism in AKI, with the goal of providing a theoretical foundation for future investigations into AKI mechanisms and the identification of early diagnostic biomarkers.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yanrong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yongwen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yazhi Wang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
8
|
Ng C, Kim M, Yanti, Kwak MK. Oxidative stress and NRF2 signaling in kidney injury. Toxicol Res 2025; 41:131-147. [PMID: 40013079 PMCID: PMC11850685 DOI: 10.1007/s43188-024-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 02/28/2025] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and the AKI-to-CKD transition. This review examines the intricate relationship between oxidative stress and kidney pathophysiology, emphasizing the potential therapeutic role of nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of cellular redox homeostasis. In diverse AKI and CKD models, diminished NRF2 activity exacerbates oxidative stress, whereas genetic and pharmacological NRF2 activation alleviates kidney damage induced by nephrotoxic agents, ischemia-reperfusion injury, fibrotic stimuli, and diabetic nephropathy. The renoprotective effects of NRF2 extend beyond antioxidant defense, encompassing its anti-inflammatory and anti-fibrotic properties. The significance of NRF2 in renal fibrosis is further underscored by its interaction with the transforming growth factor-β signaling cascade. Clinical trials using bardoxolone methyl, a potent NRF2 activator, have yielded both encouraging and challenging outcomes, illustrating the intricacy of modulating NRF2 in human subjects. In summary, this overview suggests the therapeutic potential of targeting NRF2 in kidney disorders and highlights the necessity for continued research to refine treatment approaches.
Collapse
Affiliation(s)
- Cherry Ng
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Maxine Kim
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
| | - Yanti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930 Indonesia
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21FOUR Advanced Program for Smart Pharma Leaders, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662 Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-Ro, Bucheon, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
9
|
Díaz-Morales N, Sancho-Martínez SM, Baranda-Alonso EM, Fuentes-Calvo I, Sidhu-Muñoz RS, Martín-Fernández N, López-Hernández FJ, Martínez-Salgado C. Age and Hypertension Synergize With Dehydration to Cause Renal Frailty in Rats and Predispose Them to Intrinsic Acute Kidney Injury. J Transl Med 2025; 105:102211. [PMID: 39675723 DOI: 10.1016/j.labinv.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Acute kidney frailty (AKF) is a condition of increased susceptibility to acute kidney injury (AKI), an abrupt impairment of renal excretory function potentially leading to severe complications. Prevention of AKI relies on the recognition of risk factors contributing to AKF. At the population level, dehydration constitutes a predisposing factor for AKI. However, renal frailty may be context-specific, with variations among patients in the types of damage and the distinct pathological mechanisms. In this regard, we studied the combined effect of dehydration with other factors on renal homeostasis, such as increasing age and hypertension. AKF status was studied in rats bearing risk factors individually and in combination and was evaluated as the level of AKI induced by a triggering dose of cisplatin, which is known to be mildly nephrotoxic for young, healthy rats. AKI was assessed through parameters of renal function (including creatinine, urea, creatinine clearance, proteinuria, and fractional excretion of sodium) and histopathology of renal tissue specimens. The hydration status was measured by bioelectric impedance and other techniques. Water deprivation induces a dehydration state characterized by reductions in body weight and urinary flow and increases in hematocrit and plasma and urine osmolality. Bioelectric impedance showed a net loss of body water after water deprivation with no relevant changes in body mass distribution. Dehydration is not sufficient to predispose young control rats to intrinsic AKI. However, the combination of dehydration with advanced age or hypertension induces AKF evidenced by a magnified response of renal dysfunction (reduced filtration and tubular function) and tubular necrosis caused by low-dose cisplatin treatment. This study highlights the relevance of addressing AKF as a premorbid condition providing prophylactic opportunities and shows that dehydration differentially predisposes to prerenal and intrinsic AKI.
Collapse
Affiliation(s)
- Noelia Díaz-Morales
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sandra M Sancho-Martínez
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Eva M Baranda-Alonso
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Isabel Fuentes-Calvo
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rebeca S Sidhu-Muñoz
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Nuria Martín-Fernández
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Francisco J López-Hernández
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Carlos Martínez-Salgado
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
10
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
11
|
Eltahir HM, Shalkami AGS, Shehata AM, Almikhlafi M, Aldhafiri AJ, Alalawi A, Albadrani M, Mahmoud AB, Abouzied MM. Boswellia serrate Gum Resin Mitigates Renal Toxicity: Role of TNF-α, Interleukins, TGF-β, and Lipid Peroxidation. Life (Basel) 2024; 14:1669. [PMID: 39768376 PMCID: PMC11676428 DOI: 10.3390/life14121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background and aim: Being a central organ in homeostasis and maintaining the health of the biological system, kidneys are exposed to variable toxicants. Long-term exposure to nephrotoxic molecules causes chronic renal damage that causes fibrosis and loss of function. Such damage can be initiated by oxidative stress which provokes inflammation. We aim at investigating the potential therapeutic effects of Boswellia serrata (BS) gum resin extract in managing CCl4-induced renal toxicity. Methods: Male Wistar albino rats were assigned to groups: healthy control; CCl4-treated (CCl4, twice/week, for 6 weeks); CCl4 + BS-treated: CCl4 for 6 weeks followed by BS (150 mg/kg/day) for 2 weeks; and CCl4 + Silymarin-treated: CCl4 for 6 weeks followed by Silymarin (100 mg/kg/day) for 2 weeks. Blood and kidney tissue were utilized to assess oxidative stress status, inflammatory cytokines, and histopathological changes. Results: BS treatment ameliorated signs of renal damage and fibrosis as it improved renal antioxidant status and renal function markers and significantly reduced the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 along with the fibrogenic marker TGF-β. Kidney tissues showed improved histological features after BS treatment. Conclusions: BS gum resin extract has significant therapeutic potential against CCl4-induced renal damage and fibrosis. These effects could be mediated via its previously reported antioxidant, free radical scavenging, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Heba M. Eltahir
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
| | - Abdel-Gawad S. Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
- Clinical Pharmacy Program, College of Health Science and Nursing, Al-Rayan Colleges, Madinah 41411, Saudi Arabia
| | - Ahmed M. Shehata
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohannad Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ahmed J. Aldhafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ali Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ahmad Bakur Mahmoud
- Health and Life Research Center, Taibah University, Madinah 41411, Saudi Arabia;
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
12
|
Makio Y, Harada T, Yamasato K, Nakanishi T, Nakai M. Chronic Bromine Intoxication Complicated with Fanconi Syndrome. Intern Med 2024; 63:3395-3399. [PMID: 38692916 PMCID: PMC11729184 DOI: 10.2169/internalmedicine.3128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024] Open
Abstract
In this report, we describe a unique case of an 80-year-old woman who developed chronic bromine poisoning due to the prolonged ingestion of over-the-counter (OTC) medication containing bromovalerylurea (BVU), thus leading to the onset of drug-induced partial Fanconi syndrome and resultant osteomalacia. The patient's condition improved following the cessation of bromide intake. This case highlights the potential risks of chronic BVU exposure and the importance of caution regarding the use of OTC medications containing BVU.
Collapse
Affiliation(s)
- Yusuke Makio
- Department of General Medicine, Nerima Hikarigaoka Hospital, Japan
| | - Taku Harada
- Department of General Medicine, Nerima Hikarigaoka Hospital, Japan
- Department of Diagnostic and Generalist Medicine, Dokkyo Medical University Hospital, Japan
| | - Kazushi Yamasato
- Department of General Medicine, Nerima Hikarigaoka Hospital, Japan
| | | | - Mori Nakai
- Department of General Medicine, Nerima Hikarigaoka Hospital, Japan
| |
Collapse
|
13
|
Uchiyama K, Otani M, Chigusa N, Sugita K, Matsuoka R, Hosoya K, Komuta M, Ito J, Washida N. Acute Kidney Injury Associated With Red Yeast Rice (Beni-kōji) Supplement: A Report of Two Cases. Kidney Med 2024; 6:100908. [PMID: 39507393 PMCID: PMC11539353 DOI: 10.1016/j.xkme.2024.100908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Numerous health concerns, primarily kidney injury, have been reported with the use of Beni-kōji CholesteHelp, a functional food containing red yeast rice. Here, we describe 2 cases of kidney injury caused by beni-kōji. The first case had normal kidney function before consuming the product. After several months of use, she developed hypertension. After 6 months of supplement consumption, her estimated glomerular filtration rate (eGFR) dropped to 22.5 mL/min/1.73 m2. A spot urine sample showed a urinary protein-to-creatinine ratio of 2.03 g/g, leading to the diagnosis of Fanconi syndrome. Kidney biopsy showed tubular degeneration. Thirty-five days after discontinuing the supplement, proteinuria resolved and the eGFR returned to baseline level. The second case, who had diabetes and normal kidney function, experienced severe kidney injury (eGFR, 3.5 mL/min/1.73 m2) after 4 months of Beni-kōji CholesteHelp use. He required hemodialysis for >2 weeks but recovered kidney function after the product was discontinued. Kidney biopsy showed tubular injury similar to the first case and glomeruli changes consistent with diabetic nephropathy. These cases indicate that beni-kōji use is associated with tubular toxicity. Further studies are required to identify the precise etiology and mechanism of kidney injury.
Collapse
Affiliation(s)
- Kiyotaka Uchiyama
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Masako Otani
- Department of Pathology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Naoki Chigusa
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kazuya Sugita
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Ryosuke Matsuoka
- Department of Pathology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Koji Hosoya
- Department of Nephrology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Mina Komuta
- Department of Pathology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Jun Ito
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Naoki Washida
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
14
|
Hou T, Jiang Y, Zhang J, Hu R, Li S, Fan W, Chen R, Zhang L, Li R, Qin L, Gu W, Wu Y, Zhang L, Zeng X, Sun Q, Mao Y, Liu C. Kidney Injury Evoked by Fine Particulate Matter: Risk Factor, Causation, Mechanism and Intervention Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403222. [PMID: 39316383 DOI: 10.1002/advs.202403222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Fine particulate matter (PM2.5) is suggested to pose a severe risk to the kidneys by inducing functional degradation and chronic kidney diseases (CKD). This study aims to explore the nephrotoxicity of PM2.5 exposure and the underlying mechanism. Herein, based on the UK Biobank, it is found that per interquartile range (IQR) increase in PM2.5 is associated with a 6% (95% CI: 1%-11%), 7% (95% CI: 3%-11%), 9% (95% CI: 4%-13%), 11% (95% CI: 9%-13%), and 10% (95% CI: 8%-12%) increase in the risk of nephritis, hydronephrosis, kidney stone, acute renal failure, and CKD, respectively. In experimental study, noticeable kidney injury, which is the initiation of kidney diseases, is observed with PM2.5 exposure in C57BL/6N mice (n = 8), accompanied with oxidative stress, autophagy and pyroptosis. In vitro, HK-2 cells with PM2.5-stimulation exhibit tubulopathy, increased reactive oxygen species (ROS) generation and activated pyroptosis and autophagy. All changes are abolished by ROS scavenger of N-acetyl-L-cysteine (NAC) both in vivo and in vitro. In conclusion, the study provides evidence showing that PM2.5 exposure is associated with 5 kinds of kidney diseases by directly inducing nephrotoxicity, in which ROS may be the potential target by triggering autophagy and pyroptosis.
Collapse
Affiliation(s)
- Tong Hou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Yuqing Jiang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiyang Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Yue Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lina Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Xiang Zeng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| |
Collapse
|
15
|
Tao W, Nian W, Li L. Analysis of brominated flame retardants exposure-associated chronic kidney disease risk in the US population from the NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117159. [PMID: 39383822 DOI: 10.1016/j.ecoenv.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Exposure to brominated flame retardants (BFRs) may contribute the advancement of chronic kidney disease (CKD). The objective is to evaluate the renal effects of BFRs in patients with CKD. METHODS Totally 7235 US participants of whom 1187 (16.41 %) were diagnosed with CKD were screened for this investigation from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016. The isotope dilution gas chromatography high-resolution mass spectrometry (GC/IDHRMS) was employed for identification of 11 polybrominated diphenyl ethers (PBDEs) and PBB153 serving as the exposure factor. A set of covariates concerning basic characteristics, renal function indicators and suffering from diseases of these participants was considered as potential confounding factors. Subgroup analyses to examine the impact of age and gender on the relationship between serum BFRs and CKD, estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), serum creatinine (Scr), and blood urea nitrogen (BUN). Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analyses were applied to identify relationship of individual BFRs and other anthropometric indicators in CKD. RESULTS After adjusting for available confounding factors, PBDE100, PBDE28, PBDE85, PBDE47, PBDE99, and PBDE154 were positively correlated with CKD. PBDE28, PBDE66, PBDE47, PBDE183, PBDE100, PBDE99, PBDE85, PBDE154, and PBB153 were significantly negatively correlated with eGFR. PBDE66 and PBDE183 were positively correlated with UACR. PBDE28, PBDE17, PBDE66, PBDE100, PBDE47, PBDE85, PBDE154, PBDE99, PBDE183 and PBB153 were positively correlated with Scr. PBDE17, PBDE28, PBDE154, PBDE66, PBDE47, PBDE99, and PBDE209 were negatively associated with BUN. PBB153 was positively correlated with BUN. The subgroup results gender and age are key factors affecting the relationship of PBDEs and renal function indicators. Both WQS and QGS analyses revealed that exposure to mixed BFR was negatively correlated with eGFR and BUN, of which PBB153 and PBDE66 contributed the most, respectively, as well as positively correlated with Scr, in which PBDE66 contributed the most. CONCLUSION Specific BFRs exposure was significantly correlated with renal function indicators, enhancing the potential risk of CKD. This pioneer investigation shed light on an overlooked impact of BFR exposure on CKD in US.
Collapse
Affiliation(s)
- Weichen Tao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Wanning Nian
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
16
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
17
|
Sangwan M, Chaudhary H, Mehan S, Khan Z, Bahauddin AA, Alrehaili BD, Elbadawy HM, Almikhlafi MA, Narula AS, Kalfin R, Wanas H. Effect of mitochondrial coenzyme-Q10 precursor solanesol in gentamicin-induced experimental nephrotoxicity: Evidence from restoration of ETC-complexes and histopathological alterations. Pharmacol Res Perspect 2024; 12:e70022. [PMID: 39358913 PMCID: PMC11446958 DOI: 10.1002/prp2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Nephrotoxicity occurs when the body is exposed to certain drugs or toxins. When kidney damage occurs, the kidney fails to eliminate excess urine and waste. Solanesol (C45H74O) is a tri-sesquiterpenoid alcohol first isolated from tobacco, and it is widely distributed in plants of the Solanaceae family. Solanesol (SNL) is an intermediate in the synthesis of coenzyme Q10 (CoQ10), an antioxidant which protects nerve cells. This study investigated the protective effect of SNL at doses of 30 and 60 mg/kg in gentamicin-induced nephrotoxicity in Wistar albino rats. Animals were distributed into six groups and administered 100 mg/kg gentamicin-intraperitoneal injection for 14 days. Biochemical assessments were performed on kidney homogenate, blood, and serum. Treatment with SNL was shown as lower serum levels of creatinine, blood urea nitrogen (BUN), thiobarbituric acid reactive substances (TBARS), and Tumor necrosis factor alpha)TNF-α ((p < .001). It also restored reduced glutathione (GSH) and mitochondrial complex enzymatic activity as protective measures against gentamicin-induced nephrotoxicity. SNL were shown to reduce inflammation and oxidative stress markers (p < .001). Histological findings furtherly augmented the protective effects of SNL. Long-term SNL therapy also restored mitochondrial electron transport chain complex enzymes, such as complex-I (p < .001). In conclusion, these findings suggest that SNL can represent a protective therapeutic option for drug-induced nephrotoxicity, a long-term adverse effect of aminoglycoside antibiotics such as gentamicin.
Collapse
Affiliation(s)
- Minakshi Sangwan
- Department of Pharmaceutical SciencePDM UniversityBahadurgarhHaryanaIndia
| | - Hema Chaudhary
- Department of Pharmaceutical SciencePDM UniversityBahadurgarhHaryanaIndia
- School of Medical and Allied SciencesK R Mangalam UniversityGurugramIndia
| | - Sidharth Mehan
- Division of Neuroscience, Department of PharmacologyISF College of Pharmacy (An Autonomous (College)MogaPunjabIndia
| | - Zuber Khan
- Division of Neuroscience, Department of PharmacologyISF College of Pharmacy (An Autonomous (College)MogaPunjabIndia
| | - Ammar A. Bahauddin
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Bandar D. Alrehaili
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Hossein M. Elbadawy
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | | | - Reni Kalfin
- Institute of NeurobiologyBulgarian Academy of SciencesSofiaBulgaria
- Department of HealthcareSouth‐West University BlagoevgradBlagoevgradBulgaria
| | - Hanna Wanas
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
- Department of Medical Pharmacology, Faculty of MedicineCairo UniversityGizaEgypt
| |
Collapse
|
18
|
Ping Z, Shuxia Z, Xinyu D, Kehe H, Xingxiang C, Chunfeng W. Mitophagy-regulated Necroptosis plays a vital role in the nephrotoxicity of Fumonisin B1 in vivo and in vitro. Food Chem Toxicol 2024; 189:114714. [PMID: 38705344 DOI: 10.1016/j.fct.2024.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Fumonisin B1 (FB1), one of the most widely distributed mycotoxins found in grains and feeds as contaminants, affects many organs including the kidney once ingested. However, the nephrotoxicity of FB1 remains to be further uncovered. The connection between necroptosis and nephrotoxicity of FB1 has been investigated in this study. The results showed that mice exposed to high doses of FB1 (2.25 mg/kg b.w.) developed kidney damage, with significant increases in proinflammatory cytokines (Il-6, Il-1β), kidney injury-related markers (Ngal, Ntn-1), and gene expressions linked to necroptosis (Ripk1, Ripk3, Mlkl). The concentration-dependent damage effects of FB1 on PK-15 cells contain cytotoxicity, cellular inflammatory response, and necroptosis. These FB1-induced effects can be neutralized by pretreatment with the necroptosis inhibitor Nec-1. Additionally, FB1 caused mitochondrial damage and mitophagy in vivo and in vitro, whereas Mdivi-1, a mitophagy inhibitor, prevented these effects on PK-15 cells as well as, more crucially, necroptosis. In conclusion, the RIPK1/RIPK3/MLKL signal route of necroptosis, which may be controlled by mitophagy, mediated nephrotoxicity of FB1. Our findings clarify the underlying molecular pathways of FB1-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhang Ping
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhang Shuxia
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Du Xinyu
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Huang Kehe
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chen Xingxiang
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Wang Chunfeng
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
19
|
Adelakun SA, Akomaye AJ, Omotoso OD, Arowosegbe OA. Anti-hepatopathy and anti-nephropathy activities of Taraxacum officinale in a rat model of Streptozotocin diabetes-induced hepatorenal toxicity and dyslipidemia via attenuation of oxidative stress, inflammation, apoptosis, electrolyte imbalances, and mitochondrial dysfunction. ASPECTS OF MOLECULAR MEDICINE 2024; 3:100034. [DOI: 10.1016/j.amolm.2024.100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Sarmadian R, Gilani A, Mehrtabar S, Mahrokhi Koushemehr S, Hakimzadeh Z, Yousefichaijan P. The renoprotective potential of montelukast: a scoping review. Ann Med Surg (Lond) 2024; 86:3568-3576. [PMID: 38846849 PMCID: PMC11152873 DOI: 10.1097/ms9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Kidney damage can result from various factors, leading to structural and functional changes in the kidney. Acute kidney injury (AKI) refers to a sudden decline in kidney function, while chronic kidney disease involves a gradual deterioration lasting more than 3 months. Mechanisms of renal injury include impaired microcirculation, inflammation, and oxidative stress. Cysteinyl-leukotrienes (CysLTs) are inflammatory substances contributing to tissue damage. Montelukast, a leukotriene receptor antagonist, has shown potential renoprotective effects in experimental models of kidney injury. Methods The authors conducted a scoping review using PubMed, Scopus, and Web of Science databases to identify relevant studies investigating the impact of montelukast on renal diseases. Articles published until 2022 were included and evaluated for quality. Data extraction and analysis were performed based on predetermined inclusion criteria. Results The scoping review included 30 studies from 8 countries. Montelukast demonstrated therapeutic effects in various experimental models of nephrotoxicity and AKI induced by agents such as cisplatin, lipopolysaccharide, diclofenac, amikacin, Escherichia coli, cyclosporine, methotrexate, cobalt-60 gamma radiation, doxorubicin, and cadmium. Studies involving human subjects with nephrotic syndrome, pyelonephritis, and other renal diseases also reported positive outcomes with montelukast treatment. Montelukast exhibited anti-inflammatory, anti-apoptotic, antioxidant, and neutrophil-inhibiting properties, leading to improved kidney function and histopathological changes. Conclusions Montelukast shows promise as a renoprotective medication, particularly in early-stage kidney injury. Its ability to mitigate inflammation, oxidative stress, and neutrophil infiltration contributes to its therapeutic effects. Further research is needed to explore the clinical applications and mechanisms underlying the renoprotective action of montelukast.
Collapse
Affiliation(s)
| | | | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | | | | | | |
Collapse
|
21
|
Bradford STJ, Wu H, Kirita Y, Chen C, Malvin NP, Yoshimura Y, Muto Y, Humphreys BD. TNIK depletion induces inflammation and apoptosis in injured renal proximal tubule epithelial cells. Am J Physiol Renal Physiol 2024; 326:F827-F838. [PMID: 38482555 PMCID: PMC11386974 DOI: 10.1152/ajprenal.00262.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.
Collapse
Affiliation(s)
- Shayna T J Bradford
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yuhei Kirita
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Changfeng Chen
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Nicole P Malvin
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
22
|
Zhong G, Qiao B, He Y, Liu H, Hong P, Rao G, Tang L, Tang Z, Hu L. Co-exposure of arsenic and polystyrene-nanoplastics induced kidney injury by disrupting mitochondrial homeostasis and mtROS-mediated ferritinophagy and ferroptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105904. [PMID: 38685226 DOI: 10.1016/j.pestbp.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) and polystyrene nanoplastics (PSNPs) co-exposure induced biotoxicity and ecological risks have attracted wide attention. However, the combined effects of As and PSNPs on the kidney and their underlying mechanisms of toxicities remain to be explored. Here, we investigated the effects of As and PSNPs co-exposure on structure and function in mice kidney, and further explored the possible mechanisms. In this study, we identified that co-exposure to As and PSNPs exhibited conspicuous renal structural damage and pathological changes, accompanied by renal tissue fibrosis (increased protein expression of Collagen I and α-SMA and deposition of collagen fibers), whereas alone exposure to As or PSNPs does not exhibit nephrotoxicity. Subsequently, our results further showed that combined action of As and PSNPs induced mitochondrial oxidative damage and impaired mitochondrial dynamic balance. Furthermore, co-treatment with As and PSNPs activated NCOA4-mediated ferritinophagy and ferroptosis in mice kidney and TCMK-1 cells, which was confirmed by the changes in the expression of ferritinophagy and ferroptosis related indicators (NCOA4, LC3, ATG5, ATG7, FTH1, FTL, GPX4, SLC7A11, FSP1, ACSL4 and PTGS2). Meaningfully, pretreatment with the mtROS-targeted scavenger Mito-TEMPO significantly attenuated As and PSNPs co-exposure induced mitochondrial damage, ferritinophagy and ferroptosis. In conclusion, these findings demonstrated that mtROS-dependent ferritinophagy and ferroptosis are important factors in As and PSNPs co-exposure induced kidney injury and fibrosis. This study provides a new insight into the study of combined toxicity of nanoplastics and heavy metal pollutants.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, Guangxi, China; Key Laboratory of China(Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Shafiee S, Dastmalchi S, Gharekhani A, Shayanfar A. Determination of indoxyl sulfate by spectrofluorimetric method in human plasma through extraction with deep eutectic solvent. BMC Chem 2024; 18:61. [PMID: 38555438 PMCID: PMC10981813 DOI: 10.1186/s13065-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
A rapid and efficient analytical method was established to quantify indoxyl sulfate (IS) in plasma through extraction technique with a deep eutectic solvent (DES) and spectrofluorimetric method. DES (choline chloride: urea) was mixed with plasma samples for the extraction of IS, followed by the addition of dipotassium hydrogen phosphate (K2HPO4) solution to form an aqueous two-phase system. The fluorescence intensity of IS which was first extracted to the DES-rich-phase and then back-extracted into the salt-rich-phase, was measured by spectrofluorimetric method. Some key factors such as pH, centrifugation speed and time, the volume ratio of DES/salt, and salt concentration were optimized. Under the optimized conditions, the suggested method had a dynamic range between 20 and 160 µg/mL with a coefficient of determination (R2) of 0.99. Precision (relative standard deviation) was less than 15% and accuracy (% relative recovery) was ± 15% at the nominal concentration level. In addition, results showed that IS levels in real samples were higher than 40 µg/mL which was compatible with reported IS levels in end-stage renal disease (ESRD) patients. Overall, all the results reflect the fact that the presented analytical method can potentially be used for the determination of IS in real plasma samples.
Collapse
Affiliation(s)
- Samira Shafiee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Mersin 10, Nicosia, POBOX: 99138, North Cyprus, Turkey
| | - Afshin Gharekhani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Chen K, Li M, Tang Y, Lu Z. Mitochondrial reactive oxygen species initiate gasdermin D-mediated pyroptosis and contribute to paraquat-induced nephrotoxicity. Chem Biol Interact 2024; 390:110873. [PMID: 38237652 DOI: 10.1016/j.cbi.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
25
|
Chiu SL, Nfor ON, Chen CL, Tantoh DM, Lu WY, Chen PH, Liaw YP. Susceptibility to eye diseases in relation to age and kidney failure among Taiwanese adults. BMC Geriatr 2024; 24:174. [PMID: 38374002 PMCID: PMC10875750 DOI: 10.1186/s12877-024-04740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The kidney and eyes share common pathways and are thought to be closely connected. Chronic kidney disease and major eye diseases, such as cataract and glaucoma, are strongly associated with age. However, further investigation is needed to understand the joint impact of age and kidney diseases on eye diseases. In this study, we assessed the risk of eye diseases in relation to age and kidney failure in Taiwanese adults. METHODS Our study included 127,561 cancer-free volunteers aged 30 to 70 years who participated in the Taiwan Biobank (TWB) project from 2008 to 2020. Information on the main exposures (kidney failure and age) and the outcome (eye diseases, including glaucoma, cataract, xerophthalmia, and retinal detachment) was collected through questionnaires. RESULTS In general, kidney failure and older age were independently associated with a higher risk of eye, particularly cataract and retinal detachment: prevalence odds ratio (POR); 95% confidence interval (CI) = 2.480; 1.635-3.761 for cataract and 3.885; 1.968-7.666 for retinal detachment. A significant interaction between kidney failure and age on cataract was observed (p-value = 0.0002). Age-stratified analysis revealed a higher risk of cataract among patients with kidney failure aged below 50 (POR = 6.534; 95% CI = 2.493-17.124) and between 50 and 60 years (POR = 3.957; 95%CI = 1.986-7.881). Combining kidney failure and age (reference: no kidney failure and age < 50 years), kidney failure in all age groups was associated with a higher risk of cataract. The PORs; 95% CIs were 10.725; 4.227-27.211 for patients below 50 years, 28.487; 14.270-56.866 for those aged 50-60 years, and 43.183; 24.434-72.824 for those > 60 years. Combining cataract and age (reference: no cataract and age < 50 years), patients below 50 years had the highest risk of kidney failure (POR; 95% CI = 9.510; 3.722-24.297). CONCLUSIONS Our study suggests that age and kidney failure may jointly contribute to eye diseases, particularly cataract. The association between cataract and kidney failure could be bidirectional, especially in individuals below 50 years. This significant bidirectional relationship underscores the need for screening patients with cataract for kidney failure and vice versa, particularly in younger adults.
Collapse
Affiliation(s)
- Shin-Lin Chiu
- Department of Ophthalmology, Changhua Christian Hospital, 500, Changhua City, Taiwan
- College of Nursing and Health Sciences, Da-Yeh University, 515006, Changhua County, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 40201, Taichung City, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, 40201, Taichung City, Taiwan
| | - Chiu-Liang Chen
- Department of Orthopedics, Changhua Christian Hospital, 500, Changhua City, Taiwan
- Department of Nursing, Hungkuang University, 433, Taichung City, Taiwan
| | - Disline Manli Tantoh
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, 40201, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, 40201, Taichung City, Taiwan
| | - Wen Yu Lu
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, 40201, Taichung City, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, 40201, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Public Health, Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, 40201, Taichung City, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, 40201, Taichung City, Taiwan.
- Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, 40201, Taichung City, Taiwan.
| |
Collapse
|
26
|
Wahyuni I, Aulifa DL, Rosdianto AM, Levita J. The pharmacology activities of Angelica keiskei Koidzumi and its efficacy and safety in humans. Heliyon 2024; 10:e24119. [PMID: 38357325 PMCID: PMC10865877 DOI: 10.1016/j.heliyon.2024.e24119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic exposure to elevated levels of pro-oxidant factors may cause structural failings at the mitochondrial DNA level and alteration of antioxidant enzymes (glutathione peroxidase, catalase, and superoxide dismutase). Oxidative stress is an imbalance between the capacity of endogenous non-enzymatic antioxidants (glutathione, alpha-lipoic acid, uric acid, ferritin, metallothionein, melatonin, and bilirubin) and the occurrence of pro-oxidant factors which may lead to the pathogenesis of various diseases that affects the kidneys, pancreas, central nervous system, and cardiovascular system. Therefore, the utilization of medicinal plants with antioxidant activity, e.g., Angelica keiskei Koidzumi which contains chalcones, is interesting to be explored. Chalcones exhibit direct and indirect antioxidant activity and prevent oxidative stress by decreasing ROS, RNS, and superoxide production. In this review, we discuss the pharmacology activities of A. keiskei Koidzumi and its efficacy in humans. The articles were explored on PubMed and Google Scholar databases and based on the titles and abstracts related to the topic of interest, and 55 articles were selected. Two main chalcones of this plant, 4-hydroxyderricin and xanthoangelol, have been reported for their various pharmacology activities. The efficacy of A. keiskei was confirmed in anti-obesity, hepatoprotective, anti-diabetes mellitus, and increasing plasma antioxidants in patients with metabolic syndrome. A keiskei is safe as proven by only mild or no adverse events reported, thus it is prospective to be further developed as an antioxidant nutraceutical.
Collapse
Affiliation(s)
- Ika Wahyuni
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
- Faculty of Health, Universitas Nahdlatul Ulama, Mataram, West Nusa Tenggara, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Aziiz Mardanarian Rosdianto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
27
|
Džidić-Krivić A, Sher EK, Kusturica J, Farhat EK, Nawaz A, Sher F. Unveiling drug induced nephrotoxicity using novel biomarkers and cutting-edge preventive strategies. Chem Biol Interact 2024; 388:110838. [PMID: 38104745 DOI: 10.1016/j.cbi.2023.110838] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Drug-induced nephrotoxicity is still a significant obstacle in pharmacotherapy of various diseases and it accounts for around 25 % of serious side-effects reported after drug administration. Furthermore, some groups of drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, antiviral drugs, antifungal drugs, immunosuppressants, and chemotherapeutic drugs have the "preference" for damaging the kidney and are often referred to as the kidney's "silent killer". Clinically, the onset of acute kidney injury associated with drug administration is registered in approximately 20 % of patients and many of them develop chronic kidney disease vulnerability. However, current knowledge about the mechanisms underlying this dangerous phenomenon is still insufficient with many unknowns. Hence, the valuable use of these drugs in clinical practice is significantly limited. The main aim of this study is to draw attention to commonly prescribed nephrotoxic drugs by clinicians or drugs bought over the counter. In addition, the complex relationship between immunological, vascular and inflammatory events that promote kidney damage is discussed. The practical use of this knowledge could be implemented in the engineering of novel biomarkers for early detection of drug-associated kidney damage such as Kidney Injury Molecule (KIM-1), lipocalin associated with neutrophil gelatinase (NGAL) and various microRNAs. In addition, the utilization of artificial intelligence (AI) for the development of computer algorithms that could detect kidney damage at an early stage should be further explored. Therefore, this comprehensive review provides a new outlook on drug nephrotoxicity that opens the door for further clinical research of novel potential drugs or natural products for the prevention of drug-induced nephrotoxicity and accessible education.
Collapse
Affiliation(s)
- Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina K Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Jasna Kusturica
- Faculty of Medicine,Univerisity of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
| | - Asma Nawaz
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
28
|
Patel D, Yadav P, Singh SK, Tanwar SS, Sehrawat A, Khurana A, Bhatti JS, Navik U. Betaine alleviates doxorubicin-induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO-1/NLRP3 and TGF-β expression. J Biochem Mol Toxicol 2024; 38:e23559. [PMID: 37840533 DOI: 10.1002/jbt.23559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Doxorubicin (Dox) is an anthracycline antibiotic used to treat various cancers and shows severe toxicity in multiple organ systems, including kidneys. Evidence shows that betaine's antioxidant and anti-inflammatory properties could prevent the onset of several disorders. Hence, the present study aims to investigate the therapeutic potential of betaine on Dox-induced nephrotoxicity (DIN). Nephrotoxicity was induced in male Sprague Dawley rats using Dox at a dose of 4 mg/kg (cumulative dose: 20 mg/kg) by the intraperitoneal route and cotreated with betaine through oral gavage (200 and 400 mg/kg) for 28 days. At the end of the experiment, biochemical, oxidative stress parameters, histopathology, and qRT-PCR were performed. DIN was indicated by elevated serum creatinine, urea, and decreased albumin levels representing kidney damage; the histopathological lesions (increased capsular space, renal tubule damage, and fibrosis) in renal tissues supported these biochemical findings. Interestingly, betaine treatment improves these alterations in Dox-treated rats. Further, betaine treatment decreases the lipid peroxidation and nitrite concentration and increases the superoxide dismutases and catalase enzyme concentration in Dox-treated rats. Fascinatingly, at the molecular level, DIN in rats shows upregulation of the Nrf2/HO-1 gene, while betaine treatment attenuated its expression along with the downregulation of inflammatory genes (NLRP3, TLR-4, TNF-α, and IL-6) and fibrosis-related genes (TGF-β and Acta2) expression in Dox-treated rats. These results showed that betaine has reno-protective properties by reducing inflammatory and fibrotic mediators and enhancing antioxidant capacity in the renal tissue of rats treated with Dox. We believe betaine can be exploited as a dietary supplement to attenuate DIN.
Collapse
Affiliation(s)
- Dhaneshvaree Patel
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sumeet K Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sampat S Tanwar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Jasvinder S Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
29
|
Patel D, Yadav P, Singh SK, Tanwar SS, Sehrawat A, Khurana A, Bhatti JS, Navik U. Betaine alleviates doxorubicin‐induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO−1/NLRP3 and TGF‐β expression. J Biochem Mol Toxicol 2024; 38. [DOI: https:/doi.org/10.1002/jbt.23559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 05/15/2025]
Abstract
AbstractDoxorubicin (Dox) is an anthracycline antibiotic used to treat various cancers and shows severe toxicity in multiple organ systems, including kidneys. Evidence shows that betaine's antioxidant and anti‐inflammatory properties could prevent the onset of several disorders. Hence, the present study aims to investigate the therapeutic potential of betaine on Dox‐induced nephrotoxicity (DIN). Nephrotoxicity was induced in male Sprague Dawley rats using Dox at a dose of 4 mg/kg (cumulative dose: 20 mg/kg) by the intraperitoneal route and cotreated with betaine through oral gavage (200 and 400 mg/kg) for 28 days. At the end of the experiment, biochemical, oxidative stress parameters, histopathology, and qRT‐PCR were performed. DIN was indicated by elevated serum creatinine, urea, and decreased albumin levels representing kidney damage; the histopathological lesions (increased capsular space, renal tubule damage, and fibrosis) in renal tissues supported these biochemical findings. Interestingly, betaine treatment improves these alterations in Dox‐treated rats. Further, betaine treatment decreases the lipid peroxidation and nitrite concentration and increases the superoxide dismutases and catalase enzyme concentration in Dox‐treated rats. Fascinatingly, at the molecular level, DIN in rats shows upregulation of the Nrf2/HO‐1 gene, while betaine treatment attenuated its expression along with the downregulation of inflammatory genes (NLRP3, TLR‐4, TNF‐α, and IL‐6) and fibrosis‐related genes (TGF‐β and Acta2) expression in Dox‐treated rats. These results showed that betaine has reno‐protective properties by reducing inflammatory and fibrotic mediators and enhancing antioxidant capacity in the renal tissue of rats treated with Dox. We believe betaine can be exploited as a dietary supplement to attenuate DIN.
Collapse
Affiliation(s)
- Dhaneshvaree Patel
- Department of Pharmacology Central University of Punjab Bathinda Punjab India
| | - Poonam Yadav
- Department of Pharmacology Central University of Punjab Bathinda Punjab India
| | - Sumeet K. Singh
- Department of Pharmacology Central University of Punjab Bathinda Punjab India
| | - Sampat S. Tanwar
- Department of Pharmacology Central University of Punjab Bathinda Punjab India
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab Bathinda Punjab India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen Germany
| | - Jasvinder S. Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab Bathinda Punjab India
| | - Umashanker Navik
- Department of Pharmacology Central University of Punjab Bathinda Punjab India
| |
Collapse
|
30
|
Karimzadeh I, Barreto EF, Kellum JA, Awdishu L, Murray PT, Ostermann M, Bihorac A, Mehta RL, Goldstein SL, Kashani KB, Kane-Gill SL. Moving toward a contemporary classification of drug-induced kidney disease. Crit Care 2023; 27:435. [PMID: 37946280 PMCID: PMC10633929 DOI: 10.1186/s13054-023-04720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Drug-induced kidney disease (DIKD) accounts for about one-fourth of all cases of acute kidney injury (AKI) in hospitalized patients, especially in critically ill setting. There is no standard definition or classification system of DIKD. To address this, a phenotype definition of DIKD using expert consensus was introduced in 2015. Recently, a novel framework for DIKD classification was proposed that incorporated functional change and tissue damage biomarkers. Medications were stratified into four categories, including "dysfunction without damage," "damage without dysfunction," "both dysfunction and damage," and "neither dysfunction nor damage" using this novel framework along with predominant mechanism(s) of nephrotoxicity for drugs and drug classes. Here, we briefly describe mechanisms and provide examples of drugs/drug classes related to the categories in the proposed framework. In addition, the possible movement of a patient's kidney disease between certain categories in specific conditions is considered. Finally, opportunities and barriers to adoption of this framework for DIKD classification in real clinical practice are discussed. This new classification system allows congruencies for DIKD with the proposed categorization of AKI, offering clarity as well as consistency for clinicians and researchers.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Linda Awdishu
- Division of Clinical Pharmacy, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA, USA
| | | | - Marlies Ostermann
- Department of Intensive Care, King's College London, Guy's and St Thomas' Hospital, London, UK
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Intelligent Critical Care Center, University of Florida, Gainesville, FL, USA
| | - Ravindra L Mehta
- Department of Medicine, University of California, San Diego, CA, USA
| | - Stuart L Goldstein
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sandra L Kane-Gill
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacy, UPMC, Pittsburgh, PA, USA.
- Department of Critical Care Medicine, Department of Biomedical Informatics, School of Medicine and the Clinical Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
32
|
Saini S, Rani L, Shukla N, Thakur RS, Patel DK, Ansari MS, Banerjee M, Gautam NK. Hsp27 over expression protect against cadmium induced nephrotoxicity in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109716. [PMID: 37586579 DOI: 10.1016/j.cbpc.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) exposure to the animals including humans is reported as nephrotoxic compounds i.e., disturbing redox status (increase oxidative stress), mitochondrial dysfunction, renal cell death and altered transporters in the renal system. Hsp27 (a small heat shock protein) has been shown as one of the modulators in the renal dysfunction and increased against the Cd induced toxicity. However, no studies are reported on the genetic modulation of stress protein against the Cd-induced nephrotoxicity. The current study aimed to examine the protective role of hsp27 overexpression against the Cd-induced nephrotoxicity using Drosophila melanogaster as an animal model. D. melanogaster renal system includes nephrocytes and Malpighian tubules (MTs) that show the functional similarity with mammalian kidney nephron. Overexpression of the hsp27 was found to reduce the Cd induced oxidative stress, rescue cell death in MTs of Cd exposed D. melanogaster larvae. The rescued GSH level, NADPH level and glucose 6 phosphate dehydrogenase (G6PD) activity were also observed in the MTs of the Cd exposed organism. Function (efflux activity and fluid secretion rate) of the MTs was restored in Cd exposed hsp27 overexpressed larvae. Further, results were confirmed by restored brush border microvilli density and reduced uric acid level. Tissue specific knockdown of hsp27 developed Cd like phenotypes in MTs and the phenotypes enhanced in Cd exposed condition. The present study clearly shows the role of hsp27 overexpression in restoration of the MTs function and protection against the Cd induced renal toxicity.
Collapse
Affiliation(s)
- Sanjay Saini
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Lavi Rani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Neha Shukla
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), C, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - M S Ansari
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
33
|
Nguyen L, Thewes L, Westerhoff M, Wruck W, Reichert AS, Berndt C, Adjaye J. JNK Signalling Regulates Self-Renewal of Proliferative Urine-Derived Renal Progenitor Cells via Inhibition of Ferroptosis. Cells 2023; 12:2197. [PMID: 37681928 PMCID: PMC10486975 DOI: 10.3390/cells12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
With a global increase in chronic kidney disease patients, alternatives to dialysis and organ transplantation are needed. Stem cell-based therapies could be one possibility to treat chronic kidney disease. Here, we used multipotent urine-derived renal progenitor cells (UdRPCs) to study nephrogenesis. UdRPCs treated with the JNK inhibitor-AEG3482 displayed decreased proliferation and downregulated transcription of cell cycle-associated genes as well as the kidney progenitor markers-SIX2, SALL1 and VCAM1. In addition, levels of activated SMAD2/3, which is associated with the maintenance of self-renewal in UdRPCs, were decreased. JNK inhibition resulted in less efficient oxidative phosphorylation and more lipid peroxidation via ferroptosis, an iron-dependent non-apoptotic cell death pathway linked to various forms of kidney disease. Our study is the first to describe the importance of JNK signalling as a link between maintenance of self-renewal and protection against ferroptosis in SIX2-positive renal progenitor cells.
Collapse
Affiliation(s)
- Lisa Nguyen
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Leonie Thewes
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - Michelle Westerhoff
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Wasco Wruck
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Carsten Berndt
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - James Adjaye
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
- EGA Institute for Women’s Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
34
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
35
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
36
|
Kumari A, Singh K. Preventive role of cinnamaldehyde against tenuazonic acid- and Freund's adjuvant-induced histopathological and biochemical alterations in the mouse model. Front Microbiol 2023; 14:1159881. [PMID: 37426034 PMCID: PMC10325827 DOI: 10.3389/fmicb.2023.1159881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction This study was designed to assess the protective role of cinnamaldehyde (Cin) against the synergistic effect of tenuazonic acid (TeA) and Freund's adjuvant on different organs of Swiss albino mice. Methods TeA was administered singly and in combination with Freund's adjuvant intra-peritoneally. The mice were divided into control (vehicle treated), mycotoxicosis-induced (MI) groups, and treatment groups. The route of administration of TeA was intra-peritoneal. The treatment group (FAICT) received Cin orally as a protective agent against TeA-induced mycotoxicosis. The effects on performance, differential leukocyte counts (DLC), and pathological measurements in eight organs (liver, lungs, kidney, spleen, stomach, heart, brain, and testis) were taken into consideration. Results The body weight and feed consumption decreased significantly in the MI groups, which were reversed in the FAICT group. The necropsy observations revealed an increase in the relative organ-to-body weight percentage in the MI groups, which was restored to normal in the FAICT group. Freund's adjuvant enhanced the effects of TeA on DLC. The antioxidant enzymes SOD and CAT decreased, while MDA increased in the MI groups. Caspase-3 activity was reduced in all organs and remained stable in the treatment group. TeA elevated the ALT concentration in the liver and kidneys and the AST in the liver, kidney, heart, and brain tissues. The oxidative stress induced by TeA in the MI groups was ameliorated in the treatment group. Histopathological observations consisted of NASH, pulmonary oedema and fibrosis, renal crystals and inflammation, splenic hyperplasia, gastric ulceration and cyst, cerebral axonopathy, testicular hyperplasia, and vacuolation in the MI groups. However, no such pathology was recorded in the treatment group. Discussions Thus, it can be concluded that the toxicity of TeA was found to be enhanced when combined with Freund's adjuvant. However, Cin exhibited promising protective effects against TeA + Freund's adjuvant toxicity and reverted the pathological alterations caused by them. Additionally, this study emphasizes Freund's adjuvant's ability to increase mycotoxicity rather than just acting as an immunopotentiator.
Collapse
|
37
|
Li S, Dong X, Xu L, Wu Z. Nephroprotective Effects of Selenium Nanoparticles Against Sodium Arsenite-Induced Damages. Int J Nanomedicine 2023; 18:3157-3176. [PMID: 37333733 PMCID: PMC10276609 DOI: 10.2147/ijn.s413362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The potential effects of selenium nanoparticles (SeNPs) administration on arsenic exposure-mediated nephrotoxicity by alleviating fibrosis, inflammation, oxidative stress-related damage, and apoptosis remains more detailed investigations. Methods After the synthesis of selenium nanoparticles (SeNPs) by sodium selenite (Na2SeO3) through a versatile and green procedure, the biosafety of SeNPs was assessed by assaying renal functions and inflammation in mice. Subsequently, nephroprotective effects of SeNPs against sodium arsenite (NaAsO2)-induced damages were confirmed by biochemical, molecular, and histopathological assays, including renal function, histological lesion, fibrosis, inflammation, oxidative stress-related damage, and apoptosis in mice renal tissues and renal tubular duct epithelial cells (HK2 cells). Results The excellent biocompatibility and safety of SeNPs prepared in this study were confirmed by the non-significant differences in the renal functions and inflammation levels in mice between the negative control (NC) and 1 mg/kg SeNPs groups (p>0.05). The results of biochemical, molecular, and histopathological assays confirmed that daily administration of 1 mg/kg SeNPs for 4 weeks not only ameliorated renal dysfunctions and injuries caused by NaAsO2 exposure but also inhibited the fibrosis, inflammation, oxidative stress-related damage, and apoptosis in the renal tissues of NaAsO2-exposed mice. In addition, altered viability, inflammation, oxidative stress-related damage, and apoptosis in the NaAsO2-exposed HK2 cells were effectively reversed after 100 μg/mL SeNPs supplementation. Conclusion Our findings authentically confirmed the biosafety and nephroprotective effects of SeNPs against NaAsO2 exposure-induced damages by alleviating inflammation, oxidative stress-related damage, and apoptosis.
Collapse
Affiliation(s)
- Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Xingna Dong
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Limeng Xu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Zhenli Wu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| |
Collapse
|
38
|
Huang SC, Chang IYF, Chang CJ, Liu H, Chen KH, Liu TT, Hsieh TY, Chuang HC, Chen CC, Lin IC, Ng KF, Huang HY, Chen TC. Association between hepatic angiosarcoma and end-stage renal disease: nationwide population-based evidence and enriched mutational signature of aristolochic acid exposure. J Pathol 2023; 260:165-176. [PMID: 36815532 DOI: 10.1002/path.6072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Hepatic angiosarcoma (HAS) is an aggressive mesenchymal malignancy that remains underexplored with respect to its etiology and mutational landscapes. To clarify the association between HAS and end-stage renal disease (ESRD), we used nationwide data of the National Health Insurance Research Database (NHIRD) in Taiwan, covering ~99% of the population, from 2001 to 2016. To investigate molecular signatures, we performed whole-exome sequencing (WES) in 27 surgical specimens, including nine ESRD-associated cases. The NHIRD analysis demonstrated that HAS ranked second among all angiosarcomas in Taiwan, with the incidence rates of HAS being 0.08, 2.49, and 5.71 per 100,000 person-years in the general population, chronic kidney disease (CKD), and ESRD patients, respectively. The standardized incidence ratios of HAS in CKD and ESRD patients were 29.99 and 68.77, respectively. In comparison with nonhepatic angiosarcoma, the multivariate regression analysis of our institutional cohort confirmed CKD/ESRD as an independent risk factor for HAS (odds ratio: 9.521, 95% confidence interval: 2.995-30.261, p < 0.001). WES identified a high tumor mutation burden (TMB; median: 8.66 variants per megabase) and dominant A:T-to-T:A transversion in HAS with frequent TP53 (81%) and ATRX (41%) mutations, KDR amplifications/gains (56%), and CDKN2A/B deletions (48%). Notably, ESRD-associated HAS had a significantly higher TMB (17.62 variants per megabase, p = 0.01) and enriched mutational signatures of aristolochic acid exposure (COSMIC SBS22, p < 0.001). In summary, a significant proportion of HAS in Taiwan is associated with ESRD and harbors a distinctive mutational signature, which concomitantly links nephrotoxicity and mutagenesis resulting from exposure to aristolochic acid or related compounds. A high TMB may support the eligibility for immunotherapy in treating ESRD-associated HAS. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shih-Chiang Huang
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chee-Jen Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Cardiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuang-Hua Chen
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ting-Ting Liu
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
| | - Tsan-Yu Hsieh
- Department of Anatomic Pathology, Keelung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung, Taiwan
| | - Huei-Chieh Chuang
- Department of Anatomic Pathology, Chiayi Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Chiayi, Taiwan
| | - Chien-Cheng Chen
- Department of Radiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - I-Chieh Lin
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
39
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
40
|
Mazur P, Dumnicka P, Tisończyk J, Ząbek-Adamska A, Drożdż R. SDS Electrophoresis on Gradient Polyacrylamide Gels as a Semiquantitative Tool for the Evaluation of Proteinuria. Diagnostics (Basel) 2023; 13:diagnostics13091513. [PMID: 37174905 PMCID: PMC10177418 DOI: 10.3390/diagnostics13091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Proteinuria is an important sign of kidney diseases. Different protein patterns in urine associated with glomerular, tubular and overload proteinuria may be differentiated using the immunochemical detection of indicator proteins or via urinary proteins electrophoresis. Our aim was to characterize sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) using commercially available 4-20% gradient gels as a method to detect and differentiate proteinuria. Our laboratory-based study used excess urine samples collected for routine diagnostic purposes from adult patients of a tertiary-care hospital, including patients with albumin/creatinine < 30 mg/g and patients with dipstick proteinuria. The limit of albumin detection was estimated to be 3 mg/L. In 93 samples with albumin/creatinine < 30 mg/g, an albumin fraction was detected in 87% of samples with a minimum albumin concentration of 2.11 mg/L. The separation of 300 urine samples of patients with proteinuria revealed distinct protein patterns differentiated using the molecular weights of the detected proteins: glomerular (albumin and higher molecular weights) and two types of tubular proteinuria ("upper" ≥20 kDa and "lower" with lower molecular weights). These patterns were associated with different values of the glomerular filtration rate (median 66, 71 and 31 mL/min/1.72 m2, respectively, p = 0.004) and different proportions of multiple myeloma and nephrological diagnoses. As confirmed using tandem mass spectrometry and western blot, the SDS-PAGE protein fractions contained indicator proteins including immunoglobulin G, transferrin (glomerular proteinuria), α1-microglobulin, retinol-binding protein, neutrophil gelatinase-associated lipocalin, cystatin C, and β2-microglobulin (tubular), immunoglobulin light chain, myoglobin, and lysozyme (overflow). SDS-PAGE separation of urine proteins on commercially available 4-20% gradient gels is a reliable technique to diagnose proteinuria and differentiate between its main clinically relevant types.
Collapse
Affiliation(s)
- Paulina Mazur
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Paulina Dumnicka
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Joanna Tisończyk
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Ząbek-Adamska
- Department of Diagnostics, University Hospital in Kraków, 30-688 Kraków, Poland
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
41
|
Comparative analysis of Acomys cahirinus and Mus musculus responses to genotoxicity, oxidative stress, and inflammation. Sci Rep 2023; 13:3989. [PMID: 36894692 PMCID: PMC9998436 DOI: 10.1038/s41598-023-31143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The Egyptian spiny mouse, Acomys cahirinus, is a recently described model organism for regeneration studies. It has surprising powers of regeneration with relatively fast repairing mechanisms and reduced inflammation form compared to other mammals. Although several studies have documented the exceptional capabilities of Acomys to regenerate different tissues after injury, its response to different cellular and genetic stresses is not yet investigated. Therefore, the current study aimed to investigate Acomys abilities to resist genotoxicity, oxidative stress and inflammation induced by acute and subacute treatments with lead acetate. Responses of Acomys were compared with those of the lab mouse (Mus musculus), which displays signatures of the "typical" mammalian response to various stressors. Cellular and genetic stresses were induced by using acute and subacute doses of Lead acetate (400 mg/kg and 50 mg/kg for 5 days, respectively). The assessment of genotoxicity was carried out by using comet assay, while oxidative stress was evaluated by measuring the biomarkers; MDA, GSH and antioxidant enzymes CAT and SOD. Moreover, inflammation was assessed by analyzing the expression of some inflammatory-regeneration-related genes: CXCL1, IL1-β, and Notch 2 and immunohistochemical staining of TNF-α protein in brain tissue, in addition to histopathological examination of brain, liver, and kidneys. The obtained results revealed a unique resistance potency of Acomys to genotoxicity, oxidative stress, and inflammation in certain tissues in comparison to Mus. Altogether, the results revealed an adaptive and protective response to cellular and genetic stresses in Acomys.
Collapse
|
42
|
Li X, Tian L, Oiao X, Ye L, Wang H, Wang M, Sang J, Tian F, Ge RS, Wang Y. Citrinin inhibits the function of Leydig cells in male rats in prepuberty. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114568. [PMID: 36696728 DOI: 10.1016/j.ecoenv.2023.114568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Citrinin, a mycotoxin existing in fruits, has nephrotoxicity, hepatotoxicity and embryotoxicity. The effects of citrinin on Leydig cell development in prepuberty remains unclear. Male Sprague-Dawley rats were gavaged with 0, 1, 2.5, and 5 mg/kg citrinin from postnatal days 21-28. Citrinin at 5 mg/kg significantly decreased serum testosterone levels, while increasing serum LH and FSH levels. Citrinin at 1-5 mg/kg markedly downregulated Hsd17b3 and HSD17B3 expression, while upregulating Srd5a1 (SRD5A1) and Akr1c14 (AKR1C14) expression at 2.5 and/or 5 mg/kg. Citrinin at 5 mg/kg also significantly increased PCNA-labeling index in Leydig cells. Citrinin at 5 mg/kg significantly raised testicular MDA amount, whiling at 2.5 and 5 mg/kg downregulating SOD1 and SOD2 expression. Citrinin at 5 mg/kg markedly decreased the ratio of Bcl2 to Bax, in consistent with the increased apoptosis in Leydig cells judged by TUNEL assay. Enzymatic assay revealed that citrinin inhibited rat testicular HSD3B1 activity at 100 µM and HSD17B3 activity at 10-100 μM. Citrinin at 50 μM and higher also induced reactive oxygen species (ROS) and apoptosis of R2C cell line. In conclusion, citrinin inhibits Leydig cell development at multiple levels via different mechanisms and oxidative stress partially plays a role.
Collapse
Affiliation(s)
- Xueyun Li
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lili Tian
- Department of Pain management, Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, Hubei 430033, China
| | - Xinyi Oiao
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lei Ye
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Mengyun Wang
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Fuhong Tian
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
43
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
44
|
Dobrek L. A Synopsis of Current Theories on Drug-Induced Nephrotoxicity. Life (Basel) 2023; 13:life13020325. [PMID: 36836682 PMCID: PMC9960203 DOI: 10.3390/life13020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The overriding goal of the treatment of patients is its effectiveness and safety. However, all medications currently being used also exert some adverse pharmaceutical reactions, which may be regarded as an unintended but inevitable cost of pharmacotherapy. The kidney, as the main organ that eliminates xenobiotics, is an organ especially predisposed and vulnerable to the toxic effects of drugs and their metabolites during their excretion from the body. Moreover, some drugs (e.g., aminoglycosides, cyclosporin A, cisplatin, amphotericin B, and others) have a "preferential" nephrotoxicity potential, and their use is associated with an increased risk of kidney damage. Drug nephrotoxicity is, therefore, both a significant problem and a complication of pharmacotherapy. It should be noted that, currently, there is no generally recognized definition of drug-induced nephrotoxicity and no clear criteria for its diagnosis. This review briefly describes the epidemiology and diagnosis of drug-induced nephrotoxicity and characterizes its pathomechanisms, including immunological and inflammatory disturbances, altered kidney blood flow, tubulointerstitial injury, increased lithogenesis-crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. The study also lists the basic drugs with nephrotoxicity potential and provides a short overview of the preventive methods for reducing the risk of drug-related kidney damage developing.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
45
|
Dong W, Zhang K, Gong Z, Luo T, Li J, Wang X, Zou H, Song R, Zhu J, Ma Y, Liu G, Liu Z. N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chem Biol Interact 2023; 369:110299. [PMID: 36493885 DOI: 10.1016/j.cbi.2022.110299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
With the development of modern industrial civilization, cadmium (Cd), a known nephrotoxic metal, has become a growing public safety issue due to its ability to induce various types of kidney disease. Maladaptive proximal tubule repair is a significant cause of Cd-induced chronic kidney disease (CKD), which is characterized by premature senescence and pro-fibrosis. Previously, we demonstrated that cadmium causes DNA damage and cycle arrest in renal tubular epithelial cells, which may be relevant to premature senescence regulated by sirtuin 1 (SIRT1). In this study, in vivo and in vitro studies were conducted to elucidate the role of SIRT1-mediated premature renal senescence in Cd-induced CKD. As oxidative stress is a significant cause of aging, we evaluated whether N-acetylcysteine (NAC) would inhibit Cd-induced premature aging and dysfunction in rat renal tubular epithelial cells. Cadmium induced premature renal senescence and fibrosis, and NAC inhibited premature renal senescence and fibrosis through the SIRT1-P53 pathway and delayed CKD progression. Overall, the results suggested that the SIRT1-P53 pathway mediates oxidative stress, premature renal senescence, and renal fibrosis during cadmium exposure, which may be a potential therapeutic target for Cd-induced CKD.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Tongwang Luo
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
46
|
Altındağ F, Ergen H. Sinapic acid alleviates cisplatin-induced acute kidney injury by mitigating oxidative stress and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12402-12411. [PMID: 36107295 DOI: 10.1007/s11356-022-22940-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Cisplatin is an anticancer agent with many side effects such as nephrotoxicity, as well as being widely used in the treatment of many tumor types. Sinapic acid has antioxidant, anti-inflammatory, antihyperglycemic, and antiapoptotic effects. This study aimed to investigate the possible beneficial effects of sinapic acid against cisplatin-induced nephrotoxicity. Twenty-eight Wistar albino male rats were used. The groups are as follows: control, cisplatin, cisplatin + sinapic acid, and sinapic acid groups (n = 7). The control group received 1 ml of single-dose intraperitoneal saline on the first day of the study. The cisplatin group was given a single dose of 7 mg/kg cisplatin intraperitoneal. Animals in the cisplatin + sinapic acid group were given sinapic acid for 7 days 25 mg/kg, 3 days after oral gavage administration of 7 mg/kg cisplatin intraperitoneal. The sinapic acid group was given 25 mg/kg/day of sinapic acid by oral gavage for 7 days after the 3rd day of the study. The kidney of the rats was examined by stereological, immunohistochemical, histopathological, and biochemical methods. According to the stereological findings of the study, while the volume of the glomerulus cortex and filtration gap increased, the volume of the medulla decreased, and there was no significant difference in tubular volume in the CP group compared to the control group. The volume of the glomerulus, cortex, and filtration gap of the cisplatin + sinapic acid group was significantly reduced compared to the cisplatin group (p˂0.05). Histopathologically, it was observed the enlargement of the filtration gap, tubular dilatation, atrophy, renal fibrosis, deterioration of the microvilli, and necrosis in the tubular epithelial cells in the cisplatin group. In the cisplatin + sinapic acid group, these pathologies decreased compared to the cisplatin group. Compared to the control group, caspase-3 expression, urea, creatine, and malondialdehyde increased, while Bcl-2 and catalase decreased in the cisplatin group. However, caspase-3 expression, urea, creatine, and malondialdehyde were decreased, while Bcl-2 and catalase increased in the cisplatin + sinapic acid group compared to the cisplatin group. The results of our study showed that sinapic acid reduced the nephrotoxicity induced by cisplatin.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey.
| | - Hidayet Ergen
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
47
|
Chen Y, Ye Y, Wu H, Wu Z, Li P, Fu Y, Sun Y, Wang X, Wang J, Yang Z, Zhou E. Citrinin stimulated heterophil extracellular trap formation in chickens. Mol Immunol 2022; 152:27-34. [DOI: 10.1016/j.molimm.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
|
48
|
Rohovyi YY, Tsitrin VY, Bilookiy VV, Sheremet MI, Kolesnik OV. Effect of water diuresis with hydrogen saturation on the course of acute kidney damage during the separation of oxidation and phosphorylation. J Med Life 2022; 15:1397-1402. [PMID: 36567846 PMCID: PMC9762360 DOI: 10.25122/jml-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/24/2022] [Indexed: 12/27/2022] Open
Abstract
Molecular hydrogen has the ability to penetrate cells, easily reach mitochondria, overcome body barriers, penetrate areas of ischemia, edema and inflammation, improve energy supply by supplying additional electrons and have antioxidant and anti-inflammatory effects by neutralizing highly reactive hydroxyl radical and peroxynitrite. In this experiment, we included 60 nonlinear male rats weighing 0.16-0.18 kg and investigated the effect of a negative redox potential solution -297.3±5.27 mV with a molecular hydrogen saturation of 1.2 ppm on the functional-biochemical processes of the kidneys in tissue hypoxia in moderately resistant rats during the separation of oxidation and phosphorylation with the introduction of 2,4-dinitrophenol at a dose of 3 mg/kg. All studies were performed on moderately stable rats. Experimental, functional, biochemical, enzyme-linked immunosorbent, physicochemical, histoenzymochemical, and statistical research methods were used. Under conditions of renal hypoxia in the separation of oxidation and phosphorylation, the use of a solution of negative redox reabsorption of sodium ions in the distal nephron reduces the manifestations of tubular proteinuria, increases the activity of succinate dehydrogenase in the proximal nephron and reduces the redox potential of urine to negative values. Negative redox potential solution with molecular hydrogen saturation has a protective effect on the kidneys and reduces elevated levels of proinflammatory cytokines of tumor necrosis factor-α, interleukin-1-β, and interleukin-6 in blood plasma, and causes oxidative modification of proteins in the renal cortex for their hypoxia in the separation of oxidation and phosphorylation.
Collapse
Affiliation(s)
- Yurii Yevgenivich Rohovyi
- Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine,Corresponding Author: Yurii Yevgenivich Rohovyi, Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine. E-mail:
| | - Volf Yakovich Tsitrin
- Department of Pathological Physiology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | | | | |
Collapse
|
49
|
Diniz LRL, Elshabrawy HA, Souza MTS, Duarte ABS, Madhav N, de Sousa DP. Renoprotective Effects of Luteolin: Therapeutic Potential for COVID-19-Associated Acute Kidney Injuries. Biomolecules 2022; 12:1544. [PMID: 36358895 PMCID: PMC9687696 DOI: 10.3390/biom12111544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Acute kidney injury (AKI) has been increasingly reported in critically-ill COVID-19 patients. Moreover, there was significant positive correlation between COVID-19 deaths and renal disorders in hospitalized COVID-19 patients with underlying comorbidities who required renal replacement therapy. It has suggested that death in COVID-19 patients with AKI is 3-fold higher than in COVID-19 patients without AKI. The pathophysiology of COVID-19-associated AKI could be attributed to unspecific mechanisms, as well as COVID-19-specific mechanisms such as direct cellular injury, an imbalanced renin-angiotensin-aldosterone system, pro-inflammatory cytokines elicited by the viral infection and thrombotic events. To date, there is no specific treatment for COVID-19 and its associated AKI. Luteolin is a natural compound with multiple pharmacological activities, including anticoronavirus, as well as renoprotective activities against kidney injury induced by sepsis, renal ischemia and diverse nephrotoxic agents. Therefore, in this review, we mechanistically discuss the anti-SARS-CoV-2 and renoprotective activities of luteolin, which highlight its therapeutic potential in COVID-19-AKI patients.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | | | | - Nikhil Madhav
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | |
Collapse
|
50
|
Gallic and Hesperidin Ameliorate Electrolyte Imbalances in AlCl3-Induced Nephrotoxicity in Wistar Rats. Biochem Res Int 2022; 2022:6151684. [PMID: 36263197 PMCID: PMC9576448 DOI: 10.1155/2022/6151684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Nephrotoxicity is usually characterized by inefficiency of the kidney, thereby causing disruptions to electrolyte balance and blood acidity. This study aimed to evaluate the effect of hesperidin and gallic acid on serum electrolytes and ion pumps in Wistar rats subjected to aluminum chloride (AlCl3)-induced nephrotoxicity. Thirty Wistar rats were randomly divided into six groups of five animals apiece. Group one served as the negative control and received distilled water while the study lasted. Animals in groups 2–4 received 100 mg/kg/day AlCl3 throughout the study. Animals in groups 3 and 4 were also administered 100 mg/kg/day gallic acid and 100 mg/kg/day hesperidin, respectively. Groups 5 and 6 were treated with 100 mg/kg/day gallic acid only and 100 mg/kg/day hesperidin only, respectively. Treatments were administered orally via gavage for 28 days with distilled water as the vehicle. Animals were sacrificed after which levels of potassium, calcium, magnesium, phosphate, chloride, and bicarbonate ions were evaluated in the serum, while activities of Na+/K+ and Ca2+/Mg2+ ATPases were determined in kidney homogenate. Results showed that AlCl3 significantly (p < 0.05) inhibited activities of Na+/K+ and Ca2+/Mg2+ ATPases in addition to increasing serum levels of potassium, calcium, phosphate, and chloride, with concomitant decrease in serum levels of magnesium and bicarbonate. However, coadministration of AlCl3 with either gallic acid or hesperidin ameliorated all the disruptions caused by AlCl3. It could be concluded that gallic acid and hesperidin could be relevant in managing electrolyte imbalances and acidosis occasioned by kidney dysfunction.
Collapse
|