1
|
Huang W, Tan Z, Xiao Q, Liu X, Liu K, Li Z, Zhou X, Bai L, Luo K. QpmH esterase from cotton rhizosphere bacteria: A novel approach for degrading quizalofop-p-ethyl herbicide. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138037. [PMID: 40147131 DOI: 10.1016/j.jhazmat.2025.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Within the rhizosphere, a rich population of biocontrol bacteria serves as a valuable resource for the biodegradation of environmental herbicides. This study aimed to evaluate rhizospheric microorganisms for their potential to degrade Quizalofop-p-ethyl, a widely used herbicide to control annual and perennial weeds in a variety of crops. A bacterial strain, MJ-8, isolated from cotton rhizosphere soil, demonstrated significant degradation activity. Based on morphological characteristics and 16S rRNA sequencing, the strain was identified as Priestia megaterium. Strain MJ-8 achieved a degradation rate of 90.65 % for Quizalofop-p-ethyl. Genomic analysis and amino acid sequence alignment revealed a key gene, designated QpmH, encoding a 30 kDa protein with strong biodegradation activity. Heterologous expression of the QpmH gene confirmed its role in Quizalofop-p-ethyl degradation. Molecular docking studies and structural modeling further elucidated the enzymatic mechanisms, supported by the analysis of their degradation products. Additionally, when QpmH gene was introduced into rice plants through Agrobacterium-mediated transformation, the resultant transformant conferred resistance to Quizalofop-p-ethyl at the recommended application dose. These findings highlight Priestia megaterium strain MJ-8 as a promising biological agent for sustainable herbicide management and position the QpmH gene as a potential new target for developing herbicide-resistant crops.
Collapse
Affiliation(s)
- Wenjing Huang
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zebao Tan
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Qin Xiao
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiangying Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Kailin Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zuren Li
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Kun Luo
- College of plant protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
El Kouche S, Halvick S, Morel C, Duca R, van Nieuwenhuyse A, Turner JD, Grova N, Meyre D. Pollution, stress response, and obesity: A systematic review. Obes Rev 2025; 26:e13895. [PMID: 39825581 PMCID: PMC11964802 DOI: 10.1111/obr.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/20/2025]
Abstract
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist. A protocol for the systematic review was registered on PROSPERO. Of 1869 identified references, 63 were eligible after title and abstract screening, 42 after full-text reading, and risk of bias and quality assessment. An important body of evidence shows a positive association between pollution, stress response, and obesity. Pollution stimulates the hypothalamic-pituitary-adrenal axis by activating the glucocorticoid receptor signaling and transcriptional factors responsible for adipocyte differentiation, hyperphagia, and obesity. Endocrine-disrupting chemicals also alter the Peroxisome Proliferator-activated Receptor gamma pathway to promote adipocyte hyperplasia and hypertrophy. However, these associations depend on sex, age, and pollutant type. Our findings evidence that pollution promotes stress, leading to obesity.
Collapse
Affiliation(s)
- Sandra El Kouche
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Sarah Halvick
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Chloe Morel
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Radu‐Corneliu Duca
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
| | - An van Nieuwenhuyse
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
- Department of Health ProtectionNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Nathalie Grova
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - David Meyre
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Riechelmann-Casarin L, Valente LC, Otton R, Barbisan LF, Romualdo GR. Are glyphosate or glyphosate-based herbicides linked to metabolic dysfunction-associated steatotic liver disease (MASLD)? The weight of current evidence. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104705. [PMID: 40311787 DOI: 10.1016/j.etap.2025.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects around 30 % of the world's population, increasing its prevalence by 50 % in the last three decades. MASLD pathogenesis is considered multiaxial, involving disturbances in the liver, adipose tissue (AT), and gut microbiome. In parallel with MASLD increasing trends, the total herbicide use has nearly tripled over the last three decades. Glyphosate (GLY) is the most used herbicide worldwide (825 mi kg/year). The intensive use of GLY-based herbicides (GBH) - largely driven by the adoption of glyphosate-tolerant genetically modified crops over the past two decades - has led to environmental (soil and water) and food contamination, resulting in continuous human exposure. Emerging (pre)clinical data highlights the significant implications of this herbicide on MASLD, marking a critical research area. Thus, this narrative review paper aimed at gathering and evaluating all epidemiological and (pre)clinical data on the implications of GLY or GBH on MASLD outcomes. Our work encompassed literature published between 2008-2025. Human urinary GLY levels are associated with different MASLD outcomes (steatosis risk, advanced fibrosis, increased transaminases) and comorbidities (higher risk for metabolic syndrome, diabetes, obesity and cardiovascular diseases) (6 studies). In vitro data indicate that GBH/GLY cause oxidative stress, genomic instability, apoptosis, and membrane disruption in hepatocytes, while promoting apoptosis and lipid peroxidation in (pre)adipocytes and cytokine production in monocytes (15 studies). In rodent studies (21 studies), GLY/GBH - in doses based on human exposure/toxicological limits - induces inflammatory and oxidative responses in the liver and AT, while causing dysbiosis and metabolic alterations in the gut microbiome axis. In the light of populational-, cell- and animal-based evidence, GLY/GBH disturbs key axis of MASLD pathogenesis and is hypothesized to be associated with its clinical outcomes.
Collapse
Affiliation(s)
- Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil
| | - Leticia Cardoso Valente
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Botucatu Biosciences Institute, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil.
| |
Collapse
|
4
|
Pérez-Bermejo M, Barrezueta-Aguilar C, Pérez-Murillo J, Ventura I, Legidos-García ME, Tomás-Aguirre F, Tejeda-Adell M, Martínez-Peris M, Marí-Beltrán B, Murillo-Llorente MT. Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review. Biomedicines 2024; 12:2677. [PMID: 39767584 PMCID: PMC11727303 DOI: 10.3390/biomedicines12122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Endocrine disruptors are substances capable of altering the functions of the endocrine system. There is evidence that some pesticides can be endocrine disruptors and, among some of their effects, we find alterations in pubertal development and in the function of the thyroid gland, which could be related to a greater tendency of obesity. The aim was to evaluate the evidence from clinical and preclinical studies on the association between pesticides used in agriculture and found in plant-based foods with overweight/obesity. Methods: This is a systematic review of articles on the impact of the use of endocrine disrupting pesticides on obesity, conducted according to the PRISMA-2020 guidelines. Results: There was evidence that some pesticides, such as chlorpyrifos, pyrethroids, and neonicotinoids, may promote obesity and other anthropometric changes by altering lipid and glucose metabolism, modifying genes, or altering hormone levels such as leptin. Other studies suggest that perinatal exposure to chlorpyrifos or pesticides such as vinclozolin may alter lipid metabolism and promote weight gain in adulthood, whereas other pesticides such as boscalib, captan, thiacloprid, and ziram were not associated with changes in weight. Exposure to pesticides such as vinclozolin may be associated with a higher prevalence of overweight/obesity in later generations. Conclusions: The few studies that do not show these associations have methodological limitations in data collection with confounding variables. Further studies are needed to provide more and higher quality evidence to determine the true effect of these substances on obesity.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Cristian Barrezueta-Aguilar
- Department of Nutrition. School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Javier Pérez-Murillo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - María Ester Legidos-García
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Francisco Tomás-Aguirre
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Manuel Tejeda-Adell
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Miriam Martínez-Peris
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Belén Marí-Beltrán
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| |
Collapse
|
5
|
Jeong DH, Jung DW, Lee HS. Confirmation of the steroid hormone receptor-mediated endocrine disrupting potential of fenvalerate following the Organization for Economic Cooperation and Development test guidelines, and its estrogen receptor α-dependent effects on lipid accumulation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109955. [PMID: 38844189 DOI: 10.1016/j.cbpc.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
In this study, we focused on confirming the steroid hormone receptor-mediated endocrine-disrupting potential of the pyrethroid insecticide fenvalerate and unraveling the underlying mechanisms. Therefore, we assessed estrogen receptor-α (ERα)- and androgen receptor (AR)-mediated responses in vitro using a hormone response element-dependent transcription activation assay with a luciferase reporter following the Organization for Economic Cooperation and Development (OECD) test guidelines. We observed that fenvalerate acted as estrogen by inducing the translocation of cytosolic ERα to the nucleus via ERα dimerization, whereas it exhibited no AR-mediated androgen response element-dependent luciferase activity. Furthermore, we confirmed that fenvalerate-induced activation of ERα caused lipid accumulation, promoted in a fenvalerate-dependent manner in 3 T3-L1 adipocytes. Moreover, fenvalerate-induced lipid accumulation was inhibited in the presence of an ERα-selective antagonist, whereas it remained unaffected in the presence of a glucocorticoid receptor (GR)-specific inhibitor. In addition, fenvalerate was found to stimulate the expression of transcription factors that promote lipid accumulation in 3 T1-L1 adipocytes, and co-treatment with an ERα-selective antagonist suppressed adipogenic/ lipogenic transcription factors at both mRNA and protein levels. These findings suggest that fenvalerate exposure may lead to lipid accumulation by interfering with ERα activation-dependent processes, thus causing an ERα-mediated endocrine-disrupting effect.
Collapse
Affiliation(s)
- Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Woon Jung
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
6
|
Ndikuryayo F, Gong XY, Yang WC. Advances in Understanding the Toxicity of 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17762-17770. [PMID: 39093601 DOI: 10.1021/acs.jafc.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
- Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Laboratoire de Nutrition-Phytochimie, d'Ecologie et Environnement Appliqués, Institut de Pédagogie Appliquée, Université du Burundi, BP 2700 Bujumbura, Burundi
| | - Xue-Yan Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
7
|
Khan A, Khan B, Hussain S, Wang Y, Mai W, Hou Y. Permethrin exposure impacts zebrafish lipid metabolism via the KRAS-PPAR-GLUT signaling pathway, which is mediated by oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107021. [PMID: 38996480 DOI: 10.1016/j.aquatox.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Yuhan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Weijun Mai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| |
Collapse
|
8
|
Jung DW, Jeong DH, Lee HS. Stimulation of estrogen receptor-alpha by hydroxyanilide fungicide, fenhexamid promotes lipid accumulation in 3 T3-L1 adipocyte. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105757. [PMID: 38458660 DOI: 10.1016/j.pestbp.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/10/2024]
Abstract
Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Hyun Jeong
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
9
|
Kowalczyk M, Piwowarski JP, Wardaszka A, Średnicka P, Wójcicki M, Juszczuk-Kubiak E. Application of In Vitro Models for Studying the Mechanisms Underlying the Obesogenic Action of Endocrine-Disrupting Chemicals (EDCs) as Food Contaminants-A Review. Int J Mol Sci 2023; 24:ijms24021083. [PMID: 36674599 PMCID: PMC9866663 DOI: 10.3390/ijms24021083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Obesogenic endocrine-disrupting chemicals (EDCs) belong to the group of environmental contaminants, which can adversely affect human health. A growing body of evidence supports that chronic exposure to EDCs can contribute to a rapid increase in obesity among adults and children, especially in wealthy industrialized countries with a high production of widely used industrial chemicals such as plasticizers (bisphenols and phthalates), parabens, flame retardants, and pesticides. The main source of human exposure to obesogenic EDCs is through diet, particularly with the consumption of contaminated food such as meat, fish, fruit, vegetables, milk, and dairy products. EDCs can promote obesity by stimulating adipo- and lipogenesis of target cells such as adipocytes and hepatocytes, disrupting glucose metabolism and insulin secretion, and impacting hormonal appetite/satiety regulation. In vitro models still play an essential role in investigating potential environmental obesogens. The review aimed to provide information on currently available two-dimensional (2D) in vitro animal and human cell models applied for studying the mechanisms of obesogenic action of various industrial chemicals such as food contaminants. The advantages and limitations of in vitro models representing the crucial endocrine tissue (adipose tissue) and organs (liver and pancreas) involved in the etiology of obesity and metabolic diseases, which are applied to evaluate the effects of obesogenic EDCs and their disruption activity, were thoroughly and critically discussed.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| |
Collapse
|
10
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
11
|
Ferguson S, Mesnage R, Antoniou MN. Cytotoxicity Mechanisms of Eight Major Herbicide Active Ingredients in Comparison to Their Commercial Formulations. TOXICS 2022; 10:toxics10110711. [PMID: 36422919 PMCID: PMC9699558 DOI: 10.3390/toxics10110711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 05/28/2023]
Abstract
Commercial pesticide formulations contain co-formulants, which are generally considered as having no toxic effects in mammals. This study aims to compare the toxicity of 8 major herbicide active ingredients-namely glyphosate, dicamba, 2,4-D, fluroxypyr, quizalofop-p-ethyl, pendimethalin, propyzamide and metazachlor-with a typical commercial formulation of each active ingredient. Cytotoxicity and oxidative stress capability was assessed in human hepatoma HepG2 cells. Using an MTT assay, formulations of glyphosate (Roundup Probio), fluroxypyr (Hurler), quizalofop-p-ethyl (Targa Super) and dicamba (Hunter) were more toxic than the active ingredient alone. Metazachlor and its formulation Sultan had similar cytotoxicity profiles. Cytotoxicity profiles were comparable in immortalised human fibroblasts. Toxilight necrosis assays showed the formulation of metazachlor (Sultan50C) resulted in significant membrane disruption compared to the active ingredient. Generation of reactive oxygen species was detected for glyphosate, fluroxypyr, pendimethalin, quizalofop-p-ethyl, the formulation of 2,4-D (Anti-Liserons), and dicamba and its formulation Hunter. Further testing of quizalofop-p-ethyl and its formulation Targa Super in the ToxTracker assay system revealed that both products induced oxidative stress and an unfolded protein response. In conclusion, these results show that most herbicide formulations tested in this study are more toxic than their active ingredients in human tissue culture cell model systems. The results add to a growing body of evidence, which implies that commercial herbicide formulations and not just their active ingredients should be evaluated in regulatory risk assessment of pesticides.
Collapse
Affiliation(s)
- Scarlett Ferguson
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
| | - Robin Mesnage
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662 Überlingen, Germany
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
12
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Völker J, Ashcroft F, Vedøy Å, Zimmermann L, Wagner M. Adipogenic Activity of Chemicals Used in Plastic Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022. [PMID: 35080176 DOI: 10.1101/2021.07.29.454199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bisphenols and phthalates, chemicals frequently used in plastic products, promote obesity in cell and animal models. However, these well-known metabolism-disrupting chemicals (MDCs) represent only a minute fraction of all compounds found in plastics. To gain a comprehensive understanding of plastics as a source of exposure to MDCs, we characterized the chemicals present in 34 everyday products using nontarget high-resolution mass spectrometry and analyzed their joint adipogenic activities by high-content imaging. We detected 55,300 chemical features and tentatively identified 629 unique compounds, including 11 known MDCs. Importantly, the chemicals extracted from one-third of the products caused murine 3T3-L1 preadipocytes to proliferate, and differentiate into adipocytes, which were larger and contained more triglycerides than those treated with the reference compound rosiglitazone. Because the majority of plastic extracts did not activate the peroxisome proliferator-activated receptor γ and the glucocorticoid receptor, the adipogenic effects are mediated via other mechanisms and, thus, likely to be caused by unknown MDCs. Our study demonstrates that daily-use plastics contain potent mixtures of MDCs and can, therefore, be a relevant yet underestimated environmental factor contributing to obesity.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Åsa Vedøy
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lisa Zimmermann
- Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
14
|
Kryukova KD, Gresis VO. Differences in biological efficiency of one- and two-component graminicide on sugar beet crops in Tula region. RUDN JOURNAL OF AGRONOMY AND ANIMAL INDUSTRIES 2021. [DOI: 10.22363/2312-797x-2021-16-2-129-136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
One of the most urgent tasks in sugar beet production for Russia today is irregularities in cultivation technology and a low-efficiency crop protection. It leads to a high level of weed infestation of agricultural fields. Developing and identifying the most efficient, selective and accessible herbicides, which have low phytotoxicity, do not have a negative effect on soil chemical characteristics and can be used in sugar beet cultivation is relevant today. The aim of this study was to examine and compare biological efficiency of various doses and concentrations of one- and two-component graminicides on sugar beet crops against the following weeds: Cockspur grass Echinochloa crusgalli (L.) Beauv., Wild millet Setaria glauca (L.) Beauv. and Couch Grass Elytrigia repens (L.) Nevski. The experiment was conducted on the territory of the Tula region in 2020. The total field experiment area was 480 m2. Application of clethodim + quizalofop-P-ethyl (0.5 l/ha) resulted in reducing the number and weight of annual weeds by 6471 %, reducing the number and weight of perennial weeds by 5458 %, which had the same efficiency as clethodim (0.6 l/ha). The efficiency of clethodim + quizalofop-P-ethyl (1.0 l/ha) was higher than Clethodim (0.6 l/ha) and amounted to 7387 % of reduction in the number of weeds compared to the control, but was lower than Clethodim (1.8 l/ha), which resulted in 8995 % reduction in the number of weeds compared to the control. The highest sugar beet yields were obtained in the variants with clethodim (1.8 l/ha) and two-component herbicide (1 l/ha), which amounted to 28 and 25 % yield increase, in comparison with the control.
Collapse
|
15
|
Guru B, Tamrakar AK, Mandal SP, Kumar PBR, Sharma A, Manjula SN. A Novel Partial PPARγ Agonist Has Weaker Lipogenic Effect in Adipocytes and Stimulates GLUT4 Translocation in Skeletal Muscle Cells via AMPK-Dependent Signaling. Pharmacology 2021; 107:90-101. [PMID: 34736259 DOI: 10.1159/000519331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are highly effective in treating insulin resistance. However, associated side effects such as weight gain due to increase in adipogenesis and lipogenesis hinder their clinical use. The aim of the study was to design and synthesize novel partial PPARγ agonists with weaker lipogenic effect in adipocytes and enhanced glucose transporter 4 (GLUT4) translocation stimulatory effect in skeletal muscle cells. METHODS Novel partial PPARγ agonists (GS1, GS2, and GS3) were designed and screened to predict their binding interactions with PPARγ by molecular docking. The stability of the docked ligand-PPARγ complex was studied by molecular dynamics (MD) simulation. The cytotoxicity of synthesized compounds was tested in 3T3-L1 adipocytes and L6 myoblasts by MTT assay. The lipogenic effect was investigated in 3T3-L1 adipocytes using oil red O staining and GLUT4 translocation stimulatory effect in L6-GLUT4myc myotubes by an antibody-coupled colorimetric assay. RESULTS The molecular docking showed the binding interactions between designed agonists and PPARγ. MD simulation demonstrated good stability between the GS2-PPARγ complex. GS2 and GS3 did not show any significant effect on cell viability up to 80 or 100 μM concentration. Pioglitazone treatment significantly increased intracellular lipid accumulation in adipocytes compared to control. However, this effect was significantly less in GS2- and GS3-treated conditions compared to pioglitazone at 10 μM concentration, indicating weaker lipogenic effect. Furthermore, GS2 significantly stimulated GLUT4 translocation to the plasma membrane in a dose-dependent manner via the AMPK-dependent signaling pathway in skeletal muscle cells. CONCLUSION GS2 may be a promising therapeutic agent for the treatment of insulin resistance and type 2 diabetes mellitus without adiposity.
Collapse
Affiliation(s)
- Bhavimani Guru
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Prashantha B R Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
16
|
Kim JT, Lee HJ, Lee HS. Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117090. [PMID: 33872936 DOI: 10.1016/j.envpol.2021.117090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
17
|
Pang K, Cheng C, Zhao H, Ma Y, Dong B, Hu J. Simultaneous analysis and risk assessment of Quizalofop, Acifluorfen, bentazone and its metabolites residues in peanut and straw under field conditions of China. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Amato AA, Wheeler HB, Blumberg B. Obesity and endocrine-disrupting chemicals. Endocr Connect 2021; 10:R87-R105. [PMID: 33449914 PMCID: PMC7983487 DOI: 10.1530/ec-20-0578] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Obesity is now a worldwide pandemic. The usual explanation given for the prevalence of obesity is that it results from consumption of a calorie dense diet coupled with physical inactivity. However, this model inadequately explains rising obesity in adults and in children over the past few decades, indicating that other factors must be important contributors. An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture that interferes with any aspect of hormone action. EDCs have become pervasive in our environment, allowing humans to be exposed daily through ingestion, inhalation, and direct dermal contact. Exposure to EDCs has been causally linked with obesity in model organisms and associated with obesity occurrence in humans. Obesogens promote adipogenesis and obesity, in vivo, by a variety of mechanisms. The environmental obesogen model holds that exposure to obesogens elicits a predisposition to obesity and that such exposures may be an important yet overlooked factor in the obesity pandemic. Effects produced by EDCs and obesogen exposure may be passed to subsequent, unexposed generations. This "generational toxicology" is not currently factored into risk assessment by regulators but may be another important factor in the obesity pandemic as well as in the worldwide increases in the incidence of noncommunicable diseases that plague populations everywhere. This review addresses the current evidence on how obesogens affect body mass, discusses long-known chemicals that have been more recently identified as obesogens, and how the accumulated knowledge can help identify EDCs hazards.
Collapse
Affiliation(s)
- Angelica Amorim Amato
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Hailey Brit Wheeler
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| |
Collapse
|
19
|
Mohanto NC, Ito Y, Kato S, Kamijima M. Life-Time Environmental Chemical Exposure and Obesity: Review of Epidemiological Studies Using Human Biomonitoring Methods. Front Endocrinol (Lausanne) 2021; 12:778737. [PMID: 34858347 PMCID: PMC8632231 DOI: 10.3389/fendo.2021.778737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The exponential global increase in the incidence of obesity may be partly attributable to environmental chemical (EC) exposure. Humans are constantly exposed to ECs, primarily through environmental components. This review compiled human epidemiological study findings of associations between blood and/or urinary exposure levels of ECs and anthropometric overweight and obesity indices. The findings reveal research gaps that should be addressed. We searched MEDLINE (PubMed) for full text English articles published in 2006-2020 using the keywords "environmental exposure" and "obesity". A total of 821 articles were retrieved; 102 reported relationships between environmental exposure and obesity indices. ECs were the predominantly studied environmental exposure compounds. The ECs were grouped into phenols, phthalates, and persistent organic pollutants (POPs) to evaluate obesogenic roles. In total, 106 articles meeting the inclusion criteria were summarized after an additional search by each group of EC combined with obesity in the PubMed and Scopus databases. Dose-dependent positive associations between bisphenol A (BPA) and various obesity indices were revealed. Both individual and summed di(2-ethylhexyl) phthalate (DEHP) and non-DEHP metabolites showed inconsistent associations with overweight and obesity indices, although mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), and mono-benzyl phthalate (MBzP) seem to have obesogenic roles in adolescents, adults, and the elderly. Maternal exposure levels of individual POP metabolites or congeners showed inconsistent associations, whereas dichlorodiphenyldichloroethylene (DDE) and perfluorooctanoic acid (PFOA) were positively associated with obesity indices. There was insufficient evidence of associations between early childhood EC exposure and the subsequent development of overweight and obesity in late childhood. Overall, human evidence explicitly reveals the consistent obesogenic roles of BPA, DDE, and PFOA, but inconsistent roles of phthalate metabolites and other POPs. Further prospective studies may yield deeper insights into the overall scenario.
Collapse
|
20
|
Mohajer N, Du CY, Checkcinco C, Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front Endocrinol (Lausanne) 2021; 12:780888. [PMID: 34899613 PMCID: PMC8655100 DOI: 10.3389/fendo.2021.780888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Adult and childhood obesity have reached pandemic level proportions. The idea that caloric excess and insufficient levels of physical activity leads to obesity is a commonly accepted answer for unwanted weight gain. This paradigm offers an inconclusive explanation as the world continually moves towards an unhealthier and heavier existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are chemicals that resemble natural hormones and disrupt endocrine function by interfering with the body's endogenous hormones. A subset of EDCs called obesogens have been found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens act on the metabolic system through multiple avenues and have been found to affect the homeostasis of a variety of systems such as the gut microbiome and adipose tissue functioning. Obesogenic compounds have been shown to cause metabolic disturbances later in life that can even pass into multiple future generations, post exposure. The rising rates of obesity and related metabolic disease are demanding increasing attention on chemical screening efforts and worldwide preventative strategies to keep the public and future generations safe. This review addresses the most current findings on known obesogens and their effects on the metabolic system, the mechanisms of action through which they act upon, and the screening efforts through which they were identified with. The interplay between obesogens, brown adipose tissue, and the gut microbiome are major topics that will be covered.
Collapse
Affiliation(s)
- Nicole Mohajer
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Chrislyn Y. Du
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Christian Checkcinco
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Bruce Blumberg
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Deparment of Biomedical Engineering, University of California, Irvine, CA, United States
- *Correspondence: Bruce Blumberg,
| |
Collapse
|
21
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
22
|
Grundler F, Mesnage R, Goutzourelas N, Tekos F, Makri S, Brack M, Kouretas D, Wilhelmi de Toledo F. Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem Toxicol 2020; 145:111701. [PMID: 32858131 PMCID: PMC7446623 DOI: 10.1016/j.fct.2020.111701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Obesity and its related metabolic disorders, as well as infectious diseases like covid-19, are important health risks nowadays. It was recently documented that long-term fasting improves metabolic health and enhanced the total antioxidant capacity. The present study investigated the influence of a 10-day fasting on markers of the redox status in 109 subjects. Reducing power, 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation(ABTS) radical scavenging capacity, and hydroxyl radical scavenging capacity increased significantly, and indicated an increase of circulating antioxidant levels. No differences were detected in superoxide scavenging capacity, protein carbonyls, and superoxide dismutase when measured at baseline and after 10 days of fasting. These findings were concomitant to a decrease in blood glucose, insulin, glycated hemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) and triglycerides as well as an increase in total cholesterol/high-density lipoprotein (HDL) ratio. In addition, the well-being index as well as the subjective energy levels increased, documenting a good tolerability. There was an interplay between redox and metabolic parameters since lipid peroxidation baseline levels (thiobarbituric acid reactive substances [TBARS]) affected the ability of long-term fasting to normalize lipid levels. A machine learning model showed that a combination of antioxidant parameters measured at baseline predicted the efficiency of the fasting regimen to decrease LDL levels. In conclusion, it was demonstrated that long-term fasting enhanced the endogenous production of antioxidant molecules, that act protectively against free radicals, and in parallel improved the metabolic health status. Our results suggest that the outcome of long-term fasting strategies could be depending on the baseline values of the antioxidative and metabolic status of subjects. Long-term fasting increases the antioxidant capacity and decreases oxidative damage. It improves the metabolic health status. High TBARS levels at baseline limit the LDL reduction during long-term fasting. The antioxidant status is related with the lipid lowering effect of long-term fasting.
Collapse
Affiliation(s)
- Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Nikolaos Goutzourelas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Sotiria Makri
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | - Michel Brack
- The Oxidative Stress College Paris, 75007, Paris, France.
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| | | |
Collapse
|
23
|
He B, Ni Y, Jin Y, Fu Z. Pesticides-induced energy metabolic disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139033. [PMID: 32388131 DOI: 10.1016/j.scitotenv.2020.139033] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders have become a heavy burden on society. Recently, through excessive use, pesticides have been found to be present in environmental matrixes and sometimes even accumulate in humans or other mammals through the food chain, which then causes health concerns. Evidence has indicated that pesticides have the potential to induce energy metabolic disorders by disturbing the physical process of energy absorption in the intestine and energy storage in the liver, adipose tissue and skeletal muscle in humans or other mammals. In addition, the homeostasis of energy regulation by the pancreas and immune cells is also affected by pesticides. These pesticide-induced disruptions ultimately cause abnormal levels of blood glucose and lipids, which in turn induce the development of related metabolic diseases, including overweight, underweight, insulin resistance and even diabetes. In this review, the results of previous studies focused on the induction of metabolic disorders by pesticides are summarized. We hope that this work will facilitate the discovery of a potential strategy for the treatment of diseases caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
24
|
Tsai CH, Fang TC, Liao PL, Liao JW, Chan YJ, Cheng YW, Li CH. The Powdered Root of Eurycoma longifolia Jack Improves Beta-Cell Number and Pancreatic Islet Performance through PDX1 Induction and Shows Antihyperglycemic Activity in db/db Mice. Nutrients 2020; 12:nu12072111. [PMID: 32708678 PMCID: PMC7400842 DOI: 10.3390/nu12072111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Non-insulin-dependent diabetes mellitus (NIDDM) is a common metabolic disorder worldwide. In addition to the chief feature of long-standing hyperglycemia, dyslipidemia, hyperinsulinemia, and a number of complications develop in parallel. It is believed that an adequate control of blood glucose levels can cause these complications to go into remission. This study was performed to evaluate the antidiabetic activity of Eurycoma longifolia Jack (EL) in vivo. The blood-glucose-lowering activity of EL was studied in db/db mice administered crude powdered EL root (25, 50, and 100 mg/kg) orally for eight weeks. At the end of the study, HbA1c, insulin, plasma lipid levels, and histopathology were performed. Powdered EL root showed significant antihyperglycemic activity along with the control of body weight. After eight weeks of treatment, both the blood cholesterol level and the glycogen deposit in hepatocytes were remarkably lower, whereas the secreting insulin level was elevated. An improvement in islet performance was manifested as an increase in beta-cell number and pancreatic and duodenal homeobox 1 (PDX1) expression. Neogenesis or formation of new islets from pancreatic duct epithelial cells seen in the EL-treated group was encouraging. This study confirms the antihyperglycemic activity of EL through PDX1-associated beta-cell expansion resulting in an enhancement of islet performance.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-H.T.); (Y.-J.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Lin Liao
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-H.T.); (Y.-J.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-W.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 6123) (Y.-W.C.); +886-2-2736-1661 (ext. 3184) (C.-H.L.)
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-H.T.); (Y.-J.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-W.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 6123) (Y.-W.C.); +886-2-2736-1661 (ext. 3184) (C.-H.L.)
| |
Collapse
|
25
|
Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020; 161:bqaa024. [PMID: 32067051 PMCID: PMC7060764 DOI: 10.1210/endocr/bqaa024] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
- Department of Biomedical Engineering, University of California Irvine, Irvine, California
| |
Collapse
|