1
|
Liu Q, Xu X, Liang J, Zhang S, Wang G, Liu Y. Physiological mechanisms and drought resistance assessment of four dominant species on the Loess Plateau under drought stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70261. [PMID: 40344583 DOI: 10.1111/ppl.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/11/2025]
Abstract
The escalating frequency and severity of droughts have caused growth decline and increased mortality risk for plantations on the Loess Plateau. The main aim of this study was to explore the physiological mechanisms of four native dominant species during drought-induced mortality and evaluate their drought resistance capabilities. Drought was induced by withholding water from potted seedings, and we compared patterns in pit membrane damage, hydraulic function, and non-structural carbohydrates (NSC) dynamics across four tree species with distinct anatomical features. Our findings reveal species-specific vulnerability thresholds: Pinus tabulaeformis (-2.86 Mpa), Quercus liaotungensis (-1.92 Mpa), Robinia pseudoacacia (-0.109 Mpa), and Syringa reticulata (-0.93 Mpa). Additionally, drought stress was found to compromise pit membrane integrity, with water potential thresholds identified as R.pseudoacacia (-1.37 Mpa), S. reticulata (-2.20 Mpa), Q. liaotungensis (-2.39 Mpa), and P. tabulaeformis (-1.85 Mpa). The study concludes that R. pseudoacacia and S. reticulata exhibit greater susceptibility to hydraulic failure under severe drought conditions, leading to increased mortality risks. In contrast, Q. liaotungensis and P. tabulaeformis demonstrate enhanced drought tolerance and survival capacity. Our research elucidates the physiological mechanisms of drought-induced mortality, emphasizing the critical role of pit membrane damage in this process. These findings not only provide valuable insights into the drought resistance of native dominant species but also establish a scientific foundation for future artificial forest transformation initiatives on the Loess Plateau.
Collapse
Affiliation(s)
- Qing Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, China
| | - Xiaoyang Xu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Liang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqi Zhang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoliang Wang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Zhao Q, Chen J, Kang J, Kang S. Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( Gossypium hirsutum L.) Stems Under Elevated CO 2 and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:298. [PMID: 39861651 PMCID: PMC11768702 DOI: 10.3390/plants14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO2 concentration. This study aims to investigate the effects of elevated CO2 and salt stress on the hydraulic traits and xylem anatomical structures of cotton stems. Potted cotton plants were exposed to different CO2 concentrations (aC: 400 ppm; eC: 800 ppm) and salinity levels (aS: 0‱ soil salinity; eS: 6‱ soil salinity). The study found that under eC and eS conditions, a trade-off exists between hydraulic efficiency and safety in cotton stems, which may be partially attributed to xylem anatomical structures. Specifically, eS significantly reduced stem hydraulic conductivity under aC conditions and decreased vessel diameter but increased the proportion of small-diameter vessels and enhanced implosion resistance ((t/b)2), which strengthened the xylem's resistance to salt-induced embolism. eC altered the response pattern of xylem hydraulic conductivity and embolism resistance to salt stress, with increased vessel diameter enhancing hydraulic conductivity but reducing xylem resistance to embolism. These findings enhance our comprehension of plant hydraulic adaptation under future climatic conditions and provide new insights into the trade-offs between xylem structure and function.
Collapse
Affiliation(s)
- Qing Zhao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jinliang Chen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jian Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Shaozhong Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
4
|
Rezaie N, D'Andrea E, Scartazza A, Gričar J, Prislan P, Calfapietra C, Battistelli A, Moscatello S, Proietti S, Matteucci G. Upside down and the game of C allocation. TREE PHYSIOLOGY 2024; 44:192-203. [PMID: 36917230 DOI: 10.1093/treephys/tpad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Non-structural carbohydrates (NSCs) represent the primary carbon (C) reserves and play a crucial role in plant functioning and resilience. Indeed, these compounds are involved in the regulation between C supply and demand, and in the maintenance of hydraulic efficiency. Non-structural carbohydrates are stored in parenchyma of woody organs, which is recognized as a proxy for reserve storage capacity of tree. Notwithstanding the importance of NSCs for tree physiology, their long-term regulation and trade-offs against growth were not deeply investigated. This work evaluated the long-term dynamics of mature tree reserves in stem and root, proxied by parenchyma features and focusing on the trade-off and interplay between the resources allocation in radial growth and reserves in stem and coarse root. In a Mediterranean beech forest, NSCs content, stem and root wood anatomy analysis and eddy covariance data were combined. The parenchyma fraction (RAP) of beech root and stem was different, due to differences in axial parenchyma (AP) and narrow ray parenchyma (nRP) fractions. However, these parenchyma components and radial growth showed synchronous inter-annual dynamics between the two organs. In beech stem, positive correlations were found among soluble sugars content and nRP and among starch content and the AP. Positive correlations were found among Net Ecosystem Exchange (NEE) and AP of both organs. In contrast, NEE was negatively correlated to radial growth of root and stem. Our results suggest a different contribution of stem and roots to reserves storage and a putative partitioning in the functional roles of parenchyma components. Moreover, a long-term trade-off of C allocation between growth and reserve pool was evidenced. Indeed, in case of C source reduction, trees preferentially allocate C toward reserves pool. Conversely, in high productivity years, growth represents the major C sink.
Collapse
Affiliation(s)
- Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via P. Castellino n. 111, 80131 Napoli, Italy
| | - Ettore D'Andrea
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Scartazza
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Carlo Calfapietra
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Institute of BioEconomy, National Research Council of Italy (CNR-IBE), via Madonna del Piano, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Zhang Q, Shen H, Peng L, Tao Y, Zhou X, Yin B, Fan Z, Zhang J. Intraspecific Variability of Xylem Hydraulic Traits of Calligonum mongolicum Growing in the Desert of Northern Xinjiang, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3005. [PMID: 39519923 PMCID: PMC11548551 DOI: 10.3390/plants13213005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Plant hydraulic traits are essential for understanding and predicting plant drought resistance. Investigations into the mechanisms of the xylem anatomical traits of desert shrubs in response to climate can help us to understand plant survival strategies in extreme environments. This study examined the xylem anatomical traits and related functional traits of the branches of seven Calligonum mongolicum populations along a precipitation gradient, to explore their adaptive responses to climatic factors. We found that (1) the vessel diameter (D), vessel diameter contributing to 95% of hydraulic conductivity (D95), hydraulic weighted vessel diameter (Dh), vessel density (VD), percentage of conductive area (CA), thickness-to-span ratio of vessels ((t/b)2), and theoretical hydraulic conductivity (Kth) varied significantly across sites, while the vessel group index (Vg), wood density (WD), and vulnerability index (VI) showed no significant differences. (2) Principal component analysis revealed that efficiency-related traits (Kth, Dh, D95) and safety-related traits (VI, VD, inter-wall thickness of the vessel (t)) were the primary factors driving trait variation. (3) Precipitation during the wettest month (PWM) had the strongest influence, positively correlating with (t/b)2 and negatively with D, D95, Dh, CA, and Kth. (4) Structural equation modeling confirmed PWM as the main driver of Kth, with indirect effects through CA. These findings indicate that C. mongolicum displays high plasticity in xylem traits, enabling adaptation to changing environments, and providing insight into the hydraulic strategies of desert shrubs under climate change.
Collapse
Affiliation(s)
- Quanling Zhang
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Shen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Peng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830017, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhiqiang Fan
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
| | - Jing Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
6
|
Huang X, Hou ZL, Ma BL, Zhao H, Jiang ZM, Cai J. Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.). TREE PHYSIOLOGY 2024; 44:tpae109. [PMID: 39216110 DOI: 10.1093/treephys/tpae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19 to 248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95% to 46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently >1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive SMs mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.
Collapse
Affiliation(s)
- Xin Huang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhuo-Liang Hou
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Bo-Long Ma
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Han Zhao
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zai-Min Jiang
- College of Life, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
7
|
Plavcová L, Jandová V, Altman J, Liancourt P, Korznikov K, Doležal J. Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma. ANNALS OF BOTANY 2024; 134:151-162. [PMID: 38525918 PMCID: PMC11161563 DOI: 10.1093/aob/mcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic
| | - Veronika Jandová
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Kirill Korznikov
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Zhang KY, Yang D, Zhang YB, Ai XR, Yao L, Deng ZJ, Zhang JL. Linkages among stem xylem transport, biomechanics, and storage in lianas and trees across three contrasting environments. AMERICAN JOURNAL OF BOTANY 2024; 111:e16290. [PMID: 38380953 DOI: 10.1002/ajb2.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
PREMISE Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xun-Ru Ai
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Lan Yao
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Zhi-Jun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
9
|
Zhang G, Mao Z, Maillard P, Brancheriau L, Gérard B, Engel J, Fortunel C, Heuret P, Maeght JL, Martínez-Vilalta J, Stokes A. Functional trade-offs are driven by coordinated changes among cell types in the wood of angiosperm trees from different climates. THE NEW PHYTOLOGIST 2023; 240:1162-1176. [PMID: 37485789 DOI: 10.1111/nph.19132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Zhun Mao
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Loïc Brancheriau
- CIRAD, UPR BioWooEB, Montpellier, 34000, France
- BioWooEB, University of Montpellier, CIRAD, Montpellier, 34000, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, Champenoux, 54280, France
| | - Julien Engel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Claire Fortunel
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Patrick Heuret
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jean-Luc Maeght
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
| | - Alexia Stokes
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
10
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
11
|
Simioni PF, Emilio T, Giles AL, Viana de Freitas G, Silva Oliveira R, Setime L, Pierre Vitoria A, Pireda S, Vieira da Silva I, Da Cunha M. Anatomical traits related to leaf and branch hydraulic functioning on Amazonian savanna plants. AOB PLANTS 2023; 15:plad018. [PMID: 37214224 PMCID: PMC10198777 DOI: 10.1093/aobpla/plad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
Collapse
Affiliation(s)
| | - Thaise Emilio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Instituto de Biologia, UNICAMP, Campinas, Brasil
| | - André L Giles
- Instituo Nacional de Pesquisa da Amazonia (INPA), Manaus, Amazonas, Brasil
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Gustavo Viana de Freitas
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | | | - Lara Setime
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Angela Pierre Vitoria
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Saulo Pireda
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Ivone Vieira da Silva
- Laboratório de Biologia Vegetal, Universidade do Estado do Mato Grosso, Alta Floresta, MT, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
12
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Wang L, Dai Y, Zhang J, Meng P, Wan X. Xylem structure and hydraulic characteristics of deep roots, shallow roots and branches of walnut under seasonal drought. BMC PLANT BIOLOGY 2022; 22:440. [PMID: 36104814 PMCID: PMC9472371 DOI: 10.1186/s12870-022-03815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Despite the importance of root hydraulics, there is little research on the in situ dynamic responses of embolism formation and embolism repair of roots distributed in different soil depths in response to different water regimes. RESULTS The vessel diameter, hydraulic conductivity, and vulnerability to cavitation were in the order of deep root > shallow root > branch. The midday PLC of shallow root was the highest in the dry season, while the midday PLC of deep root slightly higher than that of branch with no significant difference in the two seasons. The capacity of embolism repair of roots was significantly greater than that of branch both in dry season and wet season. The xylem pressure was in the order of deep roots > shallow root > branch, and it was negative in most of the time for the latter two in the dry season, but positive for both of the roots during the observation period in the wet season. The NSC and starch content in roots were significantly higher than those in branches, especially in the dry season. In contrast, roots had lower content of soluble sugar. CONCLUSIONS The relatively stable water condition in soil, especially in the deep layers, is favorable for the development of larger-diameter vessels in root xylem, however it cannot prevent the root from forming embolism. The mechanism of embolism repair may be different in different parts of plants. Deep roots mainly depend on root pressure to refill the embolized vessels, while branches mainly depend on starch hydrolysis to soluble sugars to do the work, with shallow roots shifted between the two mechanisms in different moisture regimes. There is theoretically an obvious trade-off between conducting efficiency and safety over deep roots, shallow roots and branches. But in natural conditions, roots do not necessarily suffer more severe embolism than branches, maybe due to their root pressure-driven embolism repair and relatively good water conditions.
Collapse
Affiliation(s)
- Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Jinsong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Ping Meng
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
14
|
Zhang G, Maillard P, Mao Z, Brancheriau L, Engel J, Gérard B, Fortunel C, Maeght JL, Martínez-Vilalta J, Ramel M, Nourissier-Mountou S, Fourtier S, Stokes A. Non-structural carbohydrates and morphological traits of leaves, stems and roots from tree species in different climates. BMC Res Notes 2022; 15:251. [PMID: 35840995 PMCID: PMC9284841 DOI: 10.1186/s13104-022-06136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support. Little is known about how NSC impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits linked to hydraulic and mechanical functioning. Data description The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm species from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to water transportation, mechanical support and storage. Data will also give researchers keys to understanding the ability of trees to adjust to a changing climate.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France.
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280, Champenoux, France
| | - Zhun Mao
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | - Loic Brancheriau
- CIRAD, Université de Montpellier, UR BioWooEB, 34000, Montpellier, France
| | - Julien Engel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | - Bastien Gérard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280, Champenoux, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | - Jean-Luc Maeght
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, 08193, Cerdanyola del Vallès, Catalonia, Spain.,Universitat Autònoma Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Merlin Ramel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | | | - Stéphane Fourtier
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| | - Alexia Stokes
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000, Montpellier, France
| |
Collapse
|
15
|
Zhang SB, Wen GJ, Qu YY, Yang LY, Song Y. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. TREE PHYSIOLOGY 2022; 42:1337-1349. [PMID: 35157087 PMCID: PMC9272745 DOI: 10.1093/treephys/tpac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Evergreen and deciduous species coexist in tropical dry forests and savannas, but differ in physiological mechanisms and life-history strategies. Hydraulic conductivity and mechanical support are two major functions of the xylems of woody plant species related to plant growth and survival. In this study, we measured sapwood-specific hydraulic conductivity (Ks), leaf-specific hydraulic conductivity (KL), modulus of rupture (MOR) and elasticity (MOE), xylem anatomical traits and fiber contents in the xylems of 20 woody species with contrasting leaf phenology (evergreen vs deciduous) in a Chinese savanna. Our results showed that deciduous species had significantly higher Ks and KL but lower MOR and MOE than evergreen species. Evergreen species experienced more negative seasonal minimum water potential (Pmin) than deciduous species during the dry season. Furthermore, we found trade-offs between xylem hydraulic efficiency and mechanical strength across species and within the evergreen and deciduous groups, and these trade-offs were modulated by structural and chemical traits. Both Ks and KL were significantly related to hydraulic weighted vessel diameter (Dh) across all species and within the deciduous group. Both MOR and MOE were significantly related to wood density, neutral detergent fiber and acid detergent fiber across species and within evergreen and deciduous groups. Our findings demonstrated that Chinese evergreen and deciduous savanna species diverged in xylem hydraulic and mechanical functions, reflecting conservative and acquisitive life-history strategies for evergreen and deciduous species, respectively. This study provides new information with which to understand the hydraulic and biomechanical properties and ecological strategies of savanna species in long-term dry-hot environments.
Collapse
Affiliation(s)
| | - Guo-Jing Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Ya-Ya Qu
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Lin-Yi Yang
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
16
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
17
|
Zhang G, Mao Z, Fortunel C, Martínez-Vilalta J, Viennois G, Maillard P, Stokes A. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. AMERICAN JOURNAL OF BOTANY 2022; 109:535-549. [PMID: 35266560 DOI: 10.1002/ajb2.1838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known. METHODS In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species. To examine the relationships of NSCs and RAP with climatic factors and other functional traits, we also collected climatic data at each tree's location, as well as wood density and maximum height. A phylogenetic tree was constructed to examine the influence of species' evolutionary relationships on the associations among NSCs, RAP, and functional traits. RESULTS Across all 68 tree species, NSCs were positively correlated with RAP and mean annual temperature, but relationships were only weakly significant in temperate species and angiosperms. When separating RAP into radial parenchyma (RP) and axial parenchyma (AP), both NSCs and wood density were positively correlated with RP but not with AP. Wood in taller trees was less dense and had lower RAP than in shorter trees, but height was not related to NSCs. CONCLUSIONS In trees, NSCs are stored mostly in the RP fraction, which has a larger surface area in warmer climates. Additionally, NSCs were only weakly linked to wood density and tree height. Our analysis of evolutionary relationships demonstrated that RAP fractions and NSC content were always closely related across all 68 tree species, suggesting that RAP can act as a reliable proxy for potential NSC storage capacity in tree stems.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Zhun Mao
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Gaëlle Viennois
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280 Champenoux, France
| | - Alexia Stokes
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
18
|
Kawai K, Minagi K, Nakamura T, Saiki ST, Yazaki K, Ishida A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. TREE PHYSIOLOGY 2022; 42:337-350. [PMID: 34328187 DOI: 10.1093/treephys/tpab100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Parenchyma is an important component of the secondary xylem. It has multiple functions and its fraction is known to vary substantially across angiosperm species. However, the physiological significance of this variation is not yet fully understood. Here, we examined how different types of parenchyma (ray parenchyma [RP], axial parenchyma [AP] and AP in direct contact with vessels [APV]) are coordinated with three essential xylem functions: water conduction, storage of non-structural carbohydrate (NSC) and mechanical support. Using branch sapwood of 15 co-occurring drought-adapted woody species from the subtropical Bonin Islands, Japan, we quantified 10 xylem anatomical traits and examined their linkages to hydraulic properties, storage of soluble sugars and starch and sapwood density. The fractions of APV and AP in the xylem transverse sections were positively correlated with the percentage loss of conductivity in the native condition, whereas that of RP was negatively correlated with the maximum conductivity across species. Axial and ray parenchyma fractions were positively associated with concentrations of starch and NSC. The fraction of parenchyma was independent of sapwood density, regardless of parenchyma type. We also identified a negative relationship between hydraulic conductivity and NSC storage and sapwood density, mirroring the negative relationship between the fractions of parenchyma and vessels. These results suggest that parenchyma fraction underlies species variation in xylem hydraulic and carbon use strategies, wherein xylem with a high fraction of AP may adopt an embolism repair strategy through an increased starch storage with low cavitation resistance.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1 Tsukuba, Ibaraki 305-8686, Japan
| | - Kanji Minagi
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| | - Shin-Taro Saiki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
- Soil-Plant Ecosystem Group, Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, Hokkaido 062-8516, Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Hirano 2 509-3 Otsu, Shiga 520-2113, Japan
| |
Collapse
|
19
|
Influence of Colder Temperature on the Axial and Radial Parenchyma Fraction of Quercus ciliaris C.C.Huang & Y.T.Chang Wood and Its Relationship with Carbohydrate Reserve (NSC). FORESTS 2022. [DOI: 10.3390/f13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parenchyma in the secondary xylem comprises the main tissue for the storage of non-structural carbohydrates (NSC) in woody plants. Across species, the amount of parenchyma depends on the general environment of the distribution area and determines to a large extent the NSC storage. However, little information is available on the relationship between parenchyma fractions, NSC storage, and the environmental influences within individual species. This information is crucial to assessing the adaptive capacities of tree populations in the context of increasing the frequency and severity of stress-inducing events. In this study, parenchyma fractions and NSC concentrations of the secondary xylem in trunks of a subtropical evergreen oak (Quercus ciliaris C.C.Huang & Y.T.Chang) were quantified along an elevational gradient from 700 m to 1200 m a.s.l. in eastern China. Air temperatures within the distribution area correlated with altitude were recorded. The results showed that the total parenchyma fractions did not covary with the colder temperatures. However, axial parenchyma fractions were lower with a colder climate, while the fractions of multiseriate rays and total ray parenchyma were higher. Higher concentrations of starch and NSC were significantly associated with larger axial parenchyma fractions. The sugar concentration displayed no significant relationship with parenchyma fractions. These findings suggest that the total parenchyma fractions in secondary xylem do not increase in response to a colder climate, while colder temperatures drive changes in the composition of parenchyma for Q. ciliaris.
Collapse
|
20
|
Olson ME. A poplar option: the 'within-individual approach' for elucidating xylem structure-function relationships. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7648-7652. [PMID: 34865114 DOI: 10.1093/jxb/erab443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on:
Baer AB, Fickle JC, Medina J, Robles C, Pratt RB, Jacobsen AL. 2021. Xylem biomechanics, water storage, and density within roots and shoots of an angiosperm tree species. Journal of Experimental Botany 72, 7984–7997.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México,Tercer Circuito de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
21
|
Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proc Natl Acad Sci U S A 2021; 118:2104336118. [PMID: 34389676 PMCID: PMC8379947 DOI: 10.1073/pnas.2104336118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant vascular systems play a central role in global water and carbon cycles and drought resistance. These vascular systems perform multiple functions that affect the fitness of plants, and trade-offs are present among these functions. Some trade-offs are well established, but studies have not examined the full suite of functions of these complex systems. Here, we used a powerful multivariate method, structural equation modeling, to test hypotheses about the trade-offs that govern this vital and globally important tissue. We show that xylem traits are broadly governed by trade-offs related to transport, mechanical support, and storage, which are rooted in cellular structure, and that the level of dehydration experienced by plants in the field exerts a strong influence over these relationships. The xylem in plants is specialized to transport water, mechanically support the plant body, and store water and carbohydrates. Balancing these functions leads to trade-offs that are linked to xylem structure. We proposed a multivariate hypothesis regarding the main xylem functions and tested it using structural equation modeling. We sampled 29 native shrub species from field sites in semiarid Southern California. We quantified xylem water transport (embolism resistance and transport efficiency), mechanical strength, storage of water (capacitance) and starch, minimum hydrostatic pressures (Pmin), and proportions of fibers, vessels, and parenchyma, which were treated as a latent variable representing “cellular trade-offs.” We found that xylem functions (transport, mechanical support, water storage, and starch storage) were independent, a result driven by Pmin. Pmin was strongly and directly or indirectly associated with all xylem functions as a hub trait. More negative Pmin was associated with increased embolism resistance and tissue strength and reduced capacitance and starch storage. We found strong support for a trade-off between embolism resistance and transport efficiency. Tissue strength was not directly associated with embolism resistance or transport efficiency, and any associations were indirect involving Pmin. With Pmin removed from the model, cellular trade-offs were central and related to all other traits. We conclude that xylem traits are broadly governed by functional trade-offs and that the Pmin experienced by plants in the field exerts a strong influence over these relationships. Angiosperm xylem contains different cell types that contribute to different functions and that underpin trade-offs.
Collapse
|
22
|
Pratt RB, Tobin MF, Jacobsen AL, Traugh CA, De Guzman ME, Hayes CC, Toschi HS, MacKinnon ED, Percolla MI, Clem ME, Smith PT. Starch storage capacity of sapwood is related to dehydration avoidance during drought. AMERICAN JOURNAL OF BOTANY 2021; 108:91-101. [PMID: 33349932 DOI: 10.1002/ajb2.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
PREMISE The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.
Collapse
Affiliation(s)
- R Brandon Pratt
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael F Tobin
- University of Houston-Downtown, Department of Natural Sciences, One Main Street, Houston, Texas, 77002, USA
| | - Anna L Jacobsen
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Courtney A Traugh
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Mark E De Guzman
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Christine C Hayes
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Hayden S Toschi
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Evan D MacKinnon
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Marta I Percolla
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael E Clem
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Paul T Smith
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| |
Collapse
|
23
|
Jupa R, Mészáros M, Plavcová L. Linking wood anatomy with growth vigour and susceptibility to alternate bearing in composite apple and pear trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:172-183. [PMID: 32939929 DOI: 10.1111/plb.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Excess vegetative growth and irregular fruit-bearing are often undesirable in horticultural practice. However, the biological mechanisms underlying these traits in fruit trees are not fully understood. Here, we tested if growth vigour and susceptibility of apple and pear trees to alternate fruit-bearing are associated with vascular anatomy. We examined anatomical traits related to water transport and nutrient storage in young woody shoots and roots of 15 different scion/rootstock cultivars of apple and pear trees. In addition, soil and leaf water potentials were measured across a drought period. We found a positive correlation between the mean vessel diameter of roots and the annual shoot length. Vigorously growing trees also maintained less negative midday leaf water potential during drought. Furthermore, we observed a close negative correlation between the proportions of total parenchyma in the shoots and the alternate bearing index. Based on anatomical proxies, our results suggest that xylem transport efficiency of rootstocks is linked to growth vigour of both apple and pear trees, while limited carbohydrate storage capacity of scions may be associated with increased susceptibility to alternate bearing. These findings can be useful for the breeding of new cultivars of commercially important fruit trees.
Collapse
Affiliation(s)
- R Jupa
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - M Mészáros
- Research and Breeding Institute of Pomology, Hořice, Czech Republic
| | - L Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|