1
|
Li W, Li Q, Che J, Ren J, Wang A, Chen J. A Key R2R3-MYB Transcription Factor Activates Anthocyanin Biosynthesis and Leads to Leaf Reddening in Poplar Mutants. PLANT, CELL & ENVIRONMENT 2025; 48:2067-2082. [PMID: 39558461 DOI: 10.1111/pce.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
Colorful woody plants are highly valued for their ornamental qualities, and are commonly used in garden landscape design. We previously cultivated several ornamental poplar varieties from bud mutants of Populus sp. Linn. '2025' (ZL2025), each with different leaf colors. Based on transcriptome data from these varieties with varying anthocyanin pigmentation, we identified and named an R2R3-MYB gene, PdMYB113. The mRNA of PdMYB113 accumulated in the leaves of the red-leaf mutants 'QHY' and 'LHY', but barely expressed in the leaves of 'ZL2025'. The anthocyanin biosynthesis genes were upregulated, resulting in high levels of red anthocyanins (particularly Peonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, and Cyanidin-3-O-glucoside) in both OE-PdMYB113 tobacco and poplar plants. This upregulation caused a color change in the tissues from green to red or dark purple. Yeast one-hybrid and luciferase assays demonstrated that PdMYB113 activates the expression of anthocyanin biosynthesis genes, including the early anthocyanin biosynthetic gene PdCHS and the late anthocynin biosynthetic gene PdANS. Consequently, PdMYB113 is identified as a key regulator of red coloration in poplar. Additionally, PdMYB113 does not dwarf transgenic plants under normal lighting conditions. This study elucidates the regulatory mechanisms of color change in ZL2025 and highlights a crucial gene for breeding new varieties of woody plants.
Collapse
Affiliation(s)
- Weinan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Qianqian Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiahang Che
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Aike Wang
- Yucheng Institute of Agricultural Sciences, Shangqiu, China
| | - Jinhuan Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Medina-Lozano I, Grimplet J, Díaz A. Harnessing the diversity of a lettuce wild relative to identify anthocyanin-related genes transcriptionally responsive to drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494339. [PMID: 39911652 PMCID: PMC11795315 DOI: 10.3389/fpls.2024.1494339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Lettuce is a crop particularly vulnerable to drought. A transcriptomic study in the variety 'Romired' and the wild relative Lactuca homblei was conducted to understand the increase in anthocyanins (only significant in L. homblei) in response to drought previously observed. RNA-seq revealed more differentially expressed genes (DEGs), especially upregulated, in the wild species, in which the most abundant and significant GO terms were involved in regulatory processes (including response to water). Anthocyanin synthesis was triggered in L. homblei in response to drought, with 17 genes activated out of the 36 mapped in the phenylpropanoid-flavonoid pathway compared to 7 in 'Romired'. Nineteen candidate DEGs with the strongest change in expression and correlation with both anthocyanin content and drought were selected and validated by qPCR, all being differentially expressed only in the wild species with the two techniques. Their functions were related to anthocyanins and/or stress response and they harboured 404 and 11 polymorphisms in the wild and cultivated species, respectively. Some wild variants had high or moderate predicted impacts on the respective protein function: a transcription factor that responds to abiotic stresses, a heat shock protein involved in stomatal closure, and a phospholipase participating in anthocyanin accumulation under abiotic stress. These genetic variants could explain the differences in the gene expression patterns between the wild (significantly up/downregulated) and the cultivated (no significant changes) species. The diversity of this crop wild relative for anthocyanin-related genes involved in the response to drought could be exploited to improve lettuce resilience against some adverse climate effects.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Jérôme Grimplet
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| | - Aurora Díaz
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
- AgriFood Institute of Aragon – IA2 (CITA-University of Zaragoza), Zaragoza, Spain
| |
Collapse
|
3
|
Gao C, Wang Z, Wu W, Zhou Z, Deng X, Chen Z, Sun W. Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant. TREE PHYSIOLOGY 2024; 44:tpae065. [PMID: 38857368 DOI: 10.1093/treephys/tpae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, East Second Ring Road, Anxi County, Quanzhou, Fujian 362400, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Jin J, Li L, Fan D, Du Y, Jia H, Yang L, Jia W, Hao Q. Budding mutation reprogrammed flavonoid biosynthesis in jujube by deploying MYB41 and bHLH93. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108665. [PMID: 38735155 DOI: 10.1016/j.plaphy.2024.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.
Collapse
Affiliation(s)
- Juan Jin
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Lili Li
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Dingyu Fan
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Youwei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongchen Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Yang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Qing Hao
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
5
|
Li Z, Geng G, Xie H, Zhou L, Wang L, Qiao F. Metabolomic and transcriptomic reveal flavonoid biosynthesis and regulation mechanism in Phlomoides rotata from different habitats. Genomics 2024; 116:110850. [PMID: 38685286 DOI: 10.1016/j.ygeno.2024.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Phlomoides rotata is a traditional medical plant at 3100-5200 m altitude in the Tibet Plateau. In this study, flavonoid metabolites were investigated in P. rotata from Henan County (HN), Guoluo County (GL), Yushu County (YS), and Chengduo County (CD) habitats in Qinghai. The level of kaempferol 3-neohesperidoside, sakuranetin, and biochanin A was high in HN. The content of limocitrin and isoquercetin was high in YS. The levels of ikarisoside A and chrysosplenol D in GL were high. Schaftoside, miquelianin, malvidin chloride, and glabrene in CD exhibited high levels. The results showed a significant correlation between 59 flavonoids and 29 DEGs. Eleven flavonoids increased with altitude. PAL2, UFGT6, COMT1, HCT2, 4CL4, and HCT3 genes were crucial in regulating flavonoid biosynthesis. Three enzymes CHS, 4CL, and UFGT, were crucial in regulating flavonoid biosynthesis. This study provided biological and chemical evidence for the different uses of various regional plants of P. rotata.
Collapse
Affiliation(s)
- Zuxia Li
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Huichun Xie
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Lianyu Zhou
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Luhao Wang
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Feng Qiao
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
6
|
Yang Y, Chen M, Zhang W, Zhu H, Li H, Niu X, Zhou Z, Hou X, Zhu J. Metabolome combined with transcriptome profiling reveals the dynamic changes in flavonoids in red and green leaves of Populus × euramericana 'Zhonghuahongye'. FRONTIERS IN PLANT SCIENCE 2023; 14:1274700. [PMID: 38179486 PMCID: PMC10764563 DOI: 10.3389/fpls.2023.1274700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Flavonoids are secondary metabolites that have economic value and are essential for health. Poplar is a model perennial woody tree that is often used to study the regulatory mechanisms of flavonoid synthesis. We used a poplar bud mutant, the red leaf poplar variety 2025 (Populus × euramericana 'Zhonghuahongye'), and green leaves as study materials and selected three stages of leaf color changes for evaluation. Phenotypic and biochemical analyses showed that the total flavonoid, polyphenol, and anthocyanin contents of red leaves were higher than those of green leaves in the first stage, and the young and tender leaves of the red leaf variety had higher antioxidant activity. The analyses of widely targeted metabolites identified a total of 273 flavonoid metabolites (114 flavones, 41 flavonols, 34 flavonoids, 25 flavanones, 21 anthocyanins, 18 polyphenols, 15 isoflavones, and 5 proanthocyanidins). The greatest difference among the metabolites was found in the first stage. Most flavonoids accumulated in red leaves, and eight anthocyanin compounds contributed to red leaf coloration. A comprehensive metabolomic analysis based on RNA-seq showed that most genes in the flavonoid and anthocyanin biosynthetic pathways were differentially expressed in the two types of leaves. The flavonoid synthesis genes CHS (chalcone synthase gene), FLS (flavonol synthase gene), ANS (anthocyanidin synthase gene), and proanthocyanidin synthesis gene LAR (leucoanthocyanidin reductase gene) might play key roles in the differences in flavonoid metabolism. A correlation analysis of core metabolites and genes revealed several candidate regulators of flavonoid and anthocyanin biosynthesis, including five MYB (MYB domain), three bHLH (basic helix-loop-helix), and HY5 (elongated hypocotyl 5) transcription factors. This study provides a reference for the identification and utilization of flavonoid bioactive components in red-leaf poplar and improves the understanding of the differences in metabolism and gene expression between red and green leaves at different developmental stages.
Collapse
Affiliation(s)
- Yun Yang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, Henan, China
| | - Mengjiao Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Wan Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyang Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xinjiang Niu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Zongshun Zhou
- China Experimental Centre of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, Jiangxi, China
| | - Xiaoya Hou
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Zhang S, Yu X, Chen M, Chang C, Zhu J, Zhao H. Comparative Transcriptome and Metabolome Profiling Reveal Mechanisms of Red Leaf Color Fading in Populus × euramericana cv. 'Zhonghuahongye'. PLANTS (BASEL, SWITZERLAND) 2023; 12:3511. [PMID: 37836251 PMCID: PMC10575148 DOI: 10.3390/plants12193511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Anthocyanins are among the flavonoids that serve as the principal pigments affecting the color of plants. During leaf growth, the leaf color of 'Zhonghuahongye' gradually changes from copper-brown to yellow-green. At present, the mechanism of color change at different stages has not yet been discovered. To find this, we compared the color phenotype, metabolome, and transcriptome of the three leaf stages. The results showed that the anthocyanin content of leaves decreased by 62.5% and the chlorophyll content increased by 204.35%, 69.23%, 155.56% and 60%, respectively. Differential metabolites and genes were enriched in the pathway related to the synthesis of 'Zhonghuahongye' flavonoids and anthocyanins and to the biosynthesis of secondary metabolites. Furthermore, 273 flavonoid metabolites were detected, with a total of eight classes. DFR, FLS and ANS downstream of anthocyanin synthesis may be the key structural genes in reducing anthocyanin synthesis and accumulation in the green leaf of 'Zhonghuahongye'. The results of multi-omics analysis showed that the formation of color was primarily affected by anthocyanin regulation and its related synthesis-affected genes. This study preliminarily analyzed the green regression gene and metabolic changes in 'Zhonghuahongye' red leaves and constitutes a reference for the molecular breeding of 'Zhonghuahongye' red leaves.
Collapse
Affiliation(s)
- Shaowei Zhang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
- College of Rural Revitalization, The Open University of Henan, 36 Longzi Lake North Road, Zhengzhou 450046, China
| | - Xinran Yu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| | - Mengjiao Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan 1st Road, Guangzhou 510520, China;
| | - Cuifang Chang
- The College of Landscape Architecture and the Arts, Henan Agricultural University, 63 Agricultural Road, Zhengzhou 450002, China;
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, 3 Weiwu Road, Zhengzhou 450003, China;
| |
Collapse
|
8
|
Chen M, Chang C, Li H, Huang L, Zhou Z, Zhu J, Liu D. Metabolome analysis reveals flavonoid changes during the leaf color transition in Populus × euramericana 'Zhonghuahongye'. FRONTIERS IN PLANT SCIENCE 2023; 14:1162893. [PMID: 37223816 PMCID: PMC10200940 DOI: 10.3389/fpls.2023.1162893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Introduction To investigate the mechanism of leaf color change at different stages in Populus × euramericana 'Zhonghuahongye' ('Zhonghong' poplar). Methods Leaf color phenotypes were determined and a metabolomic analysis was performed on leaves at three stages (R1, R2 and R3). Results The a*, C* and chromatic light values of the leaves decreased by 108.91%, 52.08% and 113.34%, while the brightness L values and chromatic b* values gradually increased by 36.01% and 13.94%, respectively. In the differential metabolite assay, 81 differentially expressed metabolites were detected in the R1 vs. R3 comparison, 45 were detected in the R1 vs. R2 comparison, and 75 were detected in the R2 vs. R3 comparison. Ten metabolites showed significant differences in all comparisons, which were mostly flavonoid metabolites. The metabolites that were upregulated in the three periods were cyanidin 3,5-O-diglucoside, delphinidin, and gallocatechin, with flavonoid metabolites accounting for the largest proportion and malvidin 3- O-galactoside as the primary downregulated metabolite. The color shift of red leaves from a bright purplish red to a brownish green was associated with the downregulation of malvidin 3-O-glucoside, cyanidin, naringenin, and dihydromyricetin. Discussion Here, we analyzed the expression of flavonoid metabolites in the leaves of 'Zhonghong' poplar at three stages and identified key metabolites closely related to leaf color change, providing an important genetic basis for the genetic improvement of this cultivar.
Collapse
Affiliation(s)
- Mengjiao Chen
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Cuifang Chang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Lin Huang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Zongshun Zhou
- China Experimental Centre of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, Jiangxi, China
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, Shandong, China
| |
Collapse
|
9
|
Peng XQ, Ai YJ, Pu YT, Wang XJ, Li YH, Wang Z, Zhuang WB, Yu BJ, Zhu ZQ. Transcriptome and metabolome analyses reveal molecular mechanisms of anthocyanin-related leaf color variation in poplar ( Populus deltoides) cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1103468. [PMID: 36909390 PMCID: PMC9998943 DOI: 10.3389/fpls.2023.1103468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Colored-leaf plants are increasingly popular for their aesthetic, ecological, and social value, which are important materials for research on the regulation of plant pigments. However, anthocyanin components and the molecular mechanisms of anthocyanin biosynthesis in colored-leaf poplar remain unclear. Consequently, an integrative analysis of transcriptome and metabolome is performed to identify the key metabolic pathways and key genes, which could contribute to the molecular mechanism of anthocyanin biosynthesis in the colored-leaf cultivars poplar. METHODS In this study, integrated metabolite and transcriptome analysis was performed to explore the anthocyanin composition and the specific regulatory network of anthocyanin biosynthesis in the purple leaves of the cultivars 'Quanhong' (QHP) and 'Zhongshanyuan' (ZSY). Correlation analysis between RNA-seq data and metabolite profiles were also performed to explore the candidate genes associated with anthocyanin biosynthesis. R2R3-MYB and bHLH TFs with differential expression levels were used to perform a correlation analysis with differentially accumulated anthocyanins. RESULTS AND DISCUSSION A total of 39 anthocyanin compounds were detected by LC-MS/MS analysis. Twelve cyanidins, seven pelargonidins, five delphinidins, and five procyanidins were identified as the major anthocyanin compounds, which were differentially accumulated in purple leaves of QHP and ZSY. The major genes associated with anthocyanin biosynthesis, including structural genes and transcription factors, were differentially expressed in purple leaves of QHP and ZSY through RNA-sequencing (RNA-seq) data analysis, which was consistent with quantitative real-time PCR analysis results. Correlation analysis between RNA-seq data and metabolite profiles showed that the expression patterns of certain differentially expressed genes in the anthocyanin biosynthesis pathway were strongly correlated with the differential accumulation of anthocyanins. One R2R3-MYB subfamily member in the SG5 subgroup, Podel.04G021100, showed a similar expression pattern to some structural genes. This gene was strongly correlated with 16 anthocyanin compounds, indicating that Podel.04G021100 might be involved in the regulation of anthocyanin biosynthesis. These results contribute to a systematic and comprehensive understanding of anthocyanin accumulation and to the molecular mechanisms of anthocyanin biosynthesis in QHP and ZSY.
Collapse
Affiliation(s)
- Xu Qian Peng
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Jie Ai
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Ting Pu
- College of Tea Science, Guizhou University, Guiyang, China
| | - Xiao Jing Wang
- College of Tea Science, Guizhou University, Guiyang, China
| | - Yu Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Laizhou, Ornamental Research Center, Hongshun Plum Planting Technology Co., Ltd, Yantai, China
| | - Bing Jun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhi Qi Zhu
- Laizhou, Ornamental Research Center, Hongshun Plum Planting Technology Co., Ltd, Yantai, China
| |
Collapse
|
10
|
Qiao F, Zhang K, Zhou L, Qiu QS, Chen Z, Lu Y, Wang L, Geng G, Xie H. Analysis of flavonoid metabolism during fruit development of Lycium chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153856. [PMID: 36375401 DOI: 10.1016/j.jplph.2022.153856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Kaimin Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| |
Collapse
|
11
|
Mahon EL, de Vries L, Jang SK, Middar S, Kim H, Unda F, Ralph J, Mansfield SD. Exogenous chalcone synthase expression in developing poplar xylem incorporates naringenin into lignins. PLANT PHYSIOLOGY 2022; 188:984-996. [PMID: 34718804 PMCID: PMC8825309 DOI: 10.1093/plphys/kiab499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 05/03/2023]
Abstract
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.
Collapse
Affiliation(s)
- Elizabeth L Mahon
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Soo-Kyeong Jang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep Middar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Hoon Kim
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
| | - John Ralph
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, USA
- Author for communication:
| |
Collapse
|
12
|
Ma Q, Hu Y, Dong X, Zhou G, Liu X, Gu Q, Wei Q. Metabolic Profiling and Gene Expression Analysis Unveil Differences in Flavonoid and Lipid Metabolisms Between 'Huapi' Kumquat ( Fortunella crassifolia Swingle) and Its Wild Type. FRONTIERS IN PLANT SCIENCE 2021; 12:759968. [PMID: 34925410 PMCID: PMC8675212 DOI: 10.3389/fpls.2021.759968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
To elucidate the mechanism underlying special characteristic differences between a spontaneous seedling mutant 'Huapi' kumquat (HP) and its wild-type 'Rongan' kumquat (RA), the fruit quality, metabolic profiles, and gene expressions of the peel and flesh were comprehensively analyzed. Compared with RA, HP fruit has distinctive phenotypes such as glossy peel, light color, and few amounts of oil glands. Interestingly, HP also accumulated higher flavonoid (approximately 4.1-fold changes) than RA. Based on metabolomics analysis, we identified 201 differential compounds, including 65 flavonoids and 37 lipids. Most of the differential flavonoids were glycosylated by hexoside and accumulated higher contents in the peel but lower in the flesh of HP than those of RA fruit. For differential lipids, most of them belonged to lysophosphatidycholines (LysoPCs) and lysophosphatidylethanolamines (LysoPEs) and exhibited low abundance in both peel and flesh of HP fruit. In addition, structural genes associated with the flavonoid and lipid pathways were differentially regulated between the two kumquat varieties. Gene expression analysis also revealed the significant roles of UDP-glycosyltransferase (UGT) and phospholipase genes in flavonoid and glycerophospholipid metabolisms, respectively. These findings provide valuable information for interpreting the mutation mechanism of HP kumquat.
Collapse
Affiliation(s)
- Qiaoli Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yongwei Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xinghua Dong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Gaofeng Zhou
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xiao Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qingqing Gu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qingjiang Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
Movahedi A, Almasi Zadeh Yaghuti A, Wei H, Rutland P, Sun W, Mousavi M, Li D, Zhuge Q. Plant Secondary Metabolites with an Overview of Populus. Int J Mol Sci 2021; 22:ijms22136890. [PMID: 34206964 PMCID: PMC8268465 DOI: 10.3390/ijms22136890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
- Correspondence: ; Fax: +86-25-8542-8701
| | - Amir Almasi Zadeh Yaghuti
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Paul Rutland
- Clinical and Molecular Genetics Units, Institute of Child Health, London WC1N 1EH, UK;
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Mohaddeseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| |
Collapse
|