1
|
Blackman CJ, Halliwell B, Brodribb TJ. All together now: A mixed-planting experiment reveals adaptive drought tolerance in seedlings of 10 Eucalyptus species. PLANT PHYSIOLOGY 2024; 197:kiae632. [PMID: 39673329 DOI: 10.1093/plphys/kiae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/16/2024]
Abstract
The negative impacts of drought on plant productivity and survival in natural and crop systems are increasing with global heating, yet our capacity to identify species capable of surviving drought remains limited. Here, we tested the use of a mixed-planting approach for assessing differences in seedling drought tolerance. To homogenize dehydration rates, we grew seedlings of 10 species of Eucalyptus together in trays where roots of all individuals were overlapping in a common loam soil. These seedling combinations were dried down under cool and warm temperature conditions, and seedling responses were quantified from measurements of chlorophyll fluorescence (Fv/Fm). The day of drought (T) associated with an 88% decline in Fv/Fm (TF88) varied significantly among species and was unrelated to seedling size. No significant differences in water potentials were detected among seedlings dehydrated under warm conditions prior to leaf wilt. The rank-order of species TF88 was consistent under both temperature treatments. Under cool conditions, seedling TF88 increased with decreasing cavitation vulnerability measured on adult foliage. Under both treatments, a quadratic function best fit the relationship between seedling TF88 and sampling site mean annual precipitation. These results provide evidence for adaptive selection of seedling drought tolerance. Our findings highlight the use of mixed-planting experiments for comparing seedling drought tolerance with applications for improving plant breeding and conservation outcomes.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Ben Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Tim J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| |
Collapse
|
2
|
Ancín M, Gámez AL, Jauregui I, Galmes J, Sharwood RE, Erice G, Ainsworth EA, Tissue DT, Sanz-Sáez A, Aranjuelo I. Does the response of Rubisco and photosynthesis to elevated [CO2] change with unfavourable environmental conditions? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7351-7364. [PMID: 39264212 PMCID: PMC11629997 DOI: 10.1093/jxb/erae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Climate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study examined the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway, and phenological stage. We analysed close to 3000 data points extracted from 120 published papers. For C3 species, e[CO2] increased net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Maximum carboxylation rate and Rubisco in vitro extractable maximal activity and content also decreased with e[CO2] in C3 species, while C4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress did not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responded to e[CO2]. Moreover, e[CO2] had a strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Angie L Gámez
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Ivan Jauregui
- Dpto de Ciencias, Universidad Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
| | - Jeroni Galmes
- Research Group on Plant Biology under Mediterranean Conditions. Universitat de les Illes Balears-INAGEA, Ctra. de Valldemossa Km 7.5, 07122 Palma, Balearic Islands
| | - Robert E Sharwood
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, NSW 2753, Australia
| | - Gorka Erice
- Atens, Agrotecnologías Naturales SL, La Riera de Gaia, 43762 Tarragona, Spain
| | - Elizabeth A Ainsworth
- USDA Agricultural Research Service, Global Change and Photosynthesis Research Unit, Urbana, IL-61801, USA
| | - David T Tissue
- Western Sydney University, Hawkesbury Institute for the Environment, Richmond, NSW 2753, Australia
| | - Alvaro Sanz-Sáez
- Department of Crop, Soil and Environmental Sciences, Auburn University, 253 Funchess Hall, Auburn, AL 36849, USA
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
3
|
Silva ADN, Ramos MLG, Ribeiro Junior WQ, da Silva PC, Soares GF, Casari RADCN, de Sousa CAF, de Lima CA, Santana CC, Silva AMM, Vinson CC. Use of Thermography to Evaluate Alternative Crops for Off-Season in the Cerrado Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112081. [PMID: 37299061 DOI: 10.3390/plants12112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Future predictions due to climate change are of decreases in rainfall and longer drought periods. The search for new tolerant crops is an important strategy. The objective of this study was to evaluate the effect of water stress on the physiology and productivity of crops with potential for growing in the off-season period in the Cerrado, and evaluate correlations with the temperature of the canopy obtained by means of thermography. The experiment was conducted under field conditions, with experimental design in randomized blocks, in a split-plot scheme and four replications. The plots were: common bean (Phaseolus vulgaris); amaranth (Amaranthus cruentus); quinoa (Chenopodium quinoa); and buckwheat (Fagopyrum esculentum). The subplots were composed of four water regimes: maximum water regime (WR 535 mm), high-availability regime (WR 410 mm), off-season water regime (WR 304 mm) and severe water regime (WR 187 mm). Under WR 304 mm, the internal concentration of CO2 and photosynthesis were reduced by less than 10% in amaranth. Common bean and buckwheat reduced 85% in photosynthesis. The reduction in water availability increased the canopy temperature in the four crops and, in general, common bean was the most sensitive species, while quinoa had the lowest canopy temperatures. Furthermore, canopy temperature correlated negatively with grain yield, biomass yield and gas exchange across all plant species, thus thermal imaging of the canopy represents a promising tool for monitoring crop productivity for farmers, For the identification of crops with high water use management for research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cristiane Andrea de Lima
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 70910970, DF, Brazil
| | | | | | - Chistina Cleo Vinson
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 70910970, DF, Brazil
| |
Collapse
|
4
|
Khan A, Shen F, Yang L, Xing W, Clothier B. Limited Acclimation in Leaf Morphology and Anatomy to Experimental Drought in Temperate Forest Species. BIOLOGY 2022; 11:biology11081186. [PMID: 36009813 PMCID: PMC9404820 DOI: 10.3390/biology11081186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Climate change shown to have a significant impact on the forest ecosystem due to increased and more frequent occurrence of extreme drought. However, in order to successfully adjust to the xeric environments, plants can usually adopt a variety of adaptation strategies. Here, we investigated the morpho-anatomical traits and biomass allocation patterns as acclimation mechanisms in drought conditions. We found that the interrelation between leaf morphological and anatomical traits were equally affected by drought conditions across all species. This suggests that there is no convincing evidence to classify taxa based on drought resistance vs. drought tolerance. However, based on the biomass allocation pattern, we found that P. koraiensis and F. mandshurica had the higher RMF and total PB, but lower LFM, suggesting higher drought tolerance than those of the other species. Therefore, our dataset revealed some easily measurable traits, such as LMF, RMF, and PB, which demonstrated the seedling’s ability to cope with drought and which could be utilized to choose drought-tolerant species for reforestation in the temperate forest. Abstract Drought is a critical and increasingly common abiotic factor that has impacts on plant structures and functioning and is a challenge for the successful management of forest ecosystems. Here, we test the shifts in leaf morpho-anatomical or hydraulic traits and plant growth above ground caused by drought. A factorial experiment was conducted with two gymnosperms (Larix gmelinii and Pinus koraiensis) and two angiosperms (Fraxinus mandshurica and Tilia amurensis), tree species grown under three varying drought intensities in NE China. Considering all the species studied, the plant height (PH), root collar diameter (RCD), and plant biomass (PB) were significantly decreased by drought. The leaf thickness (LT) increased, while the leaf area (LA) decreased with drought intensity. In the gymnosperms, the mesophyll thickness (MT) increased, and the resin duct decreased, while in the angiosperms the palisade mesophyll thickness (PMT), the spongy mesophyll thickness (SMT), and the abaxial (ABE) and adaxial epidermis (ADE) thickness were increased by drought. The correlation analysis revealed that P. koraiensis and F. mandshurica had the higher RMF and total plant biomass, but the least LMF, suggesting drought tolerance. In contrast, the L. gmelinii had the least RMF and higher LMF, suggesting vulnerability to drought. Similarly, T. amurensis had the higher leaf size, which increased the evaporative demand and depleted the soil water quickly relative to the other species. The interrelation among the morpho-anatomical leaf traits was equally affected by drought across all the studied species, suggesting that there is no clear evidence to differentiate the taxa based on drought resistance vs. drought tolerance. Thus, we have identified some easily measurable traits (i.e., LMF, RMF, and PB) which evidenced the seedling’s ability to cope with drought and which therefore could be used as proxies in the selection of drought tolerant species for reforestation in the temperate forest.
Collapse
Affiliation(s)
- Attaullah Khan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fangyuan Shen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lixue Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| | - Wei Xing
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Brent Clothier
- Sustainable Production, New Zealand Institute for Plant & Food Research Limited, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Dannenberg MP, Yan D, Barnes ML, Smith WK, Johnston MR, Scott RL, Biederman JA, Knowles JF, Wang X, Duman T, Litvak ME, Kimball JS, Williams AP, Zhang Y. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. GLOBAL CHANGE BIOLOGY 2022; 28:4794-4806. [PMID: 35452156 PMCID: PMC9545136 DOI: 10.1111/gcb.16214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 05/28/2023]
Abstract
Earth's ecosystems are increasingly threatened by "hot drought," which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought-induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record-low precipitation and record-high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record-low precipitation and warming-enhanced evaporative depletion), but record-breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought-induced GPP reductions.
Collapse
Affiliation(s)
- Matthew P. Dannenberg
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Dong Yan
- Information and Data CenterChina Renewable Energy Engineering InstituteBeijingChina
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Mallory L. Barnes
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonIndianaUSA
| | - William K. Smith
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Miriam R. Johnston
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Russell L. Scott
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - Joel A. Biederman
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - John F. Knowles
- Department of Earth and Environmental SciencesCalifornia State UniversityChicoCaliforniaUSA
| | - Xian Wang
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Tomer Duman
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Marcy E. Litvak
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - John S. Kimball
- Numerical Terradynamic Simulation GroupUniversity of MontanaMissoulaMontanaUSA
| | - A. Park Williams
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Zhang
- Sino‐French Institute for Earth System Science, College of Urban and Environmental SciencesPeking UniversityBeijingChina
| |
Collapse
|
6
|
Wang H, Yan S, Ciais P, Wigneron JP, Liu L, Li Y, Fu Z, Ma H, Liang Z, Wei F, Wang Y, Li S. Exploring complex water stress-gross primary production relationships: Impact of climatic drivers, main effects, and interactive effects. GLOBAL CHANGE BIOLOGY 2022; 28:4110-4123. [PMID: 35429206 DOI: 10.1111/gcb.16201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The dominance of vapor pressure deficit (VPD) and soil water content (SWC) for plant water stress is still under debate. These two variables are strongly coupled and influenced by climatic drivers. The impacts of climatic drivers on the relationships between gross primary production (GPP) and water stress from VPD/SWC and the interaction between VPD and SWC are not fully understood. Here, applying statistical methods and extreme gradient boosting models-Shapley additive explanations framework to eddy-covariance observations from the global FLUXNET2015 data set, we found that the VPD-GPP relationship was strongly influenced by climatic interactions and that VPD was more important for plant water stress than SWC across most plant functional types when we removed the effect of main climatic drivers, e.g. air temperature, incoming shortwave radiation and wind speed. However, we found no evidence for a significant influence of elevated CO2 on stress alleviation, possibly because of the short duration of the records (approximately one decade). Additionally, the interactive effect between VPD and SWC differed from their individual effect. When SWC was high, the SHAP interaction value of SWC and VPD on GPP was decreased with increasing VPD, but when SWC was low, the trend was the opposite. Additionally, we revealed a threshold effect for VPD stress on GPP loss; above the threshold value, the stress on GPP was flattened off. Our results have important implications for independently identifying VPD and SWC limitations on plant productivity, which is meaningful for capturing the magnitude of ecosystem responses to water stress in dynamic global vegetation models.
Collapse
Affiliation(s)
- Huan Wang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- INRAE, UMR1391 ISPA, Villenave d'Ornon, France
| | - Shijie Yan
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Laibao Liu
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hongliang Ma
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China
| | - Ze Liang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Feili Wei
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yueyao Wang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuangcheng Li
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
7
|
Bendall ER, Bedward M, Boer M, Clarke H, Collins L, Leigh A, Bradstock RA. Growth enhancements of elevated atmospheric [CO
2
] are reduced under drought‐like conditions in temperate eucalypts. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. R. Bendall
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| | - M. Bedward
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| | - M. Boer
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - H. Clarke
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - L. Collins
- La Trobe University Department of Ecology Environment & Evolution Bundoora Victoria 3086 Australia
- Arthur Rylah Institute for Environmental Research Department of Environment, Land, Water and Planning Heidelberg Victoria 3084 Australia
- Pacific Forestry Centre Canadian Forest Service Natural Resources Canada 506 Burnside Road West Victoria BC V8Z 1M5 Canada
| | - A. Leigh
- University of Technology Sydney School of Life Sciences Broadway New South Wales Australia
| | - R. A. Bradstock
- University of Wollongong Centre for Environmental Risk Management of Bushfires Northfields Avenue Wollongong New South Wales Australia 2522
| |
Collapse
|
8
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
9
|
Lemaire C, Blackman CJ, Cochard H, Menezes-Silva PE, Torres-Ruiz JM, Herbette S. Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar. TREE PHYSIOLOGY 2021; 41:2008-2021. [PMID: 34259313 DOI: 10.1093/treephys/tpab086] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Chris J Blackman
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Paulo Eduardo Menezes-Silva
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
- Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
10
|
De Kauwe MG, Medlyn BE, Tissue DT. To what extent can rising [CO 2 ] ameliorate plant drought stress? THE NEW PHYTOLOGIST 2021; 231:2118-2124. [PMID: 34101183 DOI: 10.1111/nph.17540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Plant responses to elevated atmospheric carbon dioxide (eCO2 ) have been hypothesized as a key mechanism that may ameliorate the impact of future drought. Yet, despite decades of experiments, the question of whether eCO2 reduces plant water use, yielding 'water savings' that can be used to maintain plant function during periods of water stress, remains unresolved. In this Viewpoint, we identify the experimental challenges and limitations to our understanding of plant responses to drought under eCO2 . In particular, we argue that future studies need to move beyond exploring whether eCO2 played 'a role' or 'no role' in responses to drought, but instead more carefully consider the timescales and conditions that would induce an influence. We also argue that considering emergent differences in soil water content may be an insufficient means of assessing the impact of eCO2 . We identify eCO2 impact during severe drought (e.g. to the point of mortality), interactions with future changes in vapour pressure deficit and uncertainty about changes in leaf area as key gaps in our current understanding. New insights into CO2 × drought interactions are essential to better constrain model theory that governs future climate model projections of land-atmosphere interactions during periods of water stress.
Collapse
Affiliation(s)
- Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
11
|
Zhang P, McDowell NG, Zhou X, Wang W, Leff RT, Pivovaroff AL, Zhang H, Chow PS, Ward ND, Indivero J, Yabusaki SB, Waichler S, Bailey VL. Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. PLANT PHYSIOLOGY 2021; 185:1682-1696. [PMID: 33893814 PMCID: PMC8133543 DOI: 10.1093/plphys/kiab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 05/13/2023]
Abstract
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.
Collapse
Affiliation(s)
- Peipei Zhang
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Author for communication:
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Riley T Leff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Julia Indivero
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Steven B Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
12
|
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. THE NEW PHYTOLOGIST 2021; 229:2413-2445. [PMID: 32789857 DOI: 10.1111/nph.16866] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Collapse
Affiliation(s)
- Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Bastos
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Ralph F Keeling
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David J P Moore
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania, Caserta, 81100, Italy
| | | | - Kristine G Cabugao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxime Cailleret
- INRAE, UMR RECOVER, Aix-Marseille Université, 3275 route de Cézanne, Aix-en-Provence Cedex 5, 13182, France
- Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elliott Campbell
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Josep G Canadell
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
- Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, Zurich, 8093, Switzerland
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - David C Frank
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Heather Graven
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kelly Heilman
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Martin Heimann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Jürgen Knauer
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Körner
- Department of Environmental Sciences, Botany, University of Basel, Basel, 4056, Switzerland
| | - Victor O Leshyk
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Yao Liu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natasha MacBean
- Department of Geography, Indiana University, Bloomington, IN, 47405, USA
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tim R McVicar
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, 142 Mills Rd, Australian National University, Canberra, ACT, 2601, Australia
| | - Josep Penuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Julia Pongratz
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
| | - A Shafer Powell
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Terhi Riutta
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juergen Schleucher
- Department of Medical Biochemistry & Biophysics, Umeå University, Umea, 901 87, Sweden
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, Laver Building, EX4 4QF, UK
| | - William K Smith
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Benjamin Sulman
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Benton Taylor
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Margaret S Torn
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anna T Trugman
- Department of Geography, 1832 Ellison Hall, Santa Barbara, CA, 93016, USA
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | | | - Steve L Voelker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary E Whelan
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
13
|
Gattmann M, Birami B, Nadal Sala D, Ruehr NK. Dying by drying: Timing of physiological stress thresholds related to tree death is not significantly altered by highly elevated CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:356-370. [PMID: 33150582 DOI: 10.1111/pce.13937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
Drought-induced tree mortality is expected to occur more frequently under predicted climate change. However, the extent of a possibly mitigating effect of simultaneously rising atmospheric [CO2 ] on stress thresholds leading to tree death is not fully understood, yet. Here, we studied the drought response, the time until critical stress thresholds were reached and mortality occurrence of Pinus halepensis (Miller). In order to observe a large potential benefit from eCO2 , the seedlings were grown with ample of water and nutrient supply under either highly elevated [CO2 ] (eCO2 , c. 936 ppm) or ambient (aCO2 , c. 407 ppm) during 2 years. The subsequent exposure to a fast or a slow lethal drought was monitored using whole-tree gas exchange chambers, measured leaf water potential and non-structural carbohydrates. Using logistic regressions to derive probabilities for physiological parameters to reach critical drought stress thresholds, indicated a longer period for halving needle starch storage under eCO2 than aCO2 . Stomatal closure, turgor loss, the duration until the daily tree C balance turned negative, leaf water potential at thresholds and time-of-death were unaffected by eCO2 . Overall, our study provides for the first-time insights into the chronological interplay of physiological drought thresholds under long-term acclimation to elevated [CO2 ].
Collapse
Affiliation(s)
- Marielle Gattmann
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Benjamin Birami
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Daniel Nadal Sala
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen, Germany
| |
Collapse
|
14
|
Li Y, Xu Y, Chen Y, Ling L, Jiang Y, Duan H, Liu J. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Liu J, Zhang R, Xu X, Fowler JC, Miller TEX, Dong T. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: implications for sex-specific drought and heat tolerances. TREE PHYSIOLOGY 2020; 40:1178-1191. [PMID: 32478381 DOI: 10.1093/treephys/tpaa069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Effects of climate warming on tree growth and physiology may be driven by direct thermal effects and/or by changes in soil moisture. Dioecious tree species usually show sexual spatial segregation along abiotic gradients; however, few studies have assessed the sex-specific responses to warming in dioecious trees. We investigated the sex-specific responses in growth, photosynthesis, nonstructural carbohydrate (NSC), water-use efficiency and whole-plant hydraulic conductance (KP) of the dioecious tree species Populus cathayana Rehd. under +4 °C elevated temperature with and without supplemental water. For both sexes, high-temperature treatments significantly decreased growth (height and biomass), photosynthetic rate (A), the ratio of A to dark respiration rate, stomatal conductance (gs), transpiration rate, NSC, leaf water potential and KP, but increased water-use efficiency (estimated from carbon isotope composition). Under warming with supplemental water, most traits of females did not change relative to ambient conditions, but traits of males decreased, resulting in greater sexual differences. Females showed a lower KP, and their gs and A responded more steeply with water-related traits than males. These results show that the effect of summer warming on growth and photosynthesis was driven mainly by soil moisture in female P. cathayana, while male performance was mainly related to temperature. Females may experience less thermal stress than males due to flexible water balance strategy via stomata regulation and water use.
Collapse
Affiliation(s)
- Junyan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| | - Rong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Joshua C Fowler
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| |
Collapse
|
16
|
Li Y, Song X, Li S, Salter WT, Barbour MM. The role of leaf water potential in the temperature response of mesophyll conductance. THE NEW PHYTOLOGIST 2020; 225:1193-1205. [PMID: 31545519 DOI: 10.1111/nph.16214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Variation in temperature (T) is usually accompanied by changes in leaf water potential (Ψleaf ), which may influence mesophyll conductance (gm ). However, the effects of Ψleaf on gm have not yet been considered in models of the gm response to temperature. Temperature responses of gm and Ψleaf and the response of gm to Ψleaf were studied in rice (Oryza sativa) and wheat (Triticum aestivum), and then an empirical model of Ψleaf was incorporated into an existing gm -T model. In wheat, Ψleaf was dramatically decreased with increasing T, whereas in rice Ψleaf was less sensitive or insensitive to T. Without taking Ψleaf into account, gm for wheat showed no response to T. However, at a given Ψleaf , gm was significantly higher at high temperature compared with low. After incorporating the function of Ψleaf into the gm -T model, we suggest that the gm -T relationship can be influenced by the activation and deactivation energy for membrane permeability, Ψleaf gradient between temperatures, and the sensitivity of gm to Ψleaf , below a threshold (Ψleaf,0 ). The data presented here suggest that Ψleaf plays an important role in the gm -T relationship and should be considered in future studies related to the temperature response of gm and photosynthesis.
Collapse
Affiliation(s)
- Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| | - William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| |
Collapse
|
17
|
Effect of Water Deficit on Morphoagronomic and Physiological Traits of Common Bean Genotypes with Contrasting Drought Tolerance. WATER 2020. [DOI: 10.3390/w12010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water deficit is considered one of the most limiting factors of the common bean. Understanding the adaptation mechanisms of the crop to this stress is fundamental for the development of drought-tolerant cultivars. In this sense, the objective of this study was to analyze the influence of water deficit on physiological and morphoagronomic traits of common bean genotypes with contrasting drought tolerance, aiming to identify mechanisms associated with tolerance to water deficit. The experiment was carried out in a greenhouse, arranged in a randomized complete block 4 × 2 factorial design, consisting of four common bean genotypes under two water regimes (with and without water stress), with six replications. The morphoagronomic and physiological traits of four cultivars, two drought-tolerant (IAPAR 81 and BAT 477) and two drought-sensitive (IAC Tybatã and BRS Pontal), were measured for 0, 4, 8, and 12 days, under water deficit, initiated in the phenological stage R5. Water-deficit induced physiological changes in the plants, altering the evaluated morphoagronomic traits. The drought tolerance of cultivar BAT 477 is not only a direct result of the low influence of water deficit on its yield components, but also a consequence of the participation of multiple adaptive physiological mechanisms, such as higher intrinsic water use efficiency, net photosynthesis rate, transpiration, carboxylation efficiency, stomatal conductance, and intracellular concentration of CO2 under water deficit conditions. On the other hand, cultivar IAPAR 81 can be considered drought-tolerant for short water-deficit periods only, since after the eighth day of water deficit, the physiological activities decline drastically.
Collapse
|
18
|
Duan H, Ontedhu J, Milham P, Lewis JD, Tissue DT. Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. TREE PHYSIOLOGY 2019; 39:1821-1837. [PMID: 31728540 DOI: 10.1093/treephys/tpz094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/21/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Eucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6-500 mg kg-1) for 120 days under two [CO2] (ambient: 400 μmol mol-1 (Ca) and elevated: 640 μmol mol-1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.
Collapse
Affiliation(s)
- Honglang Duan
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Josephine Ontedhu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| | - James D Lewis
- Louis Calder Center - Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW2751, Australia
| |
Collapse
|
19
|
Blackman CJ, Creek D, Maier C, Aspinwall MJ, Drake JE, Pfautsch S, O'Grady A, Delzon S, Medlyn BE, Tissue DT, Choat B. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. TREE PHYSIOLOGY 2019; 39:910-924. [PMID: 30865274 DOI: 10.1093/treephys/tpz016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Indexed: 05/17/2023]
Abstract
Drought-induced tree mortality alters forest structure and function, yet our ability to predict when and how different species die during drought remains limited. Here, we explore how stomatal control and drought tolerance traits influence the duration of drought stress leading to critical levels of hydraulic failure. We examined the growth and physiological responses of four woody plant species (three angiosperms and one conifer) representing a range of water-use and drought tolerance traits over the course of two controlled drought-recovery cycles followed by an extended dry-down. At the end of the final dry-down phase, we measured changes in biomass ratios and leaf carbohydrates. During the first and second drought phases, plants of all species closed their stomata in response to decreasing water potential, but only the conifer species avoided water potentials associated with xylem embolism as a result of early stomatal closure relative to thresholds of hydraulic dysfunction. The time it took plants to reach critical levels of water stress during the final dry-down was similar among the angiosperms (ranging from 39 to 57 days to stemP88) and longer in the conifer (156 days to stemP50). Plant dry-down time was influenced by a number of factors including species stomatal-hydraulic safety margin (gsP90 - stemP50), as well as leaf succulence and minimum stomatal conductance. Leaf carbohydrate reserves (starch) were not depleted at the end of the final dry-down in any species, irrespective of the duration of drought. These findings highlight the need to consider multiple structural and functional traits when predicting the timing of hydraulic failure in plants.
Collapse
Affiliation(s)
- Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, USA
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY, USA
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
- School of Social Science and Psychology (Urban Studies), Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | | | | | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW, Australia
| |
Collapse
|