1
|
Tanimoto Y, Ohyama M, Ito E, Akiyoshi K, Onishi Y, Mori A, Nomoto R. Whole genome-based surveillance for human adenovirus-related diseases in Kobe City, Japan, 2018-2022. BMC Res Notes 2025; 18:170. [PMID: 40234980 PMCID: PMC11998212 DOI: 10.1186/s13104-025-07225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Human adenoviruses (HAdVs) cause various diseases, and they frequently undergo recombination. As adenoviruses are susceptible to recombination, whole-genome sequencing and analysis are essential approaches to understanding viral properties. In the present study, we performed whole-genome sequencing to characterize adenoviruses and assess the local epidemic genotypes of adenovirus-related diseases in Kobe, Japan. METHODS Eighty HAdV cell culture-positive strains isolated from clinical specimens in Kobe City, Japan, between 2018 and 2022 were used. Whole-genome sequencing, phylogenetic analysis, and recombination analysis were performed. RESULTS Disease-specific HAdV species were detected, with species B and C being the primary species detected for pharyngoconjunctival fever and species F for infectious gastroenteritis. All species B strains belonged to the HAdV-3 genotype. Multiple genotypes were detected in species C, including five strains in which the new genotype, P85H5F5, was identified in pharyngoconjunctival fever specimens. CONCLUSIONS Whole-genome analysis of HAdV is an important approach not only for understanding local epidemics, but also for monitoring the emergence of recombinant genotypes.
Collapse
Affiliation(s)
- Yoshihiko Tanimoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan.
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Minori Ohyama
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| | - Erika Ito
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| | - Kyoko Akiyoshi
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| | - Yuka Onishi
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| | - Ai Mori
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo, 650-0046, Japan
| |
Collapse
|
2
|
Dou H, Chen C, Song T, Sun X, He F, Jia Y, Wang X, Jiang Y, Yue Y, Huang S, Yan S, Jiao B, Jiao B. Epidemiological characteristics and genomic analysis of respiratory adenovirus in Jining City from February 2023 to July 2024. BMC Genomics 2025; 26:369. [PMID: 40229673 PMCID: PMC11995490 DOI: 10.1186/s12864-025-11558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Human adenovirus (HAdV) infection can cause high fever, pneumonia, and even death, posing a serious threat to human health. This study analyzes the epidemiological characteristics and genetic features of respiratory adenovirus in Jining City from February 2023 to July 2024. METHODS From February 2023 to July 2024, 3,947 throat swab specimens were collected from influenza-like illness cases at Jining First People's Hospital and Rencheng District Maternal and Child Health Hospital. Real-time fluorescent quantitative PCR was used to detect HAdV nucleic acid. Whole-genome sequencing was performed on HAdV-positive samples. Phylogenetic trees were constructed for the whole genome, Penton base gene, Hexon gene, and Fiber gene of HAdV, and protein variation sites were analyzed. RESULTS The HAdV positivity rate in influenza-like cases in Jining City from February 2023 to July 2024 was 3.42% (135/3947), with higher positivity rates in younger age groups. HAdV positivity rates were higher between December 2023 and July 2024, while lower between January 2023 and November 2023. Whole-genome sequencing was performed on 47 HAdV samples, revealing 38 cases of HAdV-B and 9 cases of HAdV-C, with no HAdV-E detected. HAdV-B and HAdV-C co-circulated in Jining City from February to December 2023, while HAdV-B predominated from January to July 2024. All 38 HAdV-B sequences from Jining City are HAdV-3. In the phylogenetic trees of the whole genome, Penton base gene, Hexon gene, and Fiber gene of HAdV-B, all 38 HAdV-B strains from Jining City are located in the same evolutionary branch as the Chinese HAdV-3 candidate vaccine strain Guangzhou01. Compared to Guangzhou01, the RGD motif in Penton base and antigenic epitopes in Hexon of the 38 HAdV-B strains from Jining remained unchanged. Among the 9 HAdV-C sequences from Jining, 4 were identified as HAdV-104 and 5 as HAdV-108. The RGD motif in Penton base protein and receptor-binding sites in Fiber protein remained unchanged in all 9 HAdV-C sequences. CONCLUSIONS From February 2023 to July 2024, HAdV in Jining City primarily circulated among younger age groups in influenza-like illness cases, with no apparent seasonal pattern. Enhanced surveillance of HAdV and accelerated development and marketing of HAdV vaccines are necessary.
Collapse
Affiliation(s)
- Huixin Dou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China
| | - Chunmei Chen
- Department of Laboratory, Rencheng Center for Disease Control and Prevention, Jining, 272000, China
| | - Tongyun Song
- Department of Laboratory, Rencheng Maternal and Child Health Hospital, Jining, China
| | - Xu Sun
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Yongjian Jia
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China
| | - Ying Yue
- Computer Information Technology, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Shiqing Huang
- Computer Information Technology, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - ShiGan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, 272000, China.
- Jining Key Laboratory of Infectious Disease Control and Prevention, Jining, 272000, China.
| | - Baihai Jiao
- Department of Infectious Disease Control, Jining Center for Disease Control and Prevention, Jining, China.
| |
Collapse
|
3
|
Wu C, Zhang Y, Liang A, Wu X, Zhu Y, Huang Z, Wang J, Deng Y, Pan L, Wang A, Deng F, Xia J. Comparative analysis between genotypes of adenovirus isolates from hospitalized children with acute respiratory tract infections and clinical manifestations in Wuhan, China, from June 2022 to September 2023. Virol Sin 2025; 40:50-60. [PMID: 39710326 PMCID: PMC11963011 DOI: 10.1016/j.virs.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
Acute respiratory tract infections (ARTIs) are among the leading causes of morbidity and mortality in children worldwide. Human adenovirus (HAdV) infections are estimated to account for at least 5% of pediatric ARTIs. The circulated genotypes of HAdV and the correlation between genotype and clinical manifestations in Wuhan, China, before and after the complete relaxation of nonpharmaceutical interventions against severe acute respiratory syndrome coronavirus 2, remain unknown. Here, 101 HAdV strains were isolated from throat swab samples collected from hospitalized children with ARTIs who tested positive for HAdV nucleic acid. Of these, sixty-six strains from 2022 to twenty-three strains from 2023 were successfully genotyped and subjected to phylogenetic analysis based on the hexon, penton base, and fiber genes. Six genotypes, B3, C1, C2, C5, C104, and C108 were identified. HAdV-B3 (84.85%) was the most prevalent type in 2022, while HAdV-C (86.96%), including C1, C2, C108, and C104, was the most prevalent in 2023. These strains were phylogenetically related to strains from Japan, China, and the United States in recent years. When comparing clinical characteristics, pediatric patients infected with B3, C1, C2, C5, C104, or C108 exhibited similar clinical manifestations, primarily fever and cough, but varying interleukin (IL)-10 levels. In conclusion, from June 2022 to September 2023, the circulated genotypes of HAdV in Wuhan included B3, C1, C2, C108, C5, and C104. The endemic pattern of HAdV in Wuhan, China, shifted from species B as the dominant type in 2022 to species C in 2023.
Collapse
Affiliation(s)
- Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Yanfang Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ao Liang
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiaoxue Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Yaqi Zhu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhaoxuan Huang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yali Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lixian Pan
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Anbang Wang
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
4
|
Wang S, Kang S, Guo L, Zhou S, Zhao Y, Shen H, Jin S, Guan H, Xia L, Hu Q. Risk factors of severe conditions in hospitalized children with adenovirus infection and chest CT features. BMC Pediatr 2024; 24:812. [PMID: 39696151 DOI: 10.1186/s12887-024-05296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Children infected with human adenovirus (HAdV) were at particularly high risk of developing severe disease, but the risk factors of severe conditions are poorly understood. OBJECTIVES To explore the risk factors for developing into severe conditions in pediatric patients with HAdV infection by analyzing baseline epidemiological data, clinical characteristics, and computed tomography (CT) imaging features. METHODS In this retrospective study, 267 children with HAdV infection were included between October 2016 and September 2021 at Tongji Hospital, Wuhan, China. A descriptive analysis was conducted on the epidemiological and clinical data, as well as patient outcomes. CT manifestations were semi-quantitatively scored based on the presence of consolidation, ground-glass opacities, and emphysema in each lung lobe. RESULTS Our analysis revealed that there was a statistically significant difference in the rate of abnormalities observed on chest CT imaging (P = 0.007) and the imaging characteristics of chest CTs (P = 0.002) when comparing severe and mild cases. We found that co-infection with two or more additional pathogens occurred more frequently in severe cases. Additionally, the proportion of lymphocytes in laboratory tests was significantly lower in patients with severe conditions. Furthermore, both the proportions and scores of consolidations were markedly higher in each lung lobe among the severe cases. CONCLUSIONS Our findings may assist in identifying children hospitalized with HAdV who are at increased risk for severe conditions, thereby facilitating more aggressive treatment and care strategies.
Collapse
Affiliation(s)
- Shaofang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China
| | - Shichao Kang
- Department of Radiology, Shenzhen Maternity & Child Healthcare Hospital, Affiliated to Southern Medical University, Hongli, Shenzhen, 518028, China
| | - Lili Guo
- Department of Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shuchang Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China
| | - Yanjie Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China
| | - Huifen Shen
- Department of Medical Records, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shourui Jin
- Department of Pediatric Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hanxiong Guan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China.
| | - Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Sharmila F, Singh MP, Shastry J, Phukan AC, Kaliaperumal S, Ratho RK, Ram J, Sathe M, Ingole A, Rathod D, Nongrum B, Thiruvengadam K, Parvez R, Malik V, Nagarajan M, Dhodapkar R. Epidemiology of Keratoconjunctivitis Across India from 2017 to 2019: A Multicentric Hospital-Based Study. Ophthalmic Epidemiol 2024; 31:439-447. [PMID: 38315809 DOI: 10.1080/09286586.2023.2301572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Conjunctivitis is one of the most common ocular conditions in clinical practice. Human adenoviruses have been the common causative agents known to cause epidemic kerato-conjunctivitis (EKC) in India from 1996 to 2019 with a positivity range of 13.8%-65.2%. The current study was initiated to throw light on the distribution of keratoconjunctivitis causing agents across India covering a span of 3 years. METHODS A total of 709 swabs were collected from patients in viral transport medium (VTM), and real-time PCR was done to identify agents including Adenovirus (HAdV), Enterovirus, HSV, and Chlamydia. RESULTS 47.8% of the samples were positive for HAdV followed by HSV (3.4%), Enterovirus (2.7%), and Chlamydia (0.6%). Overall, 386 people (54.4%) tested positive for one of these infections, with Chandigarh (88.4%) and Port Blair (71.7%) showing higher positivity rate. Pre-auricular lymphadenopathy and follicles were significantly associated with increased risk of conjunctivitis. CONCLUSION Epidemiology of keratoconjunctivitis in the current study revealed HAdV to be predominant causative agent. Knowledge gained in such epidemiological studies guide us in outbreak expectations, limit antibiotic over-prescription, and enhance disease prevention.
Collapse
Affiliation(s)
- Ferdinamarie Sharmila
- RVRDL, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Mini P Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jayanti Shastry
- Department of Microbiology, TNMC & BYL Nair Hospital, Mumbai, India
| | - Anil C Phukan
- Department of Microbiology, NEIGRIHMS, Shillong, India
| | - Subashini Kaliaperumal
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - R K Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jagat Ram
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Avinash Ingole
- Department of Ophthalmology, TNMC & BYL Nair Hospital, Mumbai, India
| | | | | | | | - Rehnuma Parvez
- ICMR, Regional Medical Research Centre (RMRC), Port Blair, India
| | - Vineeta Malik
- ICMR, Regional Medical Research Centre (RMRC), Port Blair, India
| | | | - Rahul Dhodapkar
- RVRDL, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
6
|
Li Y, Mai X, Liu W, Wang F, Yan S, Lei Y, Chen L, Mai W, Song Q, Du W, Chen X, Ye H, Song L, Chen Y, Zhao L, Liu Z, Ding W, Yu P, Jiang X, Li Y, Huang J, Zhan Q, Qin Y, Li C, Wei W, Ji T. Portable Near-Infrared to Near-Infrared Platform for Homogeneous Quantification of Biomarkers in Complex Biological Samples. ACS NANO 2024. [PMID: 39028863 DOI: 10.1021/acsnano.4c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Xiaorui Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Wenming Liu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, P. R. China
| | - Feng Wang
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Shuo Yan
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Yu Lei
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Lu Chen
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Weikang Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Qingwei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Weidong Du
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Xukai Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Longfei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yu Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Lei Zhao
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Weidong Ding
- Shenzhen Highcreation Technology Co., Ltd., Shenzhen 518122, P. R. China
| | - Pei Yu
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuyi Li
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Jing Huang
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, P. R. China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, P. R. China
| | - Chenzhong Li
- Biomedical Engineering Division, Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Jvxin Tang Biotechnology Inc., Chengdu Future Medical City, Chengdu 610095, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tianxing Ji
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| |
Collapse
|
7
|
Pinski AN, Gan T, Lin SC, Droit L, Diamond M, Barouch DH, Wang D. Isolation of a recombinant simian adenovirus encoding the human adenovirus G52 hexon suggests a simian origin for human adenovirus G52. J Virol 2024; 98:e0004324. [PMID: 38497664 PMCID: PMC11019922 DOI: 10.1128/jvi.00043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Human adenoviruses (HAdVs) are causative agents of morbidity and mortality throughout the world. These double-stranded DNA viruses are phylogenetically classified into seven different species (A-G). HAdV-G52, originally isolated in 2008 from a patient presenting with gastroenteritis, is the sole human-derived member of species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian origin, indicating a potential zoonotic spillover into humans. However, evidence of HAdV-G52 in either human or simian populations has not been reported since. Here, we describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 95.36% nucleic acid identity. A second recombination event with an unknown adenovirus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman cell lines, and human enteroids. Furthermore, we show that coinfection of highly related AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two additional rhesus macaque stool samples. Our data collectively contribute to elucidating the origins of HAdV-G52 and provide insights into the frequency of coinfections and subsequent recombination in AdV evolution.IMPORTANCEUnderstanding the host origins of adenoviruses (AdVs) is critical for public health as transmission of viruses from animals to humans can lead to emergent viruses. Recombination between animal and human AdVs can also produce emergent viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. We also isolated a highly related rhAdV, differing only in the hexon gene, from the same rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection of closely related AdVs and recombination at the hexon gene. Furthermore, our study highlights the critical role of whole-genome sequencing in understanding AdV evolution and monitoring the emergence of pathogenic AdVs.
Collapse
Affiliation(s)
- Amanda N. Pinski
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shih-Ching Lin
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Diamond
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Yodmeeklin A, Kumthip K, Ukarapol N, Ushijima H, Maneekarn N, Khamrin P. Diverse genotypes of human enteric and non-enteric adenoviruses circulating in children hospitalized with acute gastroenteritis in Thailand, from 2018 to 2021. Microbiol Spectr 2023; 11:e0117323. [PMID: 37589466 PMCID: PMC10580837 DOI: 10.1128/spectrum.01173-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
Human adenovirus (HAdV) is a common viral pathogen that causes diarrhea in children worldwide. The aim of this study was to investigate the prevalence and genotype diversity of HAdV strains circulating in children admitted to the hospitals with acute gastroenteritis (AGE) in Chiang Mai, Thailand, from 2018 to 2021. A total of 1,790 stool samples were screened for HAdV by PCR method, and 80 (4.5%) were positive for HAdV. Of these, children under 5 years of age accounted for 90.0% of HAdV-positive cases with the highest infection rate at the age group of 48-60 months old. The infection rate was not significantly different between boys and girls. The HAdV infection was detected sporadically throughout the year without a discrete seasonal pattern. Five species of both enteric and non-enteric HAdVs (A, B, C, E, and F) with 10 different genotypes, including HAdV-F41 (25.0%), HAdV-B3 (17.5%), HAdV-F40 (16.3%), HAdV-C1 (15.0%), HAdV-C5 (7.5%), HAdV-C2 (6.3%), HAdV-B7 (5.0%), HAdV-A12 (3.8%), HAdV-E4 (2.5%), and HAdV-B11 (1.3%), were detected in this study. In conclusion, our study reported the prevalence and seasonality of HAdV infection with a wide variety of HAdV genotypes circulating in children hospitalized with AGE during a period of 2018-2021 in Chiang Mai, Thailand. IMPORTANCE In the present study, the prevalence of human adenovirus (HAdV) infection in children with acute gastroenteritis (AGE) in Chiang Mai, Thailand, from 2018 to 2021 was detected at 4.5%. Diverse species and genotypes of HAdVs (HAdV-A12, HAdV-B3, HAdV-B7, HAdV-B11, HAdV-C1, HAdV-C2, HAdV-C5, HAdV-E4, HAdV-F40, and HAdV-F41) had been identified. The highest infection rate was found in children aged 48-60 months old. The HAdV infection was detected sporadically throughout the year. These findings imply that a wide variety of HAdV genotypes circulate in pediatric patients with AGE in Chiang Mai, Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Nuthapong Ukarapol
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Lei Y, Zhuang Z, Liu Y, Tan Z, Gao X, Li X, Yang D. Whole Genomic Sequence Analysis of Human Adenovirus Species C Shows Frequent Recombination in Tianjin, China. Viruses 2023; 15:v15041004. [PMID: 37112985 PMCID: PMC10142000 DOI: 10.3390/v15041004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Human adenovirus species C (HAdV-C) is frequently detected in China and worldwide. For the first time, 16 HAdV-C strains were isolated from sewage water (14 strains) and hospitalised children with diarrhoea (2 strains,) in Tianjin, China. Nearly complete genome data were successfully obtained for these viruses. Subsequently, genomic and bioinformatics analyses of the 16 HAdV-C strains were performed. A phylogenetic tree of the complete HAdV-C genome divided these strains into three types: HAdV-C1, HAdV-C2, HAdV-C5. Phylogenetic analysis based on the fiber gene showed similar outcomes to analyses of the hexon gene and complete HAdV-C genomes, whereas the penton gene sequences showed more variation than previously reported. Furthermore, analysis of the whole-genome sequencing revealed seven recombination patterns transmitted in Tianjin, of which at least four patterns have not been previously reported. However, the penton base gene sequences of the HAdV-C species had significantly lower heterogeneity than those of the hexon and fiber gene sequences of recombinant isolates; that is, many strains were distinct in origin, but shared hexon and fiber genes. These data illustrate the importance of frequent recombination in the complexity of the HAdV-C epidemic in Tianjin, thus emphasising the necessity for HAdV-C sewage and virological monitoring in China.
Collapse
Affiliation(s)
- Yue Lei
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Zhichao Zhuang
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yang Liu
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Zhaolin Tan
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Xin Gao
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Xiaoyan Li
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Dongjing Yang
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| |
Collapse
|
10
|
Veith T, Bleicker T, Eschbach-Bludau M, Brünink S, Mühlemann B, Schneider J, Beheim-Schwarzbach J, Rakotondranary SJ, Ratovonamana YR, Tsagnangara C, Ernest R, Randriantafika F, Sommer S, Stetter N, Jones TC, Drosten C, Ganzhorn JU, Corman VM. Non-structural genes of novel lemur adenoviruses reveal codivergence of virus and host. Virus Evol 2023; 9:vead024. [PMID: 37091898 PMCID: PMC10121206 DOI: 10.1093/ve/vead024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species. Complete genome sequence analyses define a new AdV species with a particularly large gene encoding a protein of unknown function in the early gene region 3. Unexpectedly, the new AdV species is not most similar to human or other simian AdVs but to bat adenovirus C. Genome characterisation shows signals of virus-host codivergence in non-structural genes, which show lower diversity than structural genes. Outside a lemur species mixing zone, recombination less frequently separates structural genes, as in human adenovirus C. The evolutionary history of lemur AdVs likely involves both a host switch and codivergence with the lemur hosts.
Collapse
Affiliation(s)
- Talitha Veith
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Monika Eschbach-Bludau
- Institute of Virology, University Hospital, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Julia Schneider
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - S Jacques Rakotondranary
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Yedidya R Ratovonamana
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Cedric Tsagnangara
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | - Refaly Ernest
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm 89069, Germany
| | - Nadine Stetter
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, Hamburg 20359, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörg U Ganzhorn
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
- Labor Berlin, Charité—Vivantes GmbH, Sylter Straße 2, Berlin 13353, Germany
| |
Collapse
|
11
|
Saint-Pierre Contreras G, Conei Valencia D, Lizama L, Vargas Zuñiga D, Avendaño Carvajal LF, Ampuero Llanos S. An Old Acquaintance: Could Adenoviruses Be Our Next Pandemic Threat? Viruses 2023; 15:330. [PMID: 36851544 PMCID: PMC9966032 DOI: 10.3390/v15020330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Human adenoviruses (HAdV) are one of the most important pathogens detected in acute respiratory diseases in pediatrics and immunocompromised patients. In 1953, Wallace Rowe described it for the first time in oropharyngeal lymphatic tissue. To date, more than 110 types of HAdV have been described, with different cellular tropisms. They can cause respiratory and gastrointestinal symptoms, even urinary tract inflammation, although most infections are asymptomatic. However, there is a population at risk that can develop serious and even lethal conditions. These viruses have a double-stranded DNA genome, 25-48 kbp, 90 nm in diameter, without a mantle, are stable in the environment, and resistant to fat-soluble detergents. Currently the diagnosis is made with lateral flow immunochromatography or molecular biology through a polymerase chain reaction. This review aimed to highlight the HAdV variability and the pandemic potential that a HAdV3 and 7 recombinant could have considering the aggressive outbreaks produced in health facilities. Herein, we described the characteristics of HAdV, from the infection to treatment, vaccine development, and the evaluation of the social determinants of health associated with HAdV, suggesting the necessary measures for future sanitary control to prevent disasters such as the SARS-CoV-2 pandemic, with an emphasis on the use of recombinant AdV vaccines to control other potential pandemics.
Collapse
Affiliation(s)
- Gustavo Saint-Pierre Contreras
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
- Unidad Microbiología, Hospital Barros Luco Trudeau, Servicio de Salud Metropolitano Sur, Santiago 8900000, Chile
| | - Daniel Conei Valencia
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile
| | - Luis Lizama
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Daniela Vargas Zuñiga
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Luis Fidel Avendaño Carvajal
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Sandra Ampuero Llanos
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
12
|
Richter M, Wang H, Lieber A. Role of Fiber Shaft Length in Tumor Targeting with Ad5/3 Vectors. Genes (Basel) 2022; 13:2056. [PMID: 36360292 PMCID: PMC9690795 DOI: 10.3390/genes13112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/28/2024] Open
Abstract
Desmoglein 2 (DSG2) is overexpressed in many epithelial cancers and therefore represents a target receptor for oncolytic viruses, including Ad5/3-based viruses. For most Ad serotypes, the receptor-binding fiber is composed of tail, shaft, and knob domains. Here, we investigated the role of the fiber shaft in Ad5/3 tumor transduction in vitro and in human DSG2-transgenic mice carrying human DSG2high tumors. DSG2tg mice express DSG2 in a pattern similar to humans. We constructed Ad5/3L (with the "long" Ad5 shaft) and Ad5/3S (with the "short" Ad3 shaft) expressing GFP or luciferase. In in vitro studies we found that coagulation factor X, which is known to mediate undesired hepatocyte transduction of Ad5, enhances the transduction of Ad5/3(L), but not the transduction of Ad5/3(S). We therefore hypothesized that Ad5/3(S) would target DSG2high tumors while sparing the liver after intravenous injection. In vivo imaging studies for luciferase and analysis of luciferase activity in isolated organs, showed that Ad5/3(L) vectors efficiently transduced DSG2high tumors and liver but not normal epithelial tissues after intravenous injection. Ad5/3(S) showed minimal liver transduction, however it failed to transduce DSG2high tumors. Further modifications of the Ad5/3(S) capsid are required to compensate for the lower infectivity of Ad5/3(S) vectors.
Collapse
Affiliation(s)
| | | | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Liu W, Qiu S, Zhang L, Wu H, Tian X, Li X, Xu D, Dai J, Gu S, Liu Q, Chen D, Zhou R. Analysis of severe human adenovirus infection outbreak in Guangdong Province, southern China in 2019. Virol Sin 2022; 37:331-340. [PMID: 35307598 PMCID: PMC9243629 DOI: 10.1016/j.virs.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
During 2018-2019, a severe human adenovirus (HAdV) infection outbreak occurred in southern China. Here, we screened 18 respiratory pathogens in 1704 children (≤ 14 years old) hospitalized with acute respiratory illness in Guangzhou, China, in 2019. In total, 151 patients had positive HAdV test results; 34.4% (52/151) of them exhibited severe illness. HAdV infection occurred throughout the year, with a peak in summer. The median patient age was 3.0 (interquartile range: 1.1-5.0) years. Patients with severe HAdV infection exhibited increases in 12 clinical indexes (P ≤ 0.019) and decreases in four indexes (P ≤ 0.007), compared with patients exhibiting non-severe infection. No significant differences were found in age or sex distribution according to HAdV infection severity (P > 0.05); however, the distributions of comorbid disease and HAdV co-infection differed according to HAdV infection severity (P < 0.05). The main epidemic types were HAdV-3 (47.0%, 71/151) and HAdV-7 (46.4%, 70/151). However, the severe illness rate was significantly higher in patients with HAdV-7 (51.4%) than in patients with HAdV-3 (19.7%) and other types of HAdV (20%) (P < 0.001). Sequencing analysis of genomes/capsid genes of 13 HAdV-7 isolates revealed high similarity to previous Chinese isolates. A representative HAdV-7 isolate exhibited a similar proliferation curve to the curve described for the epidemic HAdV-3 strain Guangzhou01 (accession no. DQ099432) (P > 0.05); the HAdV-7 isolate exhibited stronger virulence and infectivity, compared with HAdV-3 (P < 0.001). Overall, comorbid disease, HAdV co-infection, and high virulence and infectivity of HAdV-7 were critical risk factors for severe HAdV infection; these data can facilitate treatment, control, and prevention of HAdV infection.
Collapse
Affiliation(s)
- Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Jing Dai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Shujun Gu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, China.
| | - Dehui Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, 510040, China; Bioland Laboratory, Guangzhou Laboratory, Guangzhou, 510320, China.
| |
Collapse
|
14
|
Guo X, Sun Y, Chen J, Zou X, Hou W, Tan W, Hung T, Lu Z. Restriction-Assembly: A Solution to Construct Novel Adenovirus Vector. Viruses 2022; 14:v14030546. [PMID: 35336953 PMCID: PMC8954691 DOI: 10.3390/v14030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Gene therapy and vaccine development need more novel adenovirus vectors. Here, we attempt to provide strategies to construct adenovirus vectors based on restriction-assembly for researchers with little experience in this field. Restriction-assembly is a combined method of restriction digestion and Gibson assembly, by which the major part of the obtained plasmid comes from digested DNA fragments instead of PCR products. We demonstrated the capability of restriction-assembly in manipulating the genome of simian adenovirus 1 (SAdV-1) in this study. A PCR product of the plasmid backbone was combined with SAdV-1 genomic DNA to construct an infectious clone, plasmid pKSAV1, by Gibson assembly. Restriction-assembly was performed repeatedly in the steps of intermediate plasmid isolation, modification, and restoration. The generated adenoviral plasmid was linearized by restriction enzyme digestion and transfected into packaging 293 cells to rescue E3-deleted replication-competent SAdV1XE3-CGA virus. Interestingly, SAdV1XE3-CGA could propagate in human chronic myelogenous leukemia K562 cells. The E1 region was similarly modified to generate E1/E3-deleted replication-defective virus SAdV1-EG. SAdV1-EG had a moderate gene transfer ability to adherent mammalian cells, and it could efficiently transduce suspension cells when compared with the human adenovirus 5 control vector. Restriction-assembly is easy to use and can be performed without special experimental materials and instruments. It is highly effective with verifiable outcomes at each step. More importantly, restriction-assembly makes the established vector system modifiable, upgradable and under sustainable development, and it can serve as the instructive method or strategy for the synthetic biology of adenoviruses.
Collapse
Affiliation(s)
- Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Yangyang Sun
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, China
| | - Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Wenjie Tan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (X.G.); (Y.S.); (J.C.); (X.Z.); (W.H.); (T.H.)
- Chinese Center for Disease Control and Prevention–Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan 430071, China
- Correspondence: (Z.L.); (W.T.); Tel.: +86-10-63511368 (Z.L.)
| |
Collapse
|
15
|
Liu W, Zhang L, Cai Y, Zhang Q, Chen D, Qiu S, Wang Y, Xu D, Gu S, Li X, Dai J, Liu Q, Zhou R, Tian X. Human Adenovirus Subtype 21a Isolates From Children With Severe Lower Respiratory Illness in China. Front Microbiol 2022; 13:924172. [PMID: 35783397 PMCID: PMC9244545 DOI: 10.3389/fmicb.2022.924172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenovirus type 21 (HAdV-21) is an important pathogen associated with acute respiratory infection (ARI), but it was rarely reported and characterized so far. In this study, 151 of 1,704 (8.9%) pediatric patients (≤14 years old) hospitalized with ARI in Guangzhou, China in 2019 were positive for HAdV which was the third most frequently detected pathogen. Two HAdV-21-positive patients presented with severe lower respiratory illness and had similar initial symptoms at onset of illness. Then two HAdV-21 strains were isolated and characterized. The two HAdV-21 strains were sequenced and classified as subtype 21a with genomes closely related to strain BB/201903 found in Bengbu, China in March 2019. Phylogenetic analysis for whole genome and major antigen proteins of global HAdV-21 strains showed that HAdV-21 could be classified into two branches, branch 1 including genotype 21p, branch 2 including all other strains dividing into genotype 21a and 21b. There was no significant difference in the plaque size, or the replication curves between the two HAdV-21a strains and the prototype strain HAdV-21p AV-1645. However, there were five highly variable regions (HVR1, HVR3, HVR4, HVR5, and HVR7) in the hexon protein that varied between two branches. Mice immunized with one branch strain showed 2-4-fold lower neutralizing antibody titers against another branch strain. In summary, this study firstly reported two HAdV-21a infections of children in China, characterized two isolates of HAdV-21a associated with severe lower respiratory illness; our results could be important for understanding the HAdV-21 epidemiology and pathogenic, and for developing HAdV-21 vaccine and drug.
Collapse
Affiliation(s)
- Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yong Cai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qiong Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Dehui Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shujun Gu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Jing Dai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Qian Liu,
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Rong Zhou,
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingui Tian,
| |
Collapse
|