1
|
Madhavan R, Paul JS, Babji S, Thamizh I, Kumar D, Khakha SA, Rennie A, Kumar K, Dhanapal P, Saravanan P, Kumar A, Immanuel S, Gandhi V, Kumar A, Babu JJ, Gangadharan NT, Jagadeesan P, John E, Jamora C, Palakodeti D, Bhati R, Thambidurai SD, Suvatha A, George A, Kang G, John J. SARS-CoV-2 infections before, during, and after the Omicron wave: a 2-year Indian community cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 28:100470. [PMID: 39263629 PMCID: PMC11388673 DOI: 10.1016/j.lansea.2024.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Background We measured the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and re-infections in an adult community-based cohort in southern India. Methods We conducted a 2-year follow-up on 1229 participants enrolled between May and October 2021. Participants provided vaccination histories, weekly saliva samples, and blood samples at 0, 6, 12, and 24 months. Salivary reverse transcription polymerase chain reaction (RT-PCR) and Meso-Scale Discovery panels were used for SARS-CoV-2 detection and anti-spike, anti-nucleocapsid immunoglobulin G quantification. Whole genome sequencing was performed on a subset of positive samples. SARS-CoV-2 infection incidence was measured across Pre-Omicron (May-December 2021), Omicron-I (December 2021-June 2022), and Omicron-II (July 2022-October 2023) periods. Findings In total, 1166 (95%) participants with 83% seropositivity at baseline completed the follow-up, providing 2205 person-years of observation. Utilizing both RT-PCR and serology we identified 1306 infections and yielded an incidence rate of 591.3 per 1000 person-years (95% confidence interval, 559.6-624.3), which peaked during Omicron-I at 1418.1 per 1000 person-years (95% confidence interval, 1307.4-1535.6). During Omicron-I and II, neither prior infection nor vaccination conferred protection against infection. Overall, 74% of infections were asymptomatic. Interpretation Integrated RT-PCR and serology revealed significant SARS-CoV-2 infection frequency, highlighting the prevalence of asymptomatic cases among previously infected or vaccinated individuals. This underscores the effectiveness of combining surveillance strategies when monitoring pandemic trends and confirms the role of non-invasive sampling in ensuring participant compliance, reflecting national transmission patterns. Funding The study was funded by the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jackwin Sam Paul
- Department of Community Health, Christian Medical College, Vellore, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Isai Thamizh
- Department of Community Health, Christian Medical College, Vellore, India
| | - Dilesh Kumar
- Department of Community Health, Christian Medical College, Vellore, India
| | | | - Aarene Rennie
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Keerthana Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Pavithra Dhanapal
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Poornima Saravanan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ajith Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sushil Immanuel
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Vaishnavi Gandhi
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Anand Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Johnson John Babu
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Nandu Thrithamarassery Gangadharan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Premkumar Jagadeesan
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Elizabeth John
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Colin Jamora
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Dasaradhi Palakodeti
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Rubina Bhati
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Saranya Devi Thambidurai
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Arati Suvatha
- COVID-19 Testing and INSACOG Sequencing Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Anna George
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Lopes R, Pham K, Klaassen F, Chitwood MH, Hahn AM, Redmond S, Swartwood NA, Salomon JA, Menzies NA, Cohen T, Grubaugh ND. Combining genomic data and infection estimates to characterize the complex dynamics of SARS-CoV-2 Omicron variants in the US. Cell Rep 2024; 43:114451. [PMID: 38970788 DOI: 10.1016/j.celrep.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Omicron surged as a variant of concern in late 2021. Several distinct Omicron variants appeared and overtook each other. We combined variant frequencies and infection estimates from a nowcasting model for each US state to estimate variant-specific infections, attack rates, and effective reproduction numbers (Rt). BA.1 rapidly emerged, and we estimate that it infected 47.7% of the US population before it was replaced by BA.2. We estimate that BA.5 infected 35.7% of the US population, persisting in circulation for nearly 6 months. Other variants-BA.2, BA.4, and XBB-together infected 30.7% of the US population. We found a positive correlation between the state-level BA.1 attack rate and social vulnerability and a negative correlation between the BA.1 and BA.2 attack rates. Our findings illustrate the complex interplay between viral evolution, population susceptibility, and social factors during the Omicron emergence in the US.
Collapse
Affiliation(s)
- Rafael Lopes
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
| | - Kien Pham
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Fayette Klaassen
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Melanie H Chitwood
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Seth Redmond
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Nicole A Swartwood
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Joshua A Salomon
- Department of Health Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas A Menzies
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Meganck RM, Edwards CE, Mallory ML, Lee RE, Dang H, Bailey AB, Wykoff JA, Gallant SC, Zhu DR, Yount BL, Kato T, Shaffer KM, Nakano S, Cawley AM, Sontake V, Wang JR, Hagan RS, Miller MB, Tata PR, Randell SH, Tse LV, Ehre C, Okuda K, Boucher RC, Baric RS. SARS-CoV-2 variant of concern fitness and adaptation in primary human airway epithelia. Cell Rep 2024; 43:114076. [PMID: 38607917 PMCID: PMC11165423 DOI: 10.1016/j.celrep.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 pandemic is characterized by the emergence of novel variants of concern (VOCs) that replace ancestral strains. Here, we dissect the complex selective pressures by evaluating variant fitness and adaptation in human respiratory tissues. We evaluate viral properties and host responses to reconstruct forces behind D614G through Omicron (BA.1) emergence. We observe differential replication in airway epithelia, differences in cellular tropism, and virus-induced cytotoxicity. D614G accumulates the most mutations after infection, supporting zoonosis and adaptation to the human airway. We perform head-to-head competitions and observe the highest fitness for Gamma and Delta. Under these conditions, RNA recombination favors variants encoding the B.1.617.1 lineage 3' end. Based on viral growth kinetics, Alpha, Gamma, and Delta exhibit increased fitness compared to D614G. In contrast, the global success of Omicron likely derives from increased transmission and antigenic variation. Our data provide molecular evidence to support epidemiological observations of VOC emergence.
Collapse
Affiliation(s)
- Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexis B Bailey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jason A Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Deanna R Zhu
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendall M Shaffer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Anne Marie Cawley
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | - Jeremy R Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Robert S Hagan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Longping V Tse
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
4
|
Bhatia S, Wardle J, Nash RK, Nouvellet P, Cori A. Extending EpiEstim to estimate the transmission advantage of pathogen variants in real-time: SARS-CoV-2 as a case-study. Epidemics 2023; 44:100692. [PMID: 37399634 PMCID: PMC10284428 DOI: 10.1016/j.epidem.2023.100692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/05/2023] Open
Abstract
The evolution of SARS-CoV-2 has demonstrated that emerging variants can set back the global COVID-19 response. The ability to rapidly assess the threat of new variants is critical for timely optimisation of control strategies. We present a novel method to estimate the effective transmission advantage of a new variant compared to a reference variant combining information across multiple locations and over time. Through an extensive simulation study designed to mimic real-time epidemic contexts, we show that our method performs well across a range of scenarios and provide guidance on its optimal use and interpretation of results. We also provide an open-source software implementation of our method. The computational speed of our tool enables users to rapidly explore spatial and temporal variations in the estimated transmission advantage. We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29 (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Delta is 1.77 (95% CrI 1.69-1.85) times more transmissible than Alpha (England data). Our approach can be used as an important first step towards quantifying the threat of emerging or co-circulating variants of infectious pathogens in real-time.
Collapse
Affiliation(s)
- Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, UK; NIHR Health Protection Research Unit in Modelling and Health Economics, Modelling & Economics Unit, UK Health Security Agency, London, UK
| | - Jack Wardle
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, UK
| | - Rebecca K Nash
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, UK
| | - Pierre Nouvellet
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, UK; School of Life Sciences, University of Sussex, Brighton, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, UK.
| |
Collapse
|
5
|
Arantes I, Bello G, Nascimento V, Souza V, da Silva A, Silva D, Nascimento F, Mejía M, Brandão MJ, Gonçalves L, Silva G, da Costa CF, Abdalla L, Santos JH, Ramos TCA, Piantham C, Ito K, Siqueira MM, Resende PC, Wallau GL, Delatorre E, Gräf T, Naveca FG. Comparative epidemic expansion of SARS-CoV-2 variants Delta and Omicron in the Brazilian State of Amazonas. Nat Commun 2023; 14:2048. [PMID: 37041143 PMCID: PMC10089528 DOI: 10.1038/s41467-023-37541-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil's most heavily affected regions. We sequenced the virus genome from 4128 patients collected in Amazonas between July 1st, 2021, and January 31st, 2022, and investigated the viral dynamics using a phylodynamic approach. The VOCs Delta and Omicron BA.1 displayed similar patterns of phylogeographic spread but different epidemic dynamics. The replacement of Gamma by Delta was gradual and occurred without an upsurge of COVID-19 cases, while the rise of Omicron BA.1 was extremely fast and fueled a sharp increase in cases. Thus, the dissemination dynamics and population-level impact of new SARS-CoV-2 variants introduced in the Amazonian population after mid-2021, a setting with high levels of acquired immunity, greatly vary according to their viral phenotype.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Valdinete Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Victor Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Arlesson da Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Dejanane Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Fernanda Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Matilde Mejía
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Maria Júlia Brandão
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Luciana Gonçalves
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas - Dra Rosemary Costa Pinto, Manaus, Brazil
| | - George Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
| | - Cristiano Fernandes da Costa
- Fundação de Vigilância em Saúde do Amazonas - Dra Rosemary Costa Pinto, Manaus, Brazil
- Conselho de Secretários Municipais de Saúde do Amazonas COSEMS - AM, Manaus, Brazil
| | | | | | | | - Chayada Piantham
- Graduate School of Infectious Diseases, Hokkaido University, Hokkaido, Japan
| | - Kimihito Ito
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil.
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Warger J, Gaudieri S. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Viruses 2022; 15:70. [PMID: 36680110 PMCID: PMC9866609 DOI: 10.3390/v15010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Host immunity can exert a complex array of selective pressures on a pathogen, which can drive highly mutable RNA viruses towards viral escape. The plasticity of a virus depends on its rate of mutation, as well as the balance of fitness cost and benefit of mutations, including viral adaptations to the host's immune response. Since its emergence, SARS-CoV-2 has diversified into genetically distinct variants, which are characterised often by clusters of mutations that bolster its capacity to escape human innate and adaptive immunity. Such viral escape is well documented in the context of other pandemic RNA viruses such as the human immunodeficiency virus (HIV) and influenza virus. This review describes the selection pressures the host's antiviral immunity exerts on SARS-CoV-2 and other RNA viruses, resulting in divergence of viral strains into more adapted forms. As RNA viruses obscure themselves from host immunity, they uncover weak points in their own armoury that can inform more comprehensive, long-lasting, and potentially cross-protective vaccine coverage.
Collapse
Affiliation(s)
- Jacob Warger
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Mandurah, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|