1
|
Melero I, Gómez-Cadenas A, González R, Elena SF. Transcriptional and hormonal profiling uncovers the interactions between plant developmental stages and RNA virus infection. J Gen Virol 2024; 105. [PMID: 39292505 PMCID: PMC11410048 DOI: 10.1099/jgv.0.002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Arabidopsis thaliana is more susceptible to certain viruses during its later developmental stages. The differential responses and the mechanisms behind this development-dependent susceptibility to infection are still not fully understood. Here we explored the outcome of a viral infection at different host developmental stages by studying the response of A. thaliana to infection with turnip mosaic virus at three developmental stages: juvenile vegetative, bolting, and mature flowering plants. We found that infected plants at later stages downregulate cell wall biosynthetic genes and that this downregulation may be one factor facilitating viral spread and systemic infection. We also found that, despite being more susceptible to infection, infected mature flowering plants were more fertile (i.e. produce more viable seeds) than juvenile vegetative and bolting infected plants; that is, plants infected at the reproductive stage have greater fitness than plants infected at earlier developmental stages. Moreover, treatment of mature plants with salicylic acid increased resistance to infection at the cost of significantly reducing fertility. Together, these observations support a negative trade-off between viral susceptibility and plant fertility. Our findings point towards a development-dependent tolerance to infection.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castelló, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- Present address: Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Maulenbay A, Rsaliyev A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J Fungi (Basel) 2024; 10:482. [PMID: 39057367 PMCID: PMC11277790 DOI: 10.3390/jof10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In this paper, an extensive review of the literature is provided examining the significance of tolerance to fungal diseases in wheat amidst the escalating global demand for wheat and threats from environmental shifts and pathogen movements. The current comprehensive reliance on agrochemicals for disease management poses risks to food safety and the environment, exacerbated by the emergence of fungicide resistance. While resistance traits in wheat can offer some protection, these traits do not guarantee the complete absence of losses during periods of vigorous or moderate disease development. Furthermore, the introduction of individual resistance genes into wheat monoculture exerts selection pressure on pathogen populations. These disadvantages can be addressed or at least mitigated with the cultivation of tolerant varieties of wheat. Research in this area has shown that certain wheat varieties, susceptible to severe infectious diseases, are still capable of achieving high yields. Through the analysis of the existing literature, this paper explores the manifestations and quantification of tolerance in wheat, discussing its implications for integrated disease management and breeding strategies. Additionally, this paper addresses the ecological and evolutionary aspects of tolerance in the pathogen-plant host system, emphasizing its potential to enhance wheat productivity and sustainability.
Collapse
Affiliation(s)
- Akerke Maulenbay
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| | - Aralbek Rsaliyev
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| |
Collapse
|
3
|
García-Ordóñez L, Pagán I. Vertical and horizontal transmission of plant viruses: two extremes of a continuum? NPJ VIRUSES 2024; 2:18. [PMID: 40295758 PMCID: PMC11721382 DOI: 10.1038/s44298-024-00030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/30/2025]
Abstract
Parasites have a variety of mechanisms to be transmitted to new susceptible hosts, which can be largely grouped in two main modes: vertical (i.e., from parents to the offspring) and horizontal (i.e., between hosts regardless of descent). Because between-host dispersal is a key trait for parasite fitness, scientists studying host-parasite interactions have been long interested in understanding the evolution of their transmission mode(s). Most work in this regard has been theoretical, which resulted in the development of the so-called Continuum hypothesis. This theory states that because vertically transmitted parasites require the host to reproduce, the evolution of this mode of transmission will involve reduced virulence (i.e., the effect of infection on host fecundity) in order to allow maximal host viable progeny production. Conversely, the evolution of horizontal transmission does not have this limitation and parasites with this mode of transmission will evolve higher virulence. Therefore, a trade-off between both modes of transmission across a continuum of virulence values is predicted, with each transmission mode located at the extremes of the continuum. Using plant viruses as a focal parasite, here we review existing theory surrounding the Continuum hypothesis and the experimental work testing the predictions of the theory. Finally, we briefly discuss molecular mechanisms that may explain the existence of vertical-to-horizontal transmission trade-offs and potential implications for the management of virus epidemics.
Collapse
Affiliation(s)
- Lucía García-Ordóñez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain.
| |
Collapse
|
4
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
5
|
A Sterility-Mortality Tolerance Trade-Off Leads to Within-Population Variation in Host Tolerance. Bull Math Biol 2023; 85:16. [PMID: 36670241 DOI: 10.1007/s11538-023-01119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
While experimental studies have demonstrated within-population variation in host tolerance to parasitism, theoretical studies rarely predict for polymorphism to arise. However, most theoretical models do not consider the crucial distinction between tolerance to the effects of infection-induced deaths (mortality tolerance) and tolerance to the parasite-induced reduction in the reproduction of infected hosts (sterility tolerance). While some studies have examined trade-offs between host tolerance and resistance mechanisms, none has considered a correlation within different tolerance mechanisms. We assume that sterility tolerance and mortality tolerance are directly traded-off in a host population subjected to a pathogen and use adaptive dynamics to study their evolutionary behaviour. We find that such a trade-off between the two tolerance strategies can drive the host population to branch into dimorphic strains, leading to coexistence of strains with sterile hosts that have low mortality and fully fertile with high mortality rates. Further, we find that a wider range of trade-off shapes allows branching at intermediate- or high-infected population size. Our other significant finding is that sterility tolerance is maximised (and mortality tolerance minimised) at an intermediate disease-induced mortality rate. Additionally, evolution entirely reverses the disease prevalence pattern corresponding to the recovery rate, compared to when no strategies evolve. We provide novel predictions on the evolutionary behaviour of two tolerance strategies concerning such a trade-off.
Collapse
|
6
|
Montes N, Vijayan V, Pagán I. Host population structure for tolerance determines the evolution of plant-virus interactions. THE NEW PHYTOLOGIST 2021; 231:1570-1585. [PMID: 33997993 PMCID: PMC8362011 DOI: 10.1111/nph.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología VegetalDepartamento Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEU UniversitiesBoadilla del Monte (Madrid)28668Spain
- Servicio de ReumatologíaHospital Universitario de la PrincesaInstituto de Investigación Sanitaria (IIS‐IP)Madrid28008Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| |
Collapse
|
7
|
Butković A, González R, Rivarez MPS, Elena SF. A genome-wide association study identifies Arabidopsis thaliana genes that contribute to differences in the outcome of infection with two Turnip mosaic potyvirus strains that differ in their evolutionary history and degree of host specialization. Virus Evol 2021; 7:veab063. [PMID: 34532063 PMCID: PMC8438913 DOI: 10.1093/ve/veab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact with their hosts' gene expression depending on their degree of specialization. Using a genome-wide association study approach, we have identified host genes whose expression depends on whether hosts were infected with more or less specialized viral strains. Four hundred fifty natural accessions of Arabidopsis thaliana were inoculated with Turnip mosaic potyvirus strains with different past evolutionary histories and that shown different degrees of specialization. Three disease-related traits were measured and associated with different sets of host genes for each strain. The genetic architectures of these traits differed among viral strains and, in the case of the more specialized virus, also varied along the duration of infection. While most of the mapped loci were strain specific, one shared locus was mapped for both strains, a disease-resistance TIR-NBS-LRR class protein. Likewise, only putative cysteine-rich receptor-like protein kinases were involved in all three traits. The impact on disease progress of 10 selected genes was validated by studying the infection phenotypes of loss-of-function mutant plants. Nine of these mutants have altered the disease progress and/or symptoms intensity between both strains. Compared to wild-type plants six had an effect on both viral strains, three had an effect only on the more specialized, and two were significant during infection with the less specialized.
Collapse
|
8
|
Bartlett LJ, Boots M. The central role of host reproduction in determining the evolution of virulence in spatially structured populations. J Theor Biol 2021; 523:110717. [PMID: 33862089 DOI: 10.1016/j.jtbi.2021.110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
A substantial body of work has shown that local transmission selects for less acute, 'prudent' parasites that have lower virulence and transmission rates. This is because parasite strains with higher transmission rates 'self-shade' due to a combination of genetic correlations (self: clustered related parasite strains compete for susceptible individuals) and ecological correlations (shade: infected individuals clustering and blocking transmission). However, the interaction of ecological and genetic correlations alongside higher order ecological effects such as patch extinctions means that spatial evolutionary effects can be nuanced; theory has predicted that a relatively small proportion of local infection can select for highest virulence, such that there is a humped relationship between the degree of local infection and the harm that parasites are selected to cause. Here, we examine the separate roles of the interaction scales of reproduction and infection in the context of different degrees of pathogenic castration in determining virulence evolution outcomes. Our key result is that, as long as there is significant reproduction from infected individuals, local infection always selects for lower virulence, and that the prediction that a small proportion of local infection can select for higher virulence only occurs for highly castrating pathogens. The results emphasize the importance of demography for evolutionary outcomes in spatially structured populations, but also show that the core prediction that parasites are prudent in space is reasonable for the vast majority of host-parasite interactions and mixing patterns in nature.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Mike Boots
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Montes N, Cobos A, Gil-Valle M, Caro E, Pagán I. Arabidopsis thaliana Genes Associated with Cucumber mosaic virus Virulence and Their Link to Virus Seed Transmission. Microorganisms 2021; 9:692. [PMID: 33801693 PMCID: PMC8067046 DOI: 10.3390/microorganisms9040692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Virulence, the effect of pathogen infection on progeny production, is a major determinant of host and pathogen fitness as it affects host fecundity and pathogen transmission. In plant-virus interactions, ample evidence indicates that virulence is genetically controlled by both partners. However, the host genetic determinants are poorly understood. Through a genome-wide association study (GWAS) of 154 Arabidopsis thaliana genotypes infected by Cucumber mosaic virus (CMV), we identified eight host genes associated with virulence, most of them involved in response to biotic stresses and in cell wall biogenesis in plant reproductive structures. Given that virulence is a main determinant of the efficiency of plant virus seed transmission, we explored the link between this trait and the genetic regulation of virulence. Our results suggest that the same functions that control virulence are also important for CMV transmission through seeds. In sum, this work provides evidence of a novel role for some previously known plant defense genes and for the cell wall metabolism in plant virus interactions.
Collapse
Affiliation(s)
- Nuria Montes
- Unidad de Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, 28003 Madrid, Spain;
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| |
Collapse
|
10
|
Abstract
Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
11
|
Montes N, Vijayan V, Pagán I. Trade-offs between host tolerances to different pathogens in plant-virus interactions. Virus Evol 2020; 6:veaa019. [PMID: 32211198 PMCID: PMC7079720 DOI: 10.1093/ve/veaa019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain
| |
Collapse
|
12
|
Rodríguez-Nevado C, G Gavilán R, Pagán I. Host Abundance and Identity Determine the Epidemiology and Evolution of a Generalist Plant Virus in a Wild Ecosystem. PHYTOPATHOLOGY 2020; 110:94-105. [PMID: 31589103 DOI: 10.1094/phyto-07-19-0271-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario G Gavilán
- Facultad de Farmacia, Departamento de Farmacología, Farmacognosia y Botánica, unidad de Botánica, Universidad Complutense de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission. J Virol 2019; 93:JVI.01078-19. [PMID: 31511374 PMCID: PMC6854480 DOI: 10.1128/jvi.01078-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Although vertical transmission from parents to offspring through seeds is an important fitness component of many plant viruses, very little is known about the factors affecting this process. Viruses reach the seed by direct invasion of the embryo and/or by infection of the ovules or the pollen. Thus, it can be expected that the efficiency of seed transmission would be determined by (i) virus within-host multiplication and movement, (ii) the ability of the virus to invade gametic tissues, (iii) plant seed production upon infection, and (iv) seed survival in the presence of the virus. However, these predictions have seldom been experimentally tested. To address this question, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus and Cucumber mosaic virus Using these plant-virus interactions, we analyzed the relationship between the effect of virus infection on rosette and inflorescence weights; short-, medium-, and long-term seed survival; virulence; the number of seeds produced per plant; virus within-host speed of movement; virus accumulation in the rosette and inflorescence; and efficiency of seed transmission measured as a percentage and as the total number of infected seeds. Our results indicate that the best estimators of percent seed transmission are the within-host speed of movement and multiplication in the inflorescence. Together with these two infection traits, virulence and the number of seeds produced per infected plant were also associated with the number of infected seeds. Our results provide support for theoretical predictions and contribute to an understanding of the determinants of a process central to plant-virus interactions.IMPORTANCE One of the major factors contributing to plant virus long-distance dispersal is the global trade of seeds. This is because more than 25% of plant viruses can infect seeds, which are the main mode of germplasm exchange/storage, and start new epidemics in areas where they were not previously present. Despite the relevance of this process for virus epidemiology and disease emergence, the infection traits associated with the efficiency of virus seed transmission are largely unknown. Using turnip mosaic and cucumber mosaic viruses and their natural host Arabidopsis thaliana as model systems, we have identified the within-host speed of virus colonization and multiplication in the reproductive structures as the main determinants of the efficiency of seed transmission. These results contribute to shedding light on the mechanisms by which plant viruses disperse and optimize their fitness and may help in the design of more-efficient strategies to prevent seed infection.
Collapse
|
14
|
Pagán I. The diversity, evolution and epidemiology of plant viruses: A phylogenetic view. INFECTION GENETICS AND EVOLUTION 2018; 65:187-199. [PMID: 30055330 DOI: 10.1016/j.meegid.2018.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
| |
Collapse
|
15
|
Abstract
The two major mechanisms of plant defense against pathogens are resistance (the host's ability to limit pathogen multiplication) and tolerance (the host's ability to reduce the effect of infection on its fitness regardless of the level of pathogen multiplication). There is abundant literature on virtually every aspect of plant resistance to pathogens. Although tolerance to plant pathogens is comparatively less understood, studies on this plant defense strategy have led to major insights into its evolution, mechanistic basis and genetic determinants. This review aims at summarizing current theories and experimental evidence on the evolutionary causes and consequences of plant tolerance to pathogens, as well as the existing knowledge on the genetic determinants and mechanisms of tolerance. Our review reveals that (i) in plant-pathogen systems, resistance and tolerance generally coexist, i.e., are not mutually exclusive; (ii) evidence of tolerance polymorphisms is abundant regardless of the pathogen considered; (iii) tolerance is an efficient strategy to reduce the damage on the infected host; and (iv) there is no evidence that tolerance results in increased pathogen multiplication. Taken together, the work discussed in this review indicates that tolerance may be as important as resistance in determining the dynamics of plant-pathogen interactions. Several aspects of plant tolerance to pathogens that still remain unclear and which should be explored in the future, are also outlined.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
| |
Collapse
|
16
|
Rodríguez-Nevado C, Montes N, Pagán I. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem. FRONTIERS IN PLANT SCIENCE 2017; 8:1958. [PMID: 29184567 PMCID: PMC5694492 DOI: 10.3389/fpls.2017.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue (Ruta montana), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nuria Montes
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
- Rheumatology Service, Hospital Universitario La Princesa, IIS-IP, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|