1
|
Melero I, Gómez-Cadenas A, González R, Elena SF. Transcriptional and hormonal profiling uncovers the interactions between plant developmental stages and RNA virus infection. J Gen Virol 2024; 105. [PMID: 39292505 PMCID: PMC11410048 DOI: 10.1099/jgv.0.002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Arabidopsis thaliana is more susceptible to certain viruses during its later developmental stages. The differential responses and the mechanisms behind this development-dependent susceptibility to infection are still not fully understood. Here we explored the outcome of a viral infection at different host developmental stages by studying the response of A. thaliana to infection with turnip mosaic virus at three developmental stages: juvenile vegetative, bolting, and mature flowering plants. We found that infected plants at later stages downregulate cell wall biosynthetic genes and that this downregulation may be one factor facilitating viral spread and systemic infection. We also found that, despite being more susceptible to infection, infected mature flowering plants were more fertile (i.e. produce more viable seeds) than juvenile vegetative and bolting infected plants; that is, plants infected at the reproductive stage have greater fitness than plants infected at earlier developmental stages. Moreover, treatment of mature plants with salicylic acid increased resistance to infection at the cost of significantly reducing fertility. Together, these observations support a negative trade-off between viral susceptibility and plant fertility. Our findings point towards a development-dependent tolerance to infection.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castelló, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- Present address: Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
4
|
Vats G, Sharma V, Noorani S, Rani A, Kaushik N, Kaushik A, Kala D, Nagraik R, Srivastava A, Gupta S, Singh B, Kaushal A, Walia Y, Dhir S. Apple stem grooving capillovirus
: pliant pathogen and its potential as a tool in functional genomics and effective disease management. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2024; 57:261-295. [DOI: 10.1080/03235408.2024.2359948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Gourav Vats
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Vasudha Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Asha Rani
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naveen Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Amit Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Adjunct faculty, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan Himachal Pradesh, India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Department of Entomology and Plant Pathology, Division of Agriculture, University of AR System, Fayetteville, Arkansas, USA
| | - Shagun Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Bharat Singh
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Yashika Walia
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Sunny Dhir
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
5
|
Butkovic A, Ellis TJ, Gonzalez R, Jaegle B, Nordborg M, Elena SF. Genetic basis of Arabidopsis thaliana responses to infection by naïve and adapted isolates of turnip mosaic virus. eLife 2024; 12:RP89749. [PMID: 38240739 PMCID: PMC10945600 DOI: 10.7554/elife.89749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Plant viruses account for enormous agricultural losses worldwide, and the most effective way to combat them is to identify genetic material conferring plant resistance to these pathogens. Aiming to identify genetic associations with responses to infection, we screened a large panel of Arabidopsis thaliana natural inbred lines for four disease-related traits caused by infection by A. thaliana-naïve and -adapted isolates of the natural pathogen turnip mosaic virus (TuMV). We detected a strong, replicable association in a 1.5 Mb region on chromosome 2 with a 10-fold increase in relative risk of systemic necrosis. The region contains several plausible causal genes as well as abundant structural variation, including an insertion of a Copia transposon into a Toll/interleukin receptor (TIR-NBS-LRR) coding for a gene involved in defense, that could be either a driver or a consequence of the disease-resistance locus. When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants. The direction and severity of symptom differences depended on the adaptation history of the virus. This increase in symptom severity was specific for infections with the adapted isolate. Necrosis-associated alleles are found worldwide, and their distribution is consistent with a trade-off between resistance during viral outbreaks and a cost of resistance otherwise, leading to negative frequency-dependent selection.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UVValènciaSpain
| | - Thomas James Ellis
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Doktor-Bohr-GasseViennaAustria
| | - Ruben Gonzalez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UVValènciaSpain
| | - Benjamin Jaegle
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Doktor-Bohr-GasseViennaAustria
| | - Magnus Nordborg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Doktor-Bohr-GasseViennaAustria
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UVValènciaSpain
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
6
|
Babalola B, Fraile A, García-Arenal F, McLeish M. Ecological Strategies for Resource Use by Three Bromoviruses in Anthropic and Wild Plant Communities. Viruses 2023; 15:1779. [PMID: 37632121 PMCID: PMC10458945 DOI: 10.3390/v15081779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Ecological strategies for resource utilisation are important features of pathogens, yet have been overshadowed by stronger interest in genetic mechanisms underlying disease emergence. The purpose of this study is to ask whether host range and transmission traits translate into ecological strategies for host-species utilisation in a heterogeneous ecosystem, and whether host utilisation corresponds to genetic differentiation among three bromoviruses. We combine high-throughput sequencing and population genomics with analyses of species co-occurrence to unravel the ecological strategies of the viruses across four habitat types. The results show that the bromoviruses that were more closely related genetically did not share similar ecological strategies, but that the more distantly related pair did. Shared strategies included a broad host range and more frequent co-occurrences, which both were habitat-dependent. Each habitat thus presents as a barrier to gene flow, and each virus has an ecological strategy to navigate limitations to colonising non-natal habitats. Variation in ecological strategies could therefore hold the key to unlocking events that lead to emergence.
Collapse
Affiliation(s)
- Bisola Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Melero I, González R, Elena SF. Host developmental stages shape the evolution of a plant RNA virus. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220005. [PMID: 36744567 PMCID: PMC9979778 DOI: 10.1098/rstb.2022.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate pathogens that entirely rely on their hosts to complete their infectious cycle. The outcome of viral infections depends on the status of the host. Host developmental stage is an important but sometimes overlooked factor impacting host-virus interactions. This impact is especially relevant in a context where climate change and human activities are altering plant development. To better understand how different host developmental stages shape virus evolution, we experimentally evolved turnip mosaic virus (TuMV) on Arabidopsis thaliana at three different developmental stages: vegetative (juvenile), bolting (transition) and reproductive (mature). After infecting plants with an Arabidopsis-naive or an Arabidopsis-well-adapted TuMV isolate, we observed that hosts in later developmental stages were prone to faster and more severe infections. This observation was extended to viruses belonging to different genera. Thereafter, we experimentally evolved lineages of the naive and the well-adapted TuMV isolates in plants from each of the three developmental stages. All evolved viruses enhanced their infection traits, but this increase was more intense in viruses evolved in younger hosts. The genomic changes of the evolved viral lineages revealed mutation patterns that strongly depended on the founder viral isolate as well as on the developmental stage of the host wherein the lineages were evolved. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain,The Santa Fe Institute, Santa Fe 87501, NM, USA
| |
Collapse
|
8
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
9
|
Makau DN, Lycett S, Michalska-Smith M, Paploski IAD, Cheeran MCJ, Craft ME, Kao RR, Schroeder DC, Doeschl-Wilson A, VanderWaal K. Ecological and evolutionary dynamics of multi-strain RNA viruses. Nat Ecol Evol 2022; 6:1414-1422. [PMID: 36138206 DOI: 10.1038/s41559-022-01860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.
Collapse
Affiliation(s)
- Dennis N Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Igor A D Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Rowland R Kao
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
10
|
Navarro R, Ambrós S, Butković A, Carrasco JL, González R, Martínez F, Wu B, Elena SF. Defects in Plant Immunity Modulate the Rates and Patterns of RNA Virus Evolution. Virus Evol 2022; 8:veac059. [PMID: 35821716 PMCID: PMC9272744 DOI: 10.1093/ve/veac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is assumed that host genetic variability for susceptibility to infection conditions virus evolution. Differences in host susceptibility can drive a virus to diversify into strains that track different defense alleles (e.g. antigenic diversity) or to infect only the most susceptible genotypes. Here, we have studied how variability in host defenses determines the evolutionary fate of a plant RNA virus. We performed evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants that had disruptions in infection-response signaling pathways or in genes whose products are essential for potyvirus infection. Plant genotypes were classified into five phenogroups according to their response to infection. We found that evolution proceeded faster in more restrictive hosts than in more permissive ones. Most of the phenotypic differences shown by the ancestral virus across host genotypes were removed after evolution, suggesting the combined action of selection and chance. When all evolved viral lineages were tested in all plant genotypes used in the experiments, we found compelling evidences that the most restrictive plant genotypes selected for more generalist viruses, while more permissive genotypes selected for more specialist viruses. Sequencing the genomes of the evolved viral lineages, we found that selection targeted the multifunctional genome-linked protein VPg in most host genotypes. Overall, this work illustrates how different host defenses modulate the rates and extent of virus evolution.
Collapse
Affiliation(s)
- Rebeca Navarro
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Fernando Martínez
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Beilei Wu
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
- The Santa Fe Institute , Santa Fe NM87501, USA
| |
Collapse
|
11
|
Xu W, Guo Y, Li H, Sivasithamparam K, Jones MGK, Chen X, Wylie SJ. Differential Symptom Development and Viral RNA Loads in 10 Nicotiana benthamiana Accessions Infected with the Tobamovirus Yellow Tailflower Mild Mottle Virus. PLANT DISEASE 2022; 106:984-989. [PMID: 34735277 DOI: 10.1094/pdis-08-21-1697-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yellow tailflower mild mottle virus (YTMMV, genus Tobamovirus) was identified from wild plants of solanaceous species in Australia. Nicotiana benthamiana is a species indigenous to the arid north of Australia. N. benthamiana accession RA-4 (the lab type), which has a mutant, functionally defective, RNA-dependent RNA polymerase 1 (Rdr1) gene (Nb-Rdr1m), has played a significant role in plant virology, but little study has been done regarding responses to virus infection by other accessions of N. benthamiana. All wild-collected N. benthamiana accessions used in this study harbored wild-type Rdr1 genes (Nb-Rdr1). We compared symptoms of YTMMV infection and viral RNA load on RA-4 and nine wild-collected accessions of N. benthamiana from mainland Western Australia, an island, and the Northern Territory. After inoculation with YTMMV, RA-4 plants responded with systemic hypersensitivity and all individuals were dead 35 days postinoculation (dpi). Plants of wild-collected accessions exhibited a range of symptoms, from mild to severe, and some, but not all, died in the same period. Quantitative reverse transcription PCR revealed that the Rdr1 mutation was not a predictor of viral RNA load or symptom severity. For example, wild-collected A019412 plants carried more than twice the viral RNA load of RA-4 plants, but symptom expression was moderate. For plants of most accessions, viral RNA load did not increase after 10 dpi. The exception was plants of accession Barrow-1, in which viral RNA load was low until 15 dpi, after which it increased more than 29-fold. This study revealed differential responses by N. benthamiana accessions to infection by an isolate of YTMMV. The Rdr1 gene, whether mutant or wild-type, did not appear to influence viral RNA load or disease expression. Genetic diversity of the 10 N. benthamiana accessions in some cases reflected geographical location, but in other accessions this was not so.
Collapse
Affiliation(s)
- Weinan Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuxia Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Li
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Krishnapillai Sivasithamparam
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Michael G K Jones
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Stephen J Wylie
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
12
|
Patrinos GP, Kambouris ME. The genomic dimension in biodefense: Therapeutics. GENOMICS IN BIOSECURITY 2022:183-195. [DOI: 10.1016/b978-0-323-85236-4.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Raymond B, Erdos Z. Passage and the evolution of virulence in invertebrate pathogens: Fundamental and applied perspectives. J Invertebr Pathol 2021; 187:107692. [PMID: 34798134 DOI: 10.1016/j.jip.2021.107692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
Understanding the ecological and genetic factors that determine the evolution of virulence has broad value for invertebrate pathology. In addition to helping us understand the fundamental biology of our study organisms this body of theory has important applications in microbial biocontrol. Experimental tests of virulence theory are often carried out in invertebrate models and yet theory rarely informs applied passage experiments that aim to increase or maintain virulence. This review summarizes recent progress in this field with a focus on work most relevant to biological control: the virulence of invertebrate pathogens that are 'obligate killers' and which require cadavers for the production of infectious propagules. We discuss recent theory and fundamental and applied experimental evolution with bacteria, fungi, baculoviruses and nematodes. While passage experiments using baculoviruses have a long history of producing isolates with increased virulence, studies with other pathogens have not been so successful. Recent passage experiments that have applied evolution of virulence frameworks based on cooperation (kin selection) have produced novel methods and promising mutants with increased killing power. Evolution of virulence theory can provide plausible explanations for the varied results of passage experiments as well as a predictive framework for improving artificial selection.
Collapse
Affiliation(s)
- Ben Raymond
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Zoltan Erdos
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
14
|
Montes N, Vijayan V, Pagán I. Host population structure for tolerance determines the evolution of plant-virus interactions. THE NEW PHYTOLOGIST 2021; 231:1570-1585. [PMID: 33997993 PMCID: PMC8362011 DOI: 10.1111/nph.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología VegetalDepartamento Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEU UniversitiesBoadilla del Monte (Madrid)28668Spain
- Servicio de ReumatologíaHospital Universitario de la PrincesaInstituto de Investigación Sanitaria (IIS‐IP)Madrid28008Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| |
Collapse
|
15
|
Host genotype and genetic diversity shape the evolution of a novel bacterial infection. THE ISME JOURNAL 2021; 15:2146-2157. [PMID: 33603148 PMCID: PMC8245636 DOI: 10.1038/s41396-021-00911-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Pathogens continue to emerge from increased contact with novel host species. Whilst these hosts can represent distinct environments for pathogens, the impacts of host genetic background on how a pathogen evolves post-emergence are unclear. In a novel interaction, we experimentally evolved a pathogen (Staphylococcus aureus) in populations of wild nematodes (Caenorhabditis elegans) to test whether host genotype and genetic diversity affect pathogen evolution. After ten rounds of selection, we found that pathogen virulence evolved to vary across host genotypes, with differences in host metal ion acquisition detected as a possible driver of increased host exploitation. Diverse host populations selected for the highest levels of pathogen virulence, but infectivity was constrained, unlike in host monocultures. We hypothesise that population heterogeneity might pool together individuals that contribute disproportionately to the spread of infection or to enhanced virulence. The genomes of evolved populations were sequenced, and it was revealed that pathogens selected in distantly-related host genotypes diverged more than those in closely-related host genotypes. S. aureus nevertheless maintained a broad host range. Our study provides unique empirical insight into the evolutionary dynamics that could occur in other novel infections of wildlife and humans.
Collapse
|
16
|
Butković A, González R, Rivarez MPS, Elena SF. A genome-wide association study identifies Arabidopsis thaliana genes that contribute to differences in the outcome of infection with two Turnip mosaic potyvirus strains that differ in their evolutionary history and degree of host specialization. Virus Evol 2021; 7:veab063. [PMID: 34532063 PMCID: PMC8438913 DOI: 10.1093/ve/veab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact with their hosts' gene expression depending on their degree of specialization. Using a genome-wide association study approach, we have identified host genes whose expression depends on whether hosts were infected with more or less specialized viral strains. Four hundred fifty natural accessions of Arabidopsis thaliana were inoculated with Turnip mosaic potyvirus strains with different past evolutionary histories and that shown different degrees of specialization. Three disease-related traits were measured and associated with different sets of host genes for each strain. The genetic architectures of these traits differed among viral strains and, in the case of the more specialized virus, also varied along the duration of infection. While most of the mapped loci were strain specific, one shared locus was mapped for both strains, a disease-resistance TIR-NBS-LRR class protein. Likewise, only putative cysteine-rich receptor-like protein kinases were involved in all three traits. The impact on disease progress of 10 selected genes was validated by studying the infection phenotypes of loss-of-function mutant plants. Nine of these mutants have altered the disease progress and/or symptoms intensity between both strains. Compared to wild-type plants six had an effect on both viral strains, three had an effect only on the more specialized, and two were significant during infection with the less specialized.
Collapse
|
17
|
Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 2021; 118:2020990118. [PMID: 33526695 DOI: 10.1073/pnas.2020990118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental conditions are an important factor driving pathogens' evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.
Collapse
|
18
|
Allopatric Plant Pathogen Population Divergence following Disease Emergence. Appl Environ Microbiol 2021; 87:AEM.02095-20. [PMID: 33483307 DOI: 10.1128/aem.02095-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.
Collapse
|
19
|
Alcaide C, Sardanyés J, Elena SF, Gómez P. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 2021; 7:veab017. [PMID: 33815829 PMCID: PMC8007957 DOI: 10.1093/ve/veab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus coexisted in tomato plants in a temperature-dependent continuum between neutral and antagonistic interactions. After a long-term infection, the mutational analysis of the evolved viral genomes revealed strain-specific single-nucleotide polymorphisms that were modulated by the interaction between the type of infection and temperature. These results suggest that the temperature is an ecological driver of virus-virus interactions, with an effect on the genetic diversity of individual viruses that are co-infecting an individual host. This research provides insights into the effect that changes in host growth temperatures might have on the evolutionary dynamics of viral populations in mixed infections.
Collapse
Affiliation(s)
- Cristina Alcaide
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
- Dynamical Systems and Computational Virology Associated Unit Instituto de Biología Integrativa de Sistemas (I2SysBio) - CRM, Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Santiago F Elena
- I2SysBio, CSIC-Universitat de València, Paterna, 46980 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, PO Box 164, 30100 Murcia, Spain
- Corresponding author: E-mail:
| |
Collapse
|
20
|
Dutta A, Croll D, McDonald BA, Barrett LG. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evol Appl 2021; 14:335-347. [PMID: 33664780 PMCID: PMC7896723 DOI: 10.1111/eva.13117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 08/13/2020] [Indexed: 11/27/2022] Open
Abstract
Genetic diversity within pathogen populations is critically important for predicting pathogen evolution, disease outcomes and prevalence. However, we lack a good understanding of the processes maintaining genetic variation and constraints on pathogen life-history evolution. Here, we analysed interactions between 12 wheat host genotypes and 145 strains of Zymoseptoria tritici from five global populations to investigate the evolution and maintenance of variation in pathogen virulence and reproduction. We found a strong positive correlation between virulence (amount of leaf necrosis) and reproduction (pycnidia density within lesions), with substantial variation in both traits maintained within populations. On average, highly virulent isolates exhibited higher reproduction, which might increase transmission potential in agricultural fields planted to homogeneous hosts at a high density. We further showed that pathogen strains with a narrow host range (i.e. specialists) for reproduction were on average less virulent, and those with a broader host range (i.e. generalists) were on average less fecund on a given specific host. These costs associated with adaptation to different host genotypes might constrain the emergence of generalists by disrupting the directional evolution of virulence and fecundity. We conclude that selection favouring pathogen strains that are virulent across diverse hosts, coupled with selection that maximizes fecundity on specific hosts, may explain the maintenance of these pathogenicity traits within and among populations.
Collapse
Affiliation(s)
- Anik Dutta
- Plant PathologyInstitute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative BiologyETH ZurichZurichSwitzerland
| | | |
Collapse
|
21
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
22
|
Scholthof KBG. Brachypodium and plant viruses: entwined tools for discovery. THE NEW PHYTOLOGIST 2020; 227:1676-1680. [PMID: 31868932 DOI: 10.1111/nph.16388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In just a decade, Brachypodium distachyon (Brachypodium) has fulfilled its initial promise as a key tool for realizing new strategies for understanding host and pathogen biology during virus infections of the Poaceae. For this Tansley Insight, I have identified four areas - from the laboratory to the field - that may be particularly fruitful to explore, with a particular focus on Brachypodium-virus infections. These focus areas include: mechanisms of RNA modification of host plants and viruses; coevolution of virus-host interactions; viruses as tools of discovery; and how to explicate the complex outcomes during multivirus infections. Here, I broadly frame our current knowledge of Brachypodium-virus interactions and how these findings may inform virus studies of grasses in the laboratory, field and natural settings.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
23
|
Visher E, Boots M. The problem of mediocre generalists: population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc Biol Sci 2020; 287:20201230. [PMID: 32811306 PMCID: PMC7482275 DOI: 10.1098/rspb.2020.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Many of our theories for the generation and maintenance of diversity in nature depend on the existence of specialist biotic interactions which, in host-pathogen systems, also shape cross-species disease emergence. As such, niche breadth evolution, especially in host-parasite systems, remains a central focus in ecology and evolution. The predominant explanation for the existence of specialization in the literature is that niche breadth is constrained by trade-offs, such that a generalist is less fit on any particular environment than a given specialist. This trade-off theory has been used to predict niche breadth (co)evolution in both population genetics and eco-evolutionary models, with the different modelling methods providing separate, complementary insights. However, trade-offs may be far from universal, so population genetics theory has also proposed alternate mechanisms for costly generalism, including mutation accumulation. However, these mechanisms have yet to be integrated into eco-evolutionary models in order to understand how the mechanism of costly generalism alters the biological and ecological circumstances predicted to maintain specialism. In this review, we outline how population genetics and eco-evolutionary models based on trade-offs have provided insights for parasite niche breadth evolution and argue that the population genetics-derived mutation accumulation theory needs to be better integrated into eco-evolutionary theory.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Ringgold Standard Institution, Penryn, Cornwall, UK
| |
Collapse
|
24
|
Butković A, González R, Cobo I, Elena SF. Adaptation of turnip mosaic potyvirus to a specific niche reduces its genetic and environmental robustness. Virus Evol 2020; 6:veaa041. [PMID: 32782826 PMCID: PMC7409916 DOI: 10.1093/ve/veaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Robustness is the preservation of the phenotype in the face of genetic and environmental perturbations. It has been argued that robustness must be an essential fitness component of RNA viruses owed to their small and compacted genomes, high mutation rates and living in ever-changing environmental conditions. Given that genetic robustness might hamper possible beneficial mutations, it has been suggested that genetic robustness can only evolve as a side-effect of the evolution of robustness mechanisms specific to cope with environmental perturbations, a theory known as plastogenetic congruence. However, empirical evidences from different viral systems are contradictory. To test how adaptation to a particular environment affects both environmental and genetic robustness, we have used two strains of turnip mosaic potyvirus (TuMV) that differ in their degree of adaptation to Arabidopsis thaliana at a permissive temperature. We show that the highly adapted strain is strongly sensitive to the effect of random mutations and to changes in temperature conditions. In contrast, the non-adapted strain shows more robustness against both the accumulation of random mutations and drastic changes in temperature conditions. Together, these results are consistent with the predictions of the plastogenetic congruence theory, suggesting that genetic and environmental robustnesses may be two sides of the same coin for TuMV.
Collapse
Affiliation(s)
- Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia, Spain
| | - Inés Cobo
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia, Spain.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
25
|
González R, Butković A, Elena SF. From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Adv Virus Res 2020; 106:85-121. [PMID: 32327149 DOI: 10.1016/bs.aivir.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain; The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|