1
|
Gao Z, Gu C, Fan X, Shen L, Jin Z, Wang F, Jiang X. Biochemical insights into the biodegradation mechanism of typical sulfonylureas herbicides and association with active enzymes and physiological response of fungal microbes: A multi-omics approach. ENVIRONMENT INTERNATIONAL 2024; 190:108906. [PMID: 39079331 DOI: 10.1016/j.envint.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
The extensive use of sulfonylurea herbicides has raised major concerns regarding their long-term soil residues and agroecological risks despite their role in agricultural protection. Microbial degradation is an important approach to remove sulfonylureas, whereas understanding the associated biodegradation mechanisms, enzymes, and physiological responses remains incomplete. Based on the rapid biodegradation of nicosulfuron by typical fungal isolate Talaromyces flavus LZM1, the dependency on cellular accumulation and environmental conditions, e.g. pH and nutrient supplies, was shown in the study. The biodegradation of nicosulfuron occurred intracellularly and followed the cascade of reactions including hydrolysis, Smile contraction rearrangement, hydroxylation, and opening of the pyrimidine ring. Besides 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), numerous products and intermediates were newly identified and the structural forms of methoxypyrimidine and sulfonylurea bridge contraction rearrangement are predicted to be more toxic than nicosulfuron. The biodegradation should be enzymatically regulated by glycosylphosphatidylinositol transaminase (GPI-T) and P450s, which were manifested with the significant upregulation in proteomics. It is the first time that the hydrolysis of nicosulfuron into ADMP and ASDM have been associated with GPI-T. The integrated pathways of biodegradation were further elucidated through the involvement of various active enzymes. Except for the enzymatic catalysis, the physiological responses verified by metabolo-proteomics were critical not only to regulate material synthesis, uptake, utilization, and energy transfer but also to maintain antioxidant homeostasis, biodegradability, and tolerance of nicosulfuron by the differentially expressed metabolites, such as acetolactate synthase and 3-isopropylmalate dehydratase. The obtained results would help understand the biodegradation mechanism of sulfonylurea from chemicobiology and enzymology and promote the use of fungal biodegradation in pollution rehabilitation.
Collapse
Affiliation(s)
- Zhengyuan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiuli Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lezu Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhihua Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Groß M, Dika B, Loos E, Aliyeva-Schnorr L, Deising HB. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Mol Microbiol 2024; 121:912-926. [PMID: 38400525 DOI: 10.1111/mmi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched β-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.
Collapse
Affiliation(s)
- Maximilian Groß
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Dika
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisabeth Loos
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lala Aliyeva-Schnorr
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Mei J, Li Z, Zhou S, Chen XL, Wilson RA, Liu W. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway. THE NEW PHYTOLOGIST 2023; 240:1449-1466. [PMID: 37598305 DOI: 10.1111/nph.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown. In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host. Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C. graminicola. Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Cai M, Wu X, Liang X, Hu H, Liu Y, Yong T, Li X, Xiao C, Gao X, Chen S, Xie Y, Wu Q. Comparative proteomic analysis of two divergent strains provides insights into thermotolerance mechanisms of Ganoderma lingzhi. Fungal Genet Biol 2023; 167:103796. [PMID: 37146899 DOI: 10.1016/j.fgb.2023.103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.
Collapse
Affiliation(s)
- Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tianqiao Yong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
5
|
Chellappan BV, El-Ganainy SM, Alrajeh HS, Al-Sheikh H. In Silico Characterization of the Secretome of the Fungal Pathogen Thielaviopsis punctulata, the Causal Agent of Date Palm Black Scorch Disease. J Fungi (Basel) 2023; 9:jof9030303. [PMID: 36983471 PMCID: PMC10051545 DOI: 10.3390/jof9030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The black scorch disease of date palm caused by Thielaviopsis punctulata is a serious threat to the cultivation and productivity of date palm in Arabian Peninsula. The virulence factors that contribute to pathogenicity of T. punctulata have not been identified yet. In the present study, using bioinformatics approach, secretory proteins of T. punctulata were identified and functionally characterized. A total of 197 putative secretory proteins were identified, of which 74 were identified as enzymes for carbohydrate degradation (CAZymes), 25 were proteases, and 47 were predicted as putative effectors. Within the CAZymes, 50 cell wall-degrading enzymes, potentially to degrade cell wall components such as cellulose, hemicellulose, lignin, and pectin, were identified. Of the 47 putative effectors, 34 possessed at least one functional domain. The secretome of T. punctulata was compared to the predicted secretome of five closely related species (T. musarum, T. ethacetica, T. euricoi, T. cerberus, and T. populi) and identified species specific CAZymes and putative effector genes in T. punctulata, providing a valuable resource for the research aimed at understanding the molecular mechanism underlying the pathogenicity of T. punctulata on Date palm.
Collapse
Affiliation(s)
- Biju Vadakkemukadiyil Chellappan
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt
| | - Hind Salih Alrajeh
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Figueiredo J, Santos RB, Guerra-Guimarães L, Leclercq CC, Renaut J, Malhó R, Figueiredo A. An in-planta comparative study of Plasmopara viticola proteome reveals different infection strategies towards susceptible and Rpv3-mediated resistance hosts. Sci Rep 2022; 12:20794. [PMID: 36456634 PMCID: PMC9715676 DOI: 10.1038/s41598-022-25164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible ('Trincadeira') and a Rpv3-mediated resistance ('Regent') grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.
Collapse
Affiliation(s)
- Joana Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Leonor Guerra-Guimarães
- CIFC - Centro de Investigação das Ferrugens Do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Céline C Leclercq
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Rui Malhó
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| |
Collapse
|
7
|
Qian Y, Zheng X, Wang X, Yang J, Zheng X, Zeng Q, Li J, Zhuge Q, Xiong Q. Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea. Front Cell Infect Microbiol 2022; 12:1045615. [PMID: 36439212 PMCID: PMC9684206 DOI: 10.3389/fcimb.2022.1045615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 01/10/2024] Open
Abstract
Proteins containing Common in Fungal Extracellular Membrane (CFEM) domains uniquely exist in fungi and play significant roles in their whole life history. In this study, a total of 11 MbCFEM proteins were identified from Marssonina brunnea f. sp. multigermtubi (MULT), a hemibiotrophic pathogenic fungus on poplars that causes severe leaf diseases. Phylogenic analysis showed that the 11 proteins (MbCFEM1-11) were divided into three clades based on the trans-membrane domain and the CFEM domain. Sequence alignment and WebLogo analysis of CFEM domains verified the amino acids conservatism therein. All of them possess eight cysteines except MbCFEM4 and MbCFEM11, which lack two cysteines each. Six MbCFEM proteins with a signal peptide and without trans-membrane domain were considered as candidate effectors for further functional analysis. Three-dimensional (3D) models of their CFEM domains presented a helical-basket structure homologous to the crucial virulence factor Csa2 of Candida albicans. Afterward, four (MbCFEM1, 6, 8, and 9) out of six candidate effectors were successfully cloned and a yeast signal sequence trap (YSST) assay confirmed their secretion activity. Pathogen challenge assays demonstrated that the transient expression of four candidate MbCFEM effectors in Nicotiana benthamiana promoted Fusarium proliferatum infection, respectively. In an N. benthamiana heterogeneous expression system, MbCFEM1, MbCFEM6, and MbCFEM9 appeared to suppress both BAX/INF1-triggered PCD, whereas MbCFEM8 could only defeat BAX-triggered PCD. Additionally, subcellular localization analysis indicated that the four candidate MbCFEM effectors accumulate in the cell membrane, nucleus, chloroplast, and cytosolic bodies. These results demonstrate that MbCFEM1, MbCFEM6, MbCFEM8, and MbCFEM9 are effectors of M. brunnea and provide valuable targets for further dissection of the molecular mechanisms underlying the poplar-M. brunnea interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
The Small Ras Superfamily GTPase Rho4 of the Maize Anthracnose Fungus Colletotrichum graminicola Is Required for β-1,3-glucan Synthesis, Cell Wall Integrity, and Full Virulence. J Fungi (Basel) 2022; 8:jof8100997. [PMID: 36294561 PMCID: PMC9604917 DOI: 10.3390/jof8100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Small Ras superfamily GTPases are highly conserved regulatory factors of fungal cell wall biosynthesis and morphogenesis. Previous experiments have shown that the Rho4-like protein of the maize anthracnose fungus Colletotrichum graminicola, formerly erroneously annotated as a Rho1 protein, physically interacts with the β-1,3-glucan synthase Gls1 (Lange et al., 2014; Curr. Genet. 60:343–350). Here, we show that Rho4 is required for β-1,3-glucan synthesis. Accordingly, Δrho4 strains formed distorted vegetative hyphae with swellings, and exhibited strongly reduced rates of hyphal growth and defects in asexual sporulation. Moreover, on host cuticles, conidia of Δrho4 strains formed long hyphae with hyphopodia, rather than short germ tubes with appressoria. Hyphopodia of Δrho4 strains exhibited penetration defects and often germinated laterally, indicative of cell wall weaknesses. In planta differentiated infection hyphae of Δrho4 strains were fringy, and anthracnose disease symptoms caused by these strains on intact and wounded maize leaf segments were significantly weaker than those caused by the WT strain. A retarded disease symptom development was confirmed by qPCR analyses. Collectively, we identified the Ras GTPase Rho4 as a new virulence factor of C. graminicola.
Collapse
|
10
|
de Oliveira Silva A, Aliyeva-Schnorr L, Wirsel SGR, Deising HB. Fungal Pathogenesis-Related Cell Wall Biogenesis, with Emphasis on the Maize Anthracnose Fungus Colletotrichum graminicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070849. [PMID: 35406829 PMCID: PMC9003368 DOI: 10.3390/plants11070849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 05/25/2023]
Abstract
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant invasion. Several factors required for virulence or pathogenicity have been identified in different Colletotrichum species, and adaptation of cell wall biogenesis to distinct stages of pathogenesis has been identified as a major pre-requisite for the establishment of a compatible parasitic fungus-plant interaction. Here, we highlight aspects of fungal cell wall biogenesis during plant infection, with emphasis on the maize leaf anthracnose and stalk rot fungus, Colletotrichum graminicola.
Collapse
|
11
|
Glycosylphosphatidylinositol Anchor Biosynthesis Pathway-Related Protein GPI7 Is Required for the Vegetative Growth and Pathogenicity of Colletotrichum graminicola. Int J Mol Sci 2022; 23:ijms23062985. [PMID: 35328406 PMCID: PMC8949851 DOI: 10.3390/ijms23062985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a common post-translational modification in eukaryotic cells and has been demonstrated to have a wide range of biological functions, such as signal transduction, cellular adhesion, protein transport, immune response, and maintaining cell wall integrity. More than 25 proteins have been proven to participate in the GPI anchor synthesis pathway which occurs in the cytoplasmic and the luminal face of the ER membrane. However, the essential proteins of the GPI anchor synthesis pathway are still less characterized in maize pathogen Colletotrichum graminicola. In the present study, we analyzed the biological function of the GPI anchor synthesis pathway-related gene, CgGPI7, that encodes an ethanolamine phosphate transferase, which is localized in ER. The vegetative growth and conidia development of the ΔCgGPI7 mutant was significantly impaired in C. graminicola. and qRT-PCR results showed that the transcriptional level of CgGPI7 was specifically induced in the initial infection stage and that the pathogenicity of ΔCgGPI7 mutant was also significantly decreased compared with the wild type. Furthermore, the ΔCgGPI7 mutant displayed more sensitivity to cell wall stresses, suggesting that CgGPI7 may play a role in the cell wall integrity of C. graminicola. Cell wall synthesis-associated genes were also quantified in the ΔCgGPI7 mutant, and the results showed that chitin and β-1,3-glucans synthesis genes were significantly up-regulated in ΔCgGPI7 mutants. Our results suggested that CgGPI7 is required for vegetative growth and pathogenicity and might depend on the cell wall integrity of C. graminicola.
Collapse
|
12
|
Goulin EH, de Lima TA, dos Santos PJC, Machado MA. RNAi-induced silencing of the succinate dehydrogenase subunits gene in Colletotrichum abscissum, the causal agent of postbloom fruit drop (PFD) in citrus. Microbiol Res 2021; 260:126938. [DOI: 10.1016/j.micres.2021.126938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
|
13
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
14
|
Hatamoto M, Aizawa R, Koda K, Fukuchi T. Aminopyrifen, a novel 2-aminonicotinate fungicide with a unique effect and broad-spectrum activity against plant pathogenic fungi. JOURNAL OF PESTICIDE SCIENCE 2021; 46:198-205. [PMID: 34135681 PMCID: PMC8175217 DOI: 10.1584/jpestics.d20-094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aminopyrifen is a novel 2-aminonicotinate fungicide with unique chemistry and a novel mode of action. The fungicide showed high antifungal activity mainly against Ascomycetes and its related anamorphic fungi under in vitro and pot conditions (EC50 values: 0.0039-0.23 mg/L and 1.2-12 mg/L, respectively). The active ingredient strongly inhibited germ-tube elongation of Botrytis cinerea below 0.1 mg/L and invasion into a plant. The compound exhibited no cross-resistance to commercial fungicides in B. cinerea. The antifungal agent showed high preventive efficacy and translaminar action. In the field, aminopyrifen controlled gray mold and powdery mildew at 150 mg/L. Our findings suggest that aminopyrifen is useful for protecting crops from various plant pathogens.
Collapse
Affiliation(s)
- Masahiro Hatamoto
- Biological Section Research Department, AGRO-KANESHO Co., Ltd., 9511-4, Yuki Ibaraki 307-0001, Japan
| | - Ryo Aizawa
- Chemical Synthesis Section Research Department, AGRO-KANESHO Co., Ltd., Tokorozawa, Saitama 359-0024, Japan
| | - Kogomi Koda
- Biological Section Research Department, AGRO-KANESHO Co., Ltd., 9511-4, Yuki Ibaraki 307-0001, Japan
| | - Toshiki Fukuchi
- Biological Section Research Department, AGRO-KANESHO Co., Ltd., 9511-4, Yuki Ibaraki 307-0001, Japan
| |
Collapse
|
15
|
Liu C, Talbot NJ, Chen XL. Protein glycosylation during infection by plant pathogenic fungi. THE NEW PHYTOLOGIST 2021; 230:1329-1335. [PMID: 33454977 DOI: 10.1111/nph.17207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Glycosylation is a conserved set of post-translational modifications that exists in all eukaryotic cells. During the last decade, the role of glycosylation in plant pathogenic fungi has received significant attention and considerable progress has been made especially in Ustilago maydis and Magnaporthe oryzae. Here, we review recent advances in our understanding of the role of N-glycosylation, O-glycosylation and glycosylphosphatidylinositol (GPI) anchors during plant infection by pathogenic fungi. We highlight the roles of these processes in regulatory mechanisms associated with appressorium formation, host penetration, biotrophic growth and immune evasion. We argue that improved knowledge of glycosylation pathways and the impact of these modifications on fungal pathogenesis is overdue and could provide novel strategies for disease control.
Collapse
Affiliation(s)
- Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich,, NR4 7UH, UK
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
17
|
Abstract
Plant-colonizing fungi secrete a cocktail of effector proteins during colonization. After secretion, some of these effectors are delivered into plant cells to directly dampen the plant immune system or redirect host processes benefitting fungal growth. Other effectors function in the apoplastic space either as released proteins modulating the activity of plant enzymes associated with plant defense or as proteins bound to the fungal cell wall. For such fungal cell wall-bound effectors, we know particularly little about their molecular function. In this review, we describe effectors that are associated with the fungal cell wall and discuss how they contribute to colonization.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| |
Collapse
|
18
|
Zhao X, Tang B, Xu J, Wang N, Zhou Z, Zhang J. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides. Fungal Genet Biol 2020; 145:103474. [PMID: 33007450 DOI: 10.1016/j.fgb.2020.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022]
Abstract
The chromatin modulator Set5 plays important regulatory roles in both cell growth and stress responses of Saccharomyces cerevisiae. However, its function in filamentous fungi remains poorly understood. Here, we report the pathogenicity-related gene CgSET5 discovered in a T-DNA insertional mutant M285 of Colletotrichum gloeosporioides. Bioinformatic analysis revealed that CgSET5 encodes a SET domain-containing protein that is a homolog of the budding yeast S. cerevisiae Set5. CgSET5 is important for hyphae growth and conidiation and is necessary for appressorium formation and pathogenicity. CgSet5 regulates appressorium formation in a mitogen-activated protein kinase-independent manner. Inactivation of CgSET5 resulted in a significant reduction in chitin content within the cell wall, indicating CgSet5 plays a vital role in cell wall integrity. CgSet5 is involved in peroxisome biogenesis. We identified CgSet5 as the histone H4 methyltransferase, which methylates the critical H4 lysine residues 5 and 8 in C. gloeosporioides. We carried out a yeast two-hybrid screen to find CgSet5 interacting partners. We found CgSet5 putatively interacts with an inorganic pyrophosphatase named CgPpa1, which co-localized in the cytoplasm with CgSet5. Finally, CgPpa1 was found to strongly interact with CgSet5 in vivo during appressorium formation by bimolecular fluorescence complementation assays. These data corroborate a complex control function of CgSet5 acting as a core pathogenic regulator, which connects cell wall integrity and peroxisome biogenesis in C. gloeosporioides.
Collapse
Affiliation(s)
- Xuanzhu Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park NR4 7UH, UK
| | - Jie Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Na Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Junxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, China.
| |
Collapse
|
19
|
Lu Y, Sun J, Gao Y, Liu K, Yuan M, Gao W, Wang F, Fu D, Chen N, Xiao S, Xue C. The key iron assimilation genes ClFTR1, ClNPS6 were crucial for virulence of Curvularia lunata via initiating its appressorium formation and virulence factors. Environ Microbiol 2020; 23:613-627. [PMID: 32452607 DOI: 10.1111/1462-2920.15101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Iron is virtually an essential nutrient for all organisms, to understand how iron contributes to virulence of plant pathogenic fungi, we identified ClFTR1 and ClNPS6 in maize pathogen Curvularia lunata (Cochliobolus lunatus) in this study. Disruption of ClNPS6 significantly impaired siderophore biosynthesis. ClFTR1 and ClNPS6 did mediate oxidative stress but had no significant impact on vegetative growth, conidiation, cell wall integrity and sexual reproduction. Conidial germination delayed and appressoria formation reduced in ΔClftr1 comparing with wild type (WT) CX-3. Genes responsible for conidial germination, appressoria formation, non-host selective toxin biosynthesis and cell wall degrading enzymes were also downregulated in the transcriptome of ΔClftr1 and ΔClnps6 compared with WT. The conidial development, toxin biosynthesis and polygalacturonase activity were impaired in the mutant strains with ClFTR1 and ClNPS6 deletion during their infection to maize. ClFTR1 and ClNPS6 were upregulated expression at 12-24 and 48-120 hpi in WT respectively. ClFTR1 positively regulated conidial germination, appressoria formation in the biotrophy-specific phase. ClNPS6 positively regulates non-host selective toxin biosynthesis and cell wall degrading enzyme activity in the necrotrophy-specific phase. Our results indicated that ClFTR1 and ClNPS6 were key genes of pathogen known to conidia development and virulence factors.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yibo Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
20
|
Liu C, Xing J, Cai X, Hendy A, He W, Yang J, Huang J, Peng YL, Ryder L, Chen XL. GPI7-mediated glycosylphosphatidylinositol anchoring regulates appressorial penetration and immune evasion during infection of Magnaporthe oryzae. Environ Microbiol 2020; 22:2581-2595. [PMID: 32064718 DOI: 10.1111/1462-2920.14941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.
Collapse
Affiliation(s)
- Caiyun Liu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Xuan Cai
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ahmed Hendy
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhui He
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junbing Huang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Lauren Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Xiao-Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
21
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
22
|
Yadav U, Rai TK, Sethi SC, Chandraker A, Khan MA, Komath SS. Characterising N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12), the enzyme that catalyses the second step of GPI biosynthesis in Candida albicans. FEMS Yeast Res 2018; 18:5045028. [PMID: 29945236 DOI: 10.1093/femsyr/foy067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/23/2018] [Indexed: 01/01/2023] Open
Abstract
Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.
Collapse
Affiliation(s)
- Usha Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Tarun Kumar Rai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | | | - Anupriya Chandraker
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Mohd Ashraf Khan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
23
|
Mitic M, Berry D, Brasell E, Green K, Young CA, Saikia S, Rakonjac J, Scott B. Disruption of calcineurin catalytic subunit (cnaA) in Epichloë festucae induces symbiotic defects and intrahyphal hyphae formation. MOLECULAR PLANT PATHOLOGY 2018; 19:1414-1426. [PMID: 28990722 PMCID: PMC6638138 DOI: 10.1111/mpp.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 05/30/2023]
Abstract
Calcineurin is a conserved calcium/calmodulin-dependent protein phosphatase, consisting of a catalytic subunit A and a regulatory subunit B, which is involved in calcium-dependent signalling and regulation of various important cellular processes. In this study, we functionally characterized the catalytic subunit A (CnaA) of the endophytic fungus Epichloë festucae which forms a symbiotic association with the grass host Lolium perenne. We deleted the CnaA-encoding gene cnaA in E. festucae and examined its role in hyphal growth, cell wall integrity and symbiosis. This ΔcnaA strain had a severe growth defect with loss of radial growth and hyper-branched hyphae. Transmission electron microscopy and confocal microscopy analysis of the mutant revealed cell wall defects, aberrant septation and the formation of intrahyphal hyphae, both in culture and in planta. The mutant strain also showed a reduced infection rate in planta. The fluorescence of mutant hyphae stained with WGA-AF488 was reduced, indicating reduced chitin accessibility. Together, these results show that E. festucae CnaA is required for fungal growth, maintaining cell wall integrity and host colonization.
Collapse
Affiliation(s)
- Milena Mitic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| | - Daniel Berry
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Emma Brasell
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Kimberly Green
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| | | | - Sanjay Saikia
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| |
Collapse
|