1
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Transcriptome Analysis of the Necrotrophic Pathogen Alternaria brassicae Reveals Insights into Its Pathogenesis in Brassica juncea. Microbiol Spectr 2023:e0293922. [PMID: 36912684 PMCID: PMC10100672 DOI: 10.1128/spectrum.02939-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Alternaria blight or leaf spot caused by Alternaria brassicae has an enormous economic impact on the Brassica crops grown worldwide. Although the genome of A. brassicae has been sequenced, little is known about the genes that play a role during the infection of the host species. In this study, the transcriptome expression profile of A. brassicae during growth and infection was determined. Differential expression analysis revealed that 4,430 genes were differentially expressed during infection. Weighted gene coexpression network analysis helped identify 10 modules, which were highly correlated with growth and infection. Subsequent gene ontology (GO) enrichment analysis of the modules highlighted the involvement of biological processes such as toxin metabolism, ribosome biogenesis, polysaccharide catabolism, copper ion transport, and vesicular trafficking during infection. Additionally, 200 carbohydrate-active enzymes (CAZymes) and 80 potential effectors were significantly upregulated during infection. Furthermore, 18 secondary metabolite gene clusters were also differentially expressed during infection. The clusters responsible for the production of destruxin B, brassicicene C, and HC-toxin were significantly upregulated during infection. Collectively, these results provide an overview of the critical pathways underlying the pathogenesis of A. brassicae and highlight the distinct gene networks that are temporally regulated. The study thus provides novel insights into the transcriptional plasticity of a necrotrophic pathogen during infection of its host. Additionally, the in planta expression evidence for many potential effectors provides a theoretical basis for further investigations into the effector biology of necrotrophic pathogens such as A. brassicae. IMPORTANCE Alternaria brassicae is a necrotrophic pathogen that can infect almost all members of the Brassicaceae family. A. brassicae causes extensive yield losses in oilseed mustard and has practically restricted the cultivation of oilseed brassicas in regions with cool and foggy climatic conditions (foothills and mountainous terrains) where the severity of the pathogen is the highest. In this study, I identified the differentially expressed genes associated with the pathogenicity of A. brassicae through transcriptome sequencing. Also, I have been able to delineate pathways that are active during the early and late stages of infection. Consequently, this study has provided crucial insights into the molecular mechanisms underlying the pathogenesis of A. brassicae, an important necrotrophic pathogen.
Collapse
|
3
|
A Melanin-Deficient Isolate of Venturia inaequalis Reveals Various Roles of Melanin in Pathogen Life Cycle and Fitness. J Fungi (Basel) 2022; 9:jof9010035. [PMID: 36675856 PMCID: PMC9867426 DOI: 10.3390/jof9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Venturia inaequalis is the ascomycetous pathogen causing apple scabs and forms dark-pigmented spores and partially melanised infection structures. Although melanin is considered to be essential for the infection of host tissue, a spontaneously occurring melanin-deficient mutant was isolated from an abaxial side of an apple leaf and can be cultivated in vitro as well as in vivo. The morphology and development of the melanin-deficient-isolate SW01 on leaves of susceptible apple plants were compared to that of the corresponding wild-type isolate HS1. White conidia of SW01 were often wrinkled when dry and significantly increased their volume in suspension. Germination and formation of germtubes and appressoria were not impaired; however, the lack of melanisation of the appressorial ring structure at the interface with the plant cuticle significantly reduced the infection success of SW01. The colonisation of leaf tissue by non-melanised subcuticular hyphae was not affected until the initiation of conidiogenesis. Non-melanised conidiophores penetrated the plant cuticle from inside less successfully than the wild type, and the release of white conidia from less solid conidiophores above the cuticle was less frequent. Melanin in the outer cell wall of V. inaequalis was not required for the survival of conidia under ambient temperature or at -20 °C storage conditions, however, promoted the tolerance of the pathogen to copper and synthetic fungicides affecting the stability and function of the fungal cell wall, plasma membrane, respiration (QoIs) and enzyme secretion, but had no effect on the sensitivity to sulphur and SDHIs. The roles of melanin in different steps of the V. inaequalis life cycle and the epidemiology of apple scabs are discussed.
Collapse
|
4
|
Huang Y, Li YC, Li DM, Bi Y, Liu YX, Mao RY, Zhang M, Jiang QQ, Wang XJ, Prusky D. Molecular Characterization of Phospholipase C in Infection Structure Differentiation Induced by Pear Fruit Surface Signals, Stress Responses, Secondary Metabolism, and Virulence of Alternaria alternata. PHYTOPATHOLOGY 2022; 112:2207-2217. [PMID: 35612304 DOI: 10.1094/phyto-11-21-0475-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal pathogens use plant surface physiochemical signals to trigger specific developmental processes. To assess the role of phospholipase C (PLC) in mediating plant stimuli sensing of Alternaria alternata, the function of three PLC genes was characterized by constructing ΔAaPLC mutants. Here we showed that fruit wax-coated surfaces significantly induced appressorium formation in A. alternata and mutants. Germination of ΔAaPLC mutants did not differ from the wild type. Deletion of AaPLC1 led to the decrease of appressorium formation and infected hyphae, but the degree of reduction varies between the different types of waxes, with the strongest response to pear wax. Appressorium formation and infected hyphae of the ΔAaPLC1 mutant on dewaxed onion epidermis mounted with pear wax (θ4) were reduced by 14.5 and 65.7% after 8 h incubation, while ΔAaPLC2 and ΔAaPLC3 formed the same infection hyphae as wild type. In addition, AaPLC1 mutation caused pleiotropic effects on fungal biological function, including growth deficiency, changes in stress tolerance, weakening of pathogenicity to the host, as well as destruction of mycotoxin synthesis. Both AaPLC2 and AaPLC3 genes were found to have some effects on stress response and mycotoxin production. Taken together, AaPLC genes differentially regulate the growth, stress response, pathogenicity, and secondary metabolism of A. alternata.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dong-Mei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Xiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ren-Yan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian-Qian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao-Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
5
|
Kwasiborski A, Bastide F, Hamon B, Poupard P, Simoneau P, Guillemette T. In silico analysis of RNA interference components and miRNAs-like RNAs in the seed-borne necrotrophic fungus Alternaria brassicicola. Fungal Biol 2021; 126:224-234. [DOI: 10.1016/j.funbio.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
|
6
|
Colou J, N'Guyen GQ, Dubreu O, Fontaine K, Kwasiborski A, Bastide F, Manero F, Hamon B, Aligon S, Simoneau P, Guillemette T. Role of membrane compartment occupied by Can1 (MCC) and eisosome subdomains in plant pathogenicity of the necrotrophic fungus Alternaria brassicicola. BMC Microbiol 2019; 19:295. [PMID: 31842747 PMCID: PMC6916069 DOI: 10.1186/s12866-019-1667-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MCC/eisosomes are membrane microdomains that have been proposed to participate in the plasma membrane function in particular by regulating the homeostasis of lipids, promoting the recruitment of specific proteins and acting as provider of membrane reservoirs. RESULTS Here we showed that several potential MCC/eisosomal protein encoding genes in the necrotrophic fungus A. brassicicola were overexpressed when germinated spores were exposed to antimicrobial defence compounds, osmotic and hydric stresses, which are major constraints encountered by the fungus during the plant colonization process. Mutants deficient for key MCC/eisosome components did not exhibit any enhanced susceptibility to phytoalexins and to applied stress conditions compared to the reference strain, except for a slight hypersensitivity of the ∆∆abpil1a-abpil1b strain to 2 M sorbitol. Depending on the considered mutants, we showed that the leaf and silique colonization processes were impaired by comparison to the wild-type, and assumed that these defects in aggressiveness were probably caused by a reduced appressorium formation rate. CONCLUSIONS This is the first study on the role of MCC/eisosomes in the pathogenic process of a plant pathogenic fungus. A link between these membrane domains and the fungus ability to form functional penetration structures was shown, providing new potential directions for plant disease control strategies.
Collapse
Affiliation(s)
- Justine Colou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, QC, Québec, G1V 0A6, Canada
| | - Ophélie Dubreu
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Kévin Fontaine
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt, 54220, Malzéville, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Florence Manero
- Plateforme SCIAM, Institut de Biologie en Santé, CHU, Université d'Angers, 4, Rue Larrey, 49933, Angers Cedex, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Sophie Aligon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.
| |
Collapse
|
7
|
Fatima U, Bhorali P, Senthil-Kumar M. Morpho-Pathological and Global Transcriptomic Analysis Reveals the Robust Nonhost Resistance Responses in Chickpea Interaction with Alternaria brassicae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1598-1613. [PMID: 31364484 DOI: 10.1094/mpmi-05-19-0117-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alternaria blight, caused by Alternaria brassicae, causes considerable yield loss in Brassica crops. While several blight-resistant varieties have been developed using resistance sources from host germplasm, none of them are entirely successful in imparting durable resistance. This has prompted the exploration of novel gene pools of nonhost plant species. Nonhost resistance (NHR) is a durable form of resistance, comprising pre- and postinvasion layers of defense. We aimed to identify the molecular basis of NHR to A. brassicae and identify the layers of NHR operating in a nonhost, chickpea (Cicer arietinum). To elucidate the layers of NHR operating against A. brassicae, we compared the histopathology and infection patterns of A. brassicae in C. arietinum and Brassica juncea. Delayed conidial germination, impeded hyphal growth, suppressed appressorium formation, and limited hyphal penetration occurred in the nonhost plant compared with the host plant, implying the involvement of the preinvasion layer of NHR in C. arietinum. Next, we investigated the molecular basis of robust NHR, in C. arietinum challenged with A. brassicae, by microarray-based global transcriptome profiling. Genes involved in stomatal closure, cuticular wax biosynthesis, cell-wall modification, and secondary metabolite production (contributing to preinvasion NHR) as well as reactive oxygen species (ROS) and cell death (contributing to postinvasion NHR) were found to be upregulated. Consistent with transcriptomic analysis, the morpho-pathological analysis revealed stomatal closure, ROS accumulation, and localized cell death in C. arietinum as the defense strategies against A. brassicae. Thus, we identified NHR-contributing genes with potential applications in blight resistance gene transfer to B. juncea.
Collapse
Affiliation(s)
- Urooj Fatima
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi 110 067, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, Assam, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi 110 067, India
| |
Collapse
|
8
|
Fatima U, Bhorali P, Borah S, Senthil-Kumar M. Perspectives on the utilization of resistance mechanisms from host and nonhost plants for durable protection of Brassica crops against Alternaria blight. PeerJ 2019; 7:e7486. [PMID: 31579565 PMCID: PMC6766370 DOI: 10.7717/peerj.7486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alternaria brassicae, the causal organism of Alternaria blight, is a necrotroph infecting crops of the Brassicaceae family at all growth stages. To circumvent this problem, several disease management strategies are being used in the field, and disease-resistant varieties have also been developed. However, no strategy has proven completely successful, owing to the high variability in virulence among A. brassicae isolates, which causes a diverse spectrum of symptoms. Nonhost resistance (NHR) is a robust and broad-spectrum defense mechanism available in plants, and the exploitation of gene pools from plant species that are nonhost to A. brassicae could serve as novel sources of resistance. METHODOLOGY We searched the literature using key words relevant to this study in various search engines, such as PubMed, Web of Science, and Google Scholar, as well as certain journal websites. The literature was retrieved, sorted, and mined to extract data pertinent to the present review. RESULTS In this review, we have comprehensively covered the recent progress made in developing Alternaria blight resistance in Brassica crops by exploiting host germplasm. We also enumerate the potential NHR sources available for A. brassicae and the NHR layers possibly operating against this pathogen. In addition, we propose different strategies for identifying NHR-related genes from nonhost plants and testing their relevance in imparting broad-spectrum resistance when transferred to host plants. CONCLUSION This review will help broaden the current knowledge base pertaining to the resistance sources available in host germplasm, the exploitation of NHR mechanisms, and their applications in protecting Brassica crops from Alternaria blight. The insights might also be applicable to a wider repertoire of plant pathogens.
Collapse
Affiliation(s)
- Urooj Fatima
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sudarshana Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | |
Collapse
|
9
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
10
|
Pigné S, Zykwinska A, Janod E, Cuenot S, Kerkoud M, Raulo R, Bataillé-Simoneau N, Marchi M, Kwasiborski A, N'Guyen G, Mabilleau G, Simoneau P, Guillemette T. A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola. Fungal Biol Biotechnol 2017; 4:1. [PMID: 28955470 PMCID: PMC5611651 DOI: 10.1186/s40694-016-0029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. RESULTS Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. CONCLUSION This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.
Collapse
Affiliation(s)
- Sandrine Pigné
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Agata Zykwinska
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France.,Present Address: Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, IFREMER, Rue de l'île d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - Etienne Janod
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
| | - Stéphane Cuenot
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
| | - Mohammed Kerkoud
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Roxane Raulo
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | | | - Muriel Marchi
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Anthony Kwasiborski
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Guillaume N'Guyen
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Guillaume Mabilleau
- Plateforme SCIAM, Institut de Biologie en Santé, CHU, Université d'Angers, 4, Rue Larrey, 49933 Angers Cedex, France
| | - Philippe Simoneau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Thomas Guillemette
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| |
Collapse
|
11
|
Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs. Antimicrob Agents Chemother 2015; 60:1646-55. [PMID: 26711773 DOI: 10.1128/aac.02190-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.
Collapse
|
12
|
Calmes B, Morel-Rouhier M, Bataillé-Simoneau N, Gelhaye E, Guillemette T, Simoneau P. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiol 2015; 15:123. [PMID: 26081847 PMCID: PMC4470081 DOI: 10.1186/s12866-015-0462-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. RESULTS Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. CONCLUSIONS Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Mélanie Morel-Rouhier
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Nelly Bataillé-Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Eric Gelhaye
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès, F-54500, Nancy, France.
- INRA, UMR1136 Interactions Arbres-Microorganismes, F-54280, Champenoux, France.
| | - Thomas Guillemette
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| | - Philippe Simoneau
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France.
- INRA, UMR 1345 IRHS, 42 rue Georges Morel, Beaucouzé Cedex, F-49071, France.
- Agrocampus-Ouest, UMR 1345 IRHS, 2 rue le Nôtre, Angers cedex, F-49045, France.
| |
Collapse
|
13
|
Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:414. [PMID: 26089832 PMCID: PMC4452805 DOI: 10.3389/fpls.2015.00414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Guillaume N’Guyen
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Jérome Dumur
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Carlos A. Brisach
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Claire Campion
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Béatrice Iacomi
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Sandrine Pigné
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Eva Dias
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - David Macherel
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Thomas Guillemette
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Philippe Simoneau
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| |
Collapse
|
14
|
A Pectate Lyase-Coding Gene Abundantly Expressed during Early Stages of Infection Is Required for Full Virulence in Alternaria brassicicola. PLoS One 2015; 10:e0127140. [PMID: 25996954 PMCID: PMC4440746 DOI: 10.1371/journal.pone.0127140] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022] Open
Abstract
Alternaria brassicicola causes black spot disease of Brassica species. The functional importance of pectin digestion enzymes and unidentified phytotoxins in fungal pathogenesis has been suspected but not verified in A. brassicicola. The fungal transcription factor AbPf2 is essential for pathogenicity and induces 106 genes during early pathogenesis, including the pectate lyase-coding gene, PL1332. The aim of this study was to test the importance and roles of PL1332 in pathogenesis. We generated deletion strains of the PL1332 gene, produced heterologous PL1332 proteins, and evaluated their association with virulence. Deletion strains of the PL1332 gene were approximately 30% less virulent than wild-type A. brassicicola, without showing differences in colony expansion on solid media and mycelial growth in nutrient-rich liquid media or minimal media with pectins as a major carbon source. Heterologous PL1332 expressed as fusion proteins digested polygalacturons in vitro. When the fusion proteins were injected into the apoplast between leaf veins of host plants the tissues turned dark brown and soft, resembling necrotic leaf tissue. The PL1332 gene was the first example identified as a general toxin-coding gene and virulence factor among the 106 genes regulated by the transcription factor, AbPf2. It was also the first gene to have its functions investigated among the 19 pectate lyase genes and several hundred putative cell-wall degrading enzymes in A. brassicicola. These results further support the importance of the AbPf2 gene as a key pathogenesis regulator and possible target for agrochemical development.
Collapse
|
15
|
Manning VA, Ciuffetti LM. Necrotrophic effector epistasis in the Pyrenophora tritici-repentis-wheat interaction. PLoS One 2015; 10:e0123548. [PMID: 25845019 PMCID: PMC4386829 DOI: 10.1371/journal.pone.0123548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
16
|
Dang HX, Pryor B, Peever T, Lawrence CB. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 2015; 16:239. [PMID: 25887485 PMCID: PMC4387663 DOI: 10.1186/s12864-015-1430-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
Background Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. Description We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Conclusion Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The Alternaria genomes database is freely available for non-profit use at http://alternaria.vbi.vt.edu.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA. .,Current address: Department of Internal Medicine, Division of Oncology, and The Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Barry Pryor
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA.
| | - Tobin Peever
- Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA.
| | - Christopher B Lawrence
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA. .,Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA.
| |
Collapse
|
17
|
Dang HX, Pryor B, Peever T, Lawrence CB. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 2015; 16:239. [PMID: 25887485 DOI: 10.1186/s12864-015-1430-7/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. DESCRIPTION We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. CONCLUSION Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The Alternaria genomes database is freely available for non-profit use at http://alternaria.vbi.vt.edu .
Collapse
Affiliation(s)
- Ha X Dang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA.
- Current address: Department of Internal Medicine, Division of Oncology, and The Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Barry Pryor
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA.
| | - Tobin Peever
- Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA.
| | - Christopher B Lawrence
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA.
- Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA.
| |
Collapse
|
18
|
How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. EUKARYOTIC CELL 2015; 14:335-44. [PMID: 25681268 DOI: 10.1128/ec.00226-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alternaria species are mainly saprophytic fungi, but some are plant pathogens. Seven pathotypes of Alternaria alternata use secondary metabolites of host-specific toxins as pathogenicity factors. These toxins kill host cells prior to colonization. Genes associated with toxin synthesis reside on conditionally dispensable chromosomes, supporting the notion that pathogenicity might have been acquired several times by A. alternata. Alternaria brassicicola, however, seems to employ a different mechanism. Evidence on the use of host-specific toxins as pathogenicity factors remains tenuous, even after a diligent search aided by full-genome sequencing and efficient reverse-genetics approaches. Similarly, no individual genes encoding lipases or cell wall-degrading enzymes have been identified as strong virulence factors, although these enzymes have been considered important for fungal pathogenesis. This review describes our current understanding of toxins, lipases, and cell wall-degrading enzymes and their roles in the pathogenesis of A. brassicicola compared to those of other pathogenic fungi. It also describes a set of genes that affect pathogenesis in A. brassicicola. They are involved in various cellular functions that are likely important in most organisms and probably indirectly associated with pathogenesis. Deletion or disruption of these genes results in weakly virulent strains that appear to be sensitive to the defense mechanisms of host plants. Finally, this review discusses the implications of a recent discovery of three important transcription factors associated with pathogenesis and the putative downstream genes that they regulate.
Collapse
|
19
|
Transcriptional responses of the Bdtf1-deletion mutant to the phytoalexin brassinin in the necrotrophic fungus Alternaria brassicicola. Molecules 2014; 19:10717-32. [PMID: 25061722 PMCID: PMC6270968 DOI: 10.3390/molecules190810717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/28/2022] Open
Abstract
Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.
Collapse
|
20
|
Fetzner R, Seither K, Wenderoth M, Herr A, Fischer R. Alternaria alternata transcription factor CmrA controls melanization and spore development. MICROBIOLOGY-SGM 2014; 160:1845-1854. [PMID: 24972701 DOI: 10.1099/mic.0.079046-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanin is a black pigment widely distributed across the kingdoms, from bacterial to human. The filamentous fungus Alternaria alternata is a typical 'black fungus', which produces melanin in its hyphal and especially its asexual spore cell walls. Its biosynthesis follows the dihydroxynaphthalene (DHN) pathway with 1,8-DHN as an intermediate. Two genes, encoding a polyketide synthase (pksA) and a 1,3,8-trihydroxynaphthalene (THN) reductase (brm2), along with a putative transcription factor, CmrA, comprise a small gene cluster. Here we show that CmrA controls the expression of pksA and brm2, but that it also controls the expression of a scytalone dehydratase encoding gene (brm1) located elsewhere in the genome. The regulatory function of CmrA was shown in a reporter assay system. Al. alternata CmrA was expressed in the filamentous fungus Aspergillus nidulans where it was able to induce the expression of a reporter construct under the control of the putative pksA promoter. This suggests direct binding of CmrA to the promoter of pksA in the heterologous system. Likewise, silencing of cmrA in Al. alternata led to white colonies due to the lack of melanin. In addition, hyphal diameter and spore morphology were changed in the mutant and the number of spores reduced. Silencing of brm2 and inhibition of melanin biosynthesis by tricyclazole largely phenocopied the effects of cmrA silencing, suggesting a novel regulatory function of melanin in morphogenetic pathways.
Collapse
Affiliation(s)
- Ramona Fetzner
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Kristin Seither
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Maximilian Wenderoth
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Andreas Herr
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| |
Collapse
|
21
|
Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 2014; 80:2582-91. [PMID: 24532063 DOI: 10.1128/aem.00327-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alternaria alternata is a filamentous fungus that causes considerable loss of crops of economically important feed and food worldwide. It produces more than 60 different secondary metabolites, among which alternariol (AOH) and altertoxin (ATX) are the most important mycotoxins. We found that mycotoxin production and spore formation are regulated by light in opposite ways. Whereas spore formation was largely decreased under light conditions, the production of AOH was stimulated 2- to 3-fold. ATX production was even strictly dependent on light. All light effects observed could be triggered by blue light, whereas red light had only a minor effect. Inhibition of spore formation by light was reversible after 1 day of incubation in the dark. We identified orthologues of genes encoding the Neurospora crassa blue-light-perceiving white-collar proteins, a cryptochrome, a phytochrome, and an opsin-related protein in the genome of A. alternata. Deletion of the white-collar 1 (WC-1) gene (lreA) resulted in derepression of spore formation in dark and in light. ATX formation was strongly induced in the dark in the lreA mutant, suggesting a repressing function of LreA, which appears to be released in the wild type after blue-light exposure. In addition, light induction of AOH formation was partially dependent on LreA, suggesting also an activating function. A. alternata ΔlreA was still able to partially respond to blue light, indicating the action of another blue-light receptor system.
Collapse
|
22
|
Srivastava A, Cho IK, Cho Y. The Bdtf1 gene in Alternaria brassicicola is important in detoxifying brassinin and maintaining virulence on Brassica species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1429-1440. [PMID: 23945003 DOI: 10.1094/mpmi-07-13-0186-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Brassinin is an antifungal compound induced in Brassica plants after microbial infection. Molecular evidence is incomplete, however, in supporting the importance of brassinin in plant resistance to pathogens. To test the importance of brassinin in plant defense, we studied the functions of the gene Bdtf1 in the necrotrophic fungus Alternaria brassicicola. Several strains of mutants of this gene were weakly virulent on Brassica species, causing lesions 70% smaller in diameter than the wild type on three Brassica species. These mutants, however, were as virulent as the wild type on Arabidopsis thaliana. They were similar to the wild type in spore germination, colony morphology, and mycelial growth in nutrient-rich media, both with and without stress-inducing chemicals. Unlike wild-type A. brassicicola, however, the mutants failed to germinate and their hyphal growth was arrested in the presence of 200 μM brassinin. When grown in a medium containing 100 μM brassinin, wild-type mycelium entirely converted the brassinin into a nontoxic derivative, of which the precise chemical nature was not established. Mutants of the Bdtf1 gene were unable to perform this conversion. Our results support the hypothesis that the ability of A. brassicicola to detoxify brassinin is necessary for successful infection of Brassica species.
Collapse
|
23
|
Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, Jaspard E, Calmes B, Hamon B, Berruyer R, Juchaux M, Guillemette T. Dehydrin-like proteins in the necrotrophic fungus Alternaria brassicicola have a role in plant pathogenesis and stress response. PLoS One 2013; 8:e75143. [PMID: 24098369 PMCID: PMC3788798 DOI: 10.1371/journal.pone.0075143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.
Collapse
Affiliation(s)
- Stéphanie Pochon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Philippe Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Sandrine Pigné
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Samuel Balidas
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Nelly Bataillé-Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Claire Campion
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Emmanuel Jaspard
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Benoît Calmes
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Bruno Hamon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Romain Berruyer
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | | | - Thomas Guillemette
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- * E-mail:
| |
Collapse
|
24
|
Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, Iacomi B, Lemoine R, Richomme P, Simoneau P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. FRONTIERS IN PLANT SCIENCE 2013; 4:131. [PMID: 23717316 PMCID: PMC3652318 DOI: 10.3389/fpls.2013.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/20/2013] [Indexed: 05/29/2023]
Abstract
In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.
Collapse
Affiliation(s)
- Benoit Calmes
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Thomas Guillemette
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Lény Teyssier
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Benjamin Siegler
- Plateforme d'Ingénierie et Analyses Moléculaires, Université d'AngersAngers Cedex, France
| | - Sandrine Pigné
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Anne Landreau
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | | | - Rémi Lemoine
- Ecologie, Biologie des Interactions, UMR 7267 CNRS/Université de PoitiersPoitiers, France
| | - Pascal Richomme
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | - Philippe Simoneau
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| |
Collapse
|
25
|
Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang KH, Grigoriev IV, Marahatta SP. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog 2012; 8:e1002974. [PMID: 23133370 PMCID: PMC3486909 DOI: 10.1371/journal.ppat.1002974] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/31/2012] [Indexed: 01/22/2023] Open
Abstract
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of Δamr1 and characterized their phenotypes. The Δamr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.
Collapse
Affiliation(s)
- Yangrae Cho
- Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
| | | | | | | | | | | | | |
Collapse
|
26
|
Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C, Fischer R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS One 2012; 7:e40564. [PMID: 22792370 PMCID: PMC3391263 DOI: 10.1371/journal.pone.0040564] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Alternaria alternata produces more than 60 secondary metabolites, among which alternariol (AOH) and alternariol-9-methyl ether (AME) are important mycotoxins. Whereas the toxicology of these two polyketide-based compounds has been studied, nothing is known about the genetics of their biosynthesis. One of the postulated core enzymes in the biosynthesis of AOH and AME is polyketide synthase (PKS). In a draft genome sequence of A. alternata we identified 10 putative PKS-encoding genes. The timing of the expression of two PKS genes, pksJ and pksH, correlated with the production of AOH and AME. The PksJ and PksH proteins are predicted to be 2222 and 2821 amino acids in length, respectively. They are both iterative type I reducing polyketide synthases. PksJ harbors a peroxisomal targeting sequence at the C-terminus, suggesting that the biosynthesis occurs at least partly in these organelles. In the vicinity of pksJ we found a transcriptional regulator, altR, involved in pksJ induction and a putative methyl transferase, possibly responsible for AME formation. Downregulation of pksJ and altR caused a large decrease of alternariol formation, suggesting that PksJ is the polyketide synthase required for the postulated Claisen condensations during the biosynthesis. No other enzymes appeared to be required. PksH downregulation affected pksJ expression and thus caused an indirect effect on AOH production.
Collapse
Affiliation(s)
- Debjani Saha
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ramona Fetzner
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Britta Burkhardt
- Department of Food Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Joachim Podlech
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Organic Chemistry, Karlsruhe, Germany
| | - Manfred Metzler
- Department of Food Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ha Dang
- Virginia Bioinformatics Institute, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christopher Lawrence
- Virginia Bioinformatics Institute, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
27
|
Watson R, Wang S. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA. Fungal Genet Biol 2012; 49:556-66. [DOI: 10.1016/j.fgb.2012.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/06/2023]
|
28
|
Srivastava A, Ohm RA, Oxiles L, Brooks F, Lawrence CB, Grigoriev IV, Cho Y. A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:443-52. [PMID: 22185468 DOI: 10.1094/mpmi-10-11-0275] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall-degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19-reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.
Collapse
Affiliation(s)
- Akhil Srivastava
- Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 317, Honolulu 96822, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ben-Daniel BH, Bar-Zvi D, Tsror Lahkim L. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. MOLECULAR PLANT PATHOLOGY 2012; 13:187-97. [PMID: 21848609 PMCID: PMC6638648 DOI: 10.1111/j.1364-3703.2011.00740.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality. We explored the role of secreted pectate lyase (PL), a cell wall-degrading enzyme, in the aggressiveness of C. coccodes. In vitro-cultivated highly aggressive isolates secreted immunologically detectable PL levels 6 h after transfer to secondary medium versus 12 h for mildly aggressive isolates, suggesting that secreted PL is a virulence factor. The gene encoding PL, CcpelA, was cloned and used for the genetic manipulation of highly (US-41 and Si-72) and mildly (Si-60) aggressive isolates. CcpelA gene-disrupted mutants showed reduced aggressiveness towards tomato fruits and impaired PL secretion and extracellular activity. Conversely, overexpression of CcpelA in the Si-60 isolate increased its aggressiveness and PL secretion. Comparison of CcpelA cloned from isolates US-41 and Si-60 revealed that both encode identical proteins, but differ in their promoters. Bioinformatics analysis for cis-acting elements suggested that the promoters of the US-41 and Si-60 isolates contain one and no AreA-binding site (GATA box), respectively. AreA has been suggested to be involved in fungal aggressiveness; therefore, CcpelA may be a key virulence factor in C. coccodes pathogenicity, and the differences in isolate aggressiveness might result from promoter activity. Quantitative reverse transcriptase-polymerase chain reaction analyses confirmed the higher level of CcpelA transcript in isolate US-41 versus Si-60.
Collapse
Affiliation(s)
- Bat-Hen Ben-Daniel
- Department of Plant Pathology, Agricultural Research Organization, Gilat Research Center, MP Negev 85280, Israel
| | | | | |
Collapse
|
30
|
Joubert A, Simoneau P, Campion C, Bataillé-Simoneau N, Iacomi-Vasilescu B, Poupard P, François JM, Georgeault S, Sellier E, Guillemette T. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol Microbiol 2011; 79:1305-24. [PMID: 21251090 DOI: 10.1111/j.1365-2958.2010.07522.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unfolded protein response (UPR) is an important stress signalling pathway involved in the cellular development and environmental adaptation of fungi. We investigated the importance of the UPR pathway in the pathogenicity of the plant necrotrophic fungus Alternaria brassicicola, which causes black spot disease on a wide range of Brassicaceae. We identified the AbHacA gene encoding the major UPR transcription regulator in A. brassicicola. Deletion of AbHacA prevented induction of the UPR in response to endoplasmic reticulum stress. Loss of UPR in mutants resulted in a complete loss of virulence and was also associated with a cell wall defect and a reduced capacity for secretion. In addition, our results showed that the UPR was triggered by treatment of mycelia with camalexin, i.e. the major Arabidopsis thaliana phytoalexin, and that strains lacking functional AbHacA exhibited increased in vitro susceptibility to antimicrobial plant metabolites. We hypothesize that the UPR plays a major role in fungal virulence by altering cell protection against host metabolites and by reducing the ability of the fungus to assimilate nutrients required for growth in the host environment. This study suggests that targeting the UPR pathway would be an effective plant disease control strategy.
Collapse
Affiliation(s)
- A Joubert
- UMR PAVE No. 77, IFR 149 QUASAV, 2 Bd Lavoisier, F-49045 Angers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim JK, Park YJ, Kong WS, Kang HW. Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes. MYCOBIOLOGY 2010; 38:331-335. [PMID: 23956676 PMCID: PMC3741529 DOI: 10.4489/myco.2010.38.4.331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/19/2010] [Indexed: 06/02/2023]
Abstract
In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 10(7) protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.
Collapse
Affiliation(s)
- Jong Kun Kim
- Graduate School of Biotechnology & Information Technology, Hankyong National University, Ansung 456-749, Korea. ; Institute of Genetic Engineering, Hankyong National University, Ansung 456-749, Korea
| | | | | | | |
Collapse
|
32
|
Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Bongers M, Walton JD. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2010; 101:9097-105. [PMID: 20678930 DOI: 10.1016/j.biortech.2010.07.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 05/08/2023]
Abstract
A high throughput enzyme assay platform, called GENPLAT, was used to guide the development of an optimized mixture of individual purified enzymes from ten "accessory" and six "core" enzymes. Enzyme mixtures were optimized for release of Glu, Xyl, or a combination of the two from corn stover pretreated by ammonia-fiber expansion (AFEX). Assay conditions were a fixed enzyme loading of 15 mg/g glucan, 48 h digestion, and 50 degrees C. Five of the ten tested accessory proteins enhanced Glu or Xyl yield compared to the core set alone, and five did not. An 11-component mixture containing the core set and five accessory enzymes optimized for Glu released 52.1% of the available Glu, compared to 38.5% with the core set alone. A mixture optimized for Xyl released 39.9% of the Xyl, compared to 26.4% with the core set alone. We predict that there is still considerable opportunity for further improvement of synthetic mixtures. Furthermore, the strategy described here is applicable to the development of more efficient enzyme cocktails for any pretreatment/biomass combination and for detecting enzymes that make a heretofore unrecognized contribution to lignocellulose deconstruction.
Collapse
Affiliation(s)
- Goutami Banerjee
- Department of Energy Great Lakes Bioenergy Research Center and Department of Energy Plant Research Laboratory, Michigan State University, E. Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
33
|
Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol 2010; 13:62-80. [PMID: 20812995 DOI: 10.1111/j.1462-5822.2010.01520.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.
Collapse
Affiliation(s)
- Aymeric Joubert
- UMR PaVe no. 77, IFR 149 QUASAV, 2 Bd Lavoisier, F-49045 Angers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim KH, Willger SD, Park SW, Puttikamonkul S, Grahl N, Cho Y, Mukhopadhyay B, Cramer RA, Lawrence CB. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 2009; 5:e1000653. [PMID: 19893627 PMCID: PMC2766074 DOI: 10.1371/journal.ppat.1000653] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022] Open
Abstract
The regulation of intracellular levels of reactive oxygen species (ROS) is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P)-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus ΔtmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola ΔtmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus ΔtmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola ΔtmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the ΔtmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola ΔtmpL background. Collectively, we have discovered a novel protein involved in the virulence of both plant and animal fungal pathogens. Our results strongly suggest that dysregulation of oxidative stress homeostasis in the absence of TmpL is the underpinning cause of the developmental and virulence defects observed in these studies. The critical roles of reactive oxygen species (ROS) in fungal development and virulence have been well established over the past half a century since the first experimental detection of hydrogen peroxide in fungal cells by Bach (1950). In the cell, ROS act as signaling molecules regulating physiological responses and developmental processes and are also involved in sophisticated virulence processes for many pathogenic fungi. Therefore, uncovering the biological roles of cellular ROS appears to be very important in understanding fungal development and virulence. Currently we have limited knowledge of how intracellular ROS are generated by fungal cells and which cellular ROS regulatory mechanisms are involved in establishing homeostasis. In this study we describe a novel protein, TmpL, involved in development and virulence in both plant and animal pathogenic fungi. In the absence of TmpL, dysregulation of oxidative stress homeostasis in both fungi caused developmental and virulence defects. Therefore, elucidating the role of TmpL presents an opportunity to uncover a common pathogenicity mechanism employed by both plant and animal pathogens and to develop efficient and novel therapeutics for both plant and animal fungal disease. Our findings provide new insights into mechanisms underlying the complex web of interactions between ROS and cell differentiation and the involvement of ROS for both plant and animal fungal pathogenesis.
Collapse
Affiliation(s)
- Kwang-Hyung Kim
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Sven D. Willger
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Sang-Wook Park
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Srisombat Puttikamonkul
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Nora Grahl
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Yangrae Cho
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Biswarup Mukhopadhyay
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Robert A. Cramer
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (RAC); (CBL)
| | - Christopher B. Lawrence
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (RAC); (CBL)
| |
Collapse
|
35
|
Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL, Inoue Y, Hotta K, Ponikau JU, Lawrence CB, Kita H. Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. THE JOURNAL OF IMMUNOLOGY 2009; 183:6708-16. [PMID: 19864598 DOI: 10.4049/jimmunol.0901220] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are multifunctional leukocytes implicated in the pathogenesis of asthma and in immunity to certain organisms. Associations between exposure to an environmental fungus, such as Alternaria, and asthma have been recognized clinically. Protease-activated receptors (PARs) are G protein-coupled receptors that are cleaved and activated by serine proteases, but their roles in innate immunity remain unknown. We previously found that human eosinophils respond vigorously to Alternaria organisms and to the secretory product(s) of Alternaria with eosinophils releasing their proinflammatory mediators. In this study, we investigated the roles of protease(s) produced by Alternaria and of PARs expressed on eosinophils in their immune responses against fungal organisms. We found that Alternaria alternata produces aspartate protease(s) and that human peripheral blood eosinophils degranulate in response to the cell-free extract of A. alternata. Eosinophils showed an increased intracellular calcium concentration in response to Alternaria that was desensitized by peptide and protease ligands for PAR-2 and inhibited by a PAR-2 antagonistic peptide. Alternaria-derived aspartate protease(s) cleaved PAR-2 to expose neo-ligands; these neo-ligands activated eosinophil degranulation in the absence of proteases. Finally, treatment of Alternaria extract with aspartate protease inhibitors, which are conventionally used for HIV-1 and other microbes, attenuated the eosinophils' responses to Alternaria. Thus, fungal aspartate protease and eosinophil PAR-2 appear critical for the eosinophils' innate immune response to certain fungi, suggesting a novel mechanism for pathologic inflammation in asthma and for host-pathogen interaction.
Collapse
Affiliation(s)
- Yoshinori Matsuwaki
- Department of Medicine and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 2009; 73:709-20. [PMID: 19857612 DOI: 10.1016/j.jprot.2009.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 01/17/2023]
Abstract
We have studied the proteome of the model plant Arabidopsis thaliana infected with a necrotrophic fungal pathogen, Alternaria brassicicola. The Arabidopsis-A. brassicicola host-pathogen pair is being developed as a model genetic system for incompatible plant-fungal interactions, in which the spread of disease is limited by plant defense responses. After confirming that a defense response was induced at the transcriptional level, we identified proteins whose abundance on 2-DE gels increased or decreased in infected leaves. At least 11 protein spots showed reproducible differences in abundance, increasing or decreasing during the progress of the infection. The pathogenesis-related protein PR4, a glycosyl hydrolase, and the antifungal protein osmotin are strongly up-regulated. Two members of the Arabidopsis glutathione S-transferase (GST) family increased in abundance in infected leaves. The spots in which these GST proteins were identified contain additional members of the GST family. Representation of GST family members in several protein spots migrating at similar molecular weight suggests post-translational modifications. The signature of GST regulation may be specific for the type of plant-pathogen interaction. The proteomic view of the defense response to A. brassicicola can be compared with other types of plant-pathogen interactions, and to leaf senescence, identifying unique regulatory patterns.
Collapse
Affiliation(s)
- Arup K Mukherjee
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Comp Funct Genomics 2009:380719. [PMID: 19830245 PMCID: PMC2760151 DOI: 10.1155/2009/380719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/30/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022] Open
Abstract
Sequencing of over 40 fungal and oomycete genomes has been completed. The next major challenge in modern fungal/oomycete biology is now to translate this plethora of genome sequence information into biological functions. Reverse genetics has emerged as a seminal tool for functional genomics investigations. Techniques utilized for reverse genetics like targeted gene disruption/replacement, gene silencing, insertional mutagenesis, and targeting induced local lesions in genomes will contribute greatly to the understanding of gene function of fungal and oomycete pathogens. This paper provides an overview on high-throughput reverse genetics approaches to decode fungal/oomycete genomes.
Collapse
|
38
|
Wight WD, Kim KH, Lawrence CB, Walton JD. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1258-67. [PMID: 19737099 DOI: 10.1094/mpmi-22-10-1258] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Depudecin, an eleven-carbon linear polyketide made by the pathogenic fungus Alternaria brassicicola, is an inhibitor of histone deacetylase (HDAC). A chemically unrelated HDAC inhibitor, HC toxin, was earlier shown to be a major virulence factor in the interaction between Cochliobolus carbonum and its host, maize. In order to test whether depudecin is also a virulence factor for A. brassicicola, we identified the genes for depudecin biosynthesis and created depudecin-minus mutants. The depudecin gene cluster contains six genes (DEP1 to DEP6), which are predicted to encode a polyketide synthase (AbPKS9 or DEP5), a transcription factor (DEP6), two monooxygenases (DEP2 and DEP4), a transporter of the major facilitator superfamily (DEP3), and one protein of unknown function (DEP1). The involvement in depudecin production of DEP2, DEP4, DEP5, and DEP6 was demonstrated by targeted gene disruption. DEP6 is required for expression of DEP1 through DEP5 but not the immediate flanking genes, thus defining a coregulated depudecin biosynthetic cluster. The genes flanking the depudecin gene cluster but not the cluster itself are conserved in the same order in the related fungi Stagonospora nodorum and Pyrenophora tritici-repentis. Depudecin-minus mutants have a small (10%) but statistically significant reduction in virulence on cabbage (Brassica oleracea) but not on Arabidopsis. The role of depudecin in virulence is, therefore, less dramatic than that of HC toxin.
Collapse
Affiliation(s)
- Wanessa D Wight
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
39
|
You BJ, Lee MH, Chung KR. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch Microbiol 2009; 191:615-22. [PMID: 19506835 DOI: 10.1007/s00203-009-0489-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/22/2009] [Accepted: 05/25/2009] [Indexed: 12/24/2022]
Abstract
To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen.
Collapse
Affiliation(s)
- Bang-Jau You
- School of Chinese Medicine Resources, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | |
Collapse
|
40
|
Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol 2009; 72:1316-33. [PMID: 19460100 DOI: 10.1111/j.1365-2958.2009.06689.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alternaria brassicicola is an important, necrotrophic fungal pathogen that causes black spot disease on Brassicas. In order to study pathogenicity mechanisms, gene deletion mutants were generated for 21 putative regulatory genes including kinases and transcription factors subjectively selected from the annotated A. brassicicola genome. Except for Ste12, the deletion of the SNF1 kinase, XlnR, and CreA homologues that control cell wall-degrading enzyme production did not significantly affect virulence in contrast to other pathogenic fungi. Only deletion of XlnR but not CreA, Ste12 or SNF1 impaired the fungus' ability to utilize sole carbon sources suggesting Alternaria regulates expression of cell wall-degrading enzymes in a novel manner. In addition, two novel virulence factors encoding a transcription factor (AbPro1) and a two-component histidine kinase gene (AbNIK1) were discovered. Deletion of AbPro1 resulted in a 70% reduction in virulence and a 25% reduction in vegetative growth rates in vitro. Deletion of AbNIK1 resulted in a near complete loss of virulence, increased sensitivity to osmotic stress, and no changes in vegetative growth rates in vitro. Interestingly, addition of long polypeptides to spores of both Deltaabste12 and Deltaabnik1 during inoculations resulted in a complete restoration of pathogenicity through a yet to be defined mechanism.
Collapse
Affiliation(s)
- Yangrae Cho
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl Environ Microbiol 2008; 75:127-34. [PMID: 19011080 DOI: 10.1128/aem.00993-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the plant pathogen Alternaria brassicicola exhibited very high susceptibility to ambruticin VS4 and to a lesser extent to the phenylpyrrole fungicide fludioxonil. These compounds are both derived from natural bacterial metabolites with antifungal properties and are thought to exert their toxicity by interfering with osmoregulation in filamentous fungi. Disruption of the osmosensor group III histidine kinase gene AbNIK1 (for A. brassicola NIK1) resulted in high levels of resistance to ambruticin and fludioxonil, while a mutant isolate characterized by a single-amino-acid substitution in the HAMP domain of the kinase only exhibited moderate resistance. Moreover, the natural resistance of Saccharomyces cerevisiae to these antifungal molecules switched to sensitivity in strains expressing AbNIK1p. We also showed that exposure to fludioxonil and ambruticin resulted in abnormal phosphorylation of a Hog1-like mitogen-activated protein kinase (MAPK) in A. brassicicola. Parallel experiments carried out with wild-type and mutant isolates of Neurospora crassa revealed that, in this species, ambruticin susceptibility was dependent on the OS1-RRG1 branch of the phosphorelay pathway downstream of the OS2 MAPK cascade but independent of the yeast Skn7-like response regulator RRG2. These results show that the ability to synthesize a functional group III histidine kinase is a prerequisite for the expression of ambruticin and phenylpyrrole susceptibility in A. brassicicola and N. crassa and that, at least in the latter species, improper activation of the high-osmolarity glycerol-related pathway could explain their fungicidal properties.
Collapse
|
42
|
Watson RJ, Burchat S, Bosley J. A model for integration of DNA into the genome during transformation of Fusarium graminearum. Fungal Genet Biol 2008; 45:1348-63. [PMID: 18722542 DOI: 10.1016/j.fgb.2008.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 07/08/2008] [Accepted: 07/24/2008] [Indexed: 12/15/2022]
Abstract
Transformants of Fusarium graminearum were derived using linearized DNA of plasmids designed to replace the trichodiene synthase gene, a cutinase gene or a xylanase gene with a hygromycin-resistance marker cassette by homologous recombination between 1-kbp segments of flanking DNA. Most transformants did not exhibit the DNA structure expected of integration by classical double recombination. Instead, they contained linearized plasmid joined end-to-end and variably incorporated into the genome. Transformant types included ectopic integrations and integrations at the target site with or without removal of the targeted gene. We have analyzed a large number of transformants using cloning, PCR and DNA sequencing to determine the structures of their integrated DNA, and describe a model to explain their derivations. The data indicate that 1-3 copies of input DNA are first joined end-to-end to produce either linear or circular structures, probably mediated by the non-homologous end-joining (NHEJ) system. The end-joins typically have 1-5 nucleotides in common and are near or within the original cleavage site of the plasmid. Ectopic integrations occur by attaching linear DNA to two ends of genomic DNA via the same joining mechanism. Integration at the target site is consistent with replication around circularized input DNA, beginning and ending within the flanking homologous DNA, resulting in the integration of multiple copies of the entire structure. This results in deletion or duplication of the target site, or leaves one copy at either end of the integrated multimer. Reiterated DNA in the more complex structures is unstable due to homologous recombination, such that conversion to simpler forms is detected.
Collapse
Affiliation(s)
- R J Watson
- Research Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Central Experimental Farm, Ottawa, Ont., Canada K1A 0C6.
| | | | | |
Collapse
|
43
|
Sellam A, Dongo A, Guillemette T, Hudhomme P, Simoneau P. Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola. MOLECULAR PLANT PATHOLOGY 2007; 8:195-208. [PMID: 20507491 DOI: 10.1111/j.1364-3703.2007.00387.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Alternaria brassicicola is the causative agent of black spot disease of Brassicaceae belonging to the genera Brassica and Raphanus. During host infection, A. brassicicola is exposed to high levels of antimicrobial defence compounds such as indolic phytoalexins and glucosinolate breakdown products. To investigate the transcriptomic response of A. brassicicola when challenged with brassicaceous defence metabolites, suppression subtractive hybridization (SSH) was performed to generate two cDNA libraries from germinated conidia treated either with allyl isothiocyanate (Al-ITC) or with camalexin. Following exposure to Al-ITC, A. brassicicola displayed a response similar to that experienced during oxidative stress. Indeed, a substantial subset of differentially expressed genes was related to cell protection against oxidative damage. Treatment of A. brassicicola conidia with the phytoalexin camalexin appeared to activate a compensatory mechanism to preserve cell membrane integrity and, among the camalexin-elicited genes, several were involved in sterol and sphingolipid biosynthesis. The transcriptomic analysis suggested that protection against the two tested compounds also involved mechanisms aimed at limiting their intracellular accumulation, such as melanin biosynthesis (in the case of camalexin exposure only) and drug efflux. From the Al-ITC and the camalexin differentially expressed genes identified here, 25 were selected to perform time-course studies during interactions with brassicaceous hosts. In planta, up-regulation of all the selected genes was observed during infection of Raphanus sativus whereas only a subset were over-expressed during the incompatible interaction with Arabidopsis thaliana ecotype Columbia.
Collapse
Affiliation(s)
- Adnane Sellam
- UMR PaVé No.77, Faculté des Sciences, 2 Bd Lavoisier, F-49045 Angers, France
| | | | | | | | | |
Collapse
|
44
|
Kim KH, Cho Y, LA Rota M, Cramer RA, Lawrence CB. Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. MOLECULAR PLANT PATHOLOGY 2007; 8:23-39. [PMID: 20507476 DOI: 10.1111/j.1364-3703.2006.00366.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Alternaria brassicicola is a necrotrophic pathogen causing black spot disease on virtually all cultivated Brassica crops worldwide. In many plant pathosystems fungal secondary metabolites derived from non-ribosomal peptide synthetases (NPSs) are phytotoxic virulence factors or are antibiotics thought to be important for niche competition with other micro-organisms. However, many of the functions of NPS genes and their products are largely unknown. In this study, we investigated the function of one of the A. brassicicola NPS genes, AbNPS2. The predicted amino acid sequence of AbNPS2 showed high sequence similarity with A. brassicae, AbrePsy1, Cochliobolus heterostrophus, NPS4 and a Stagonospora nodorum NPS. The AbNPS2 open reading frame was predicted to be 22 kb in length and encodes a large protein (7195 amino acids) showing typical NPS modular organization. Gene expression analysis of AbNPS2 in wild-type fungus indicated that it is expressed almost exclusively in conidia and conidiophores, broadly in the reproductive developmental phase. AbNPS2 gene disruption mutants showed abnormal spore cell wall morphology and a decreased hydrophobicity phenotype. Conidia of abnps2 mutants displayed an aberrantly inflated cell wall and an increase in lipid bodies compared with wild-type. Further phenotypic analyses of abnps2 mutants showed decreased spore germination rates both in vitro and in vivo, and a marked reduction in sporulation in vivo compared with wild-type fungus. Moreover, virulence tests on Brassicas with abnps2 mutants revealed a significant reduction in lesion size compared with wild-type but only when aged spores were used in experiments. Collectively, these results indicate that AbNPS2 plays an important role in development and virulence.
Collapse
Affiliation(s)
- Kwang-Hyung Kim
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|