1
|
Samant SB, Swain J, Yadav N, Yadav R, Singh P, Rai P, Sheri V, Sreeman S, Subramanyam R, Pareek A, Gupta KJ. Overexpression of Phytoglobin1 in Rice Leads to Enhanced Nitrogen Use Efficiency via Modulation of Nitric Oxide. PLANT, CELL & ENVIRONMENT 2025; 48:2755-2768. [PMID: 39569580 DOI: 10.1111/pce.15289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) is one of the byproducts of nitrogen metabolism. Excess amount of NO is scavenged by phytoglobins. The role of phytoglobin mediated NO homoeostasis in modulation of nitrate transporters was investigated using NO scavenger cPTIO, phytoglobin overexpressing rice and Arabidopsis. Growing plants under low nitrate leads to generation of reduced levels of NO accompanied by elevated expression of high affinity transporters (HATs) such as NRT2.1, NRT2.3 and NRT2.4. Scavenging of NO by cPTIO under optimal nitrate caused enhanced HATs expression. Phytoglobin overexpressing Arabidopsis showed improved growth and enhanced expression of HATs under low nitrogen in comparison to WT. Pretreatment of optimal nitrate grown plants with NO scavenger cPTIO enhanced HATs expression and shifting of these primed plants from optimal to low nitrate leads to further elevation of HATs expression accompanied by enhanced nitrogen uptake and its accumulation with positive effect on growth. Phytoglobin overexpression in rice leads to enhanced HATs expression, improved growth, nitrogen accumulation under low nitrate. Pgb OE lines showed enhanced accumulation of amino acids. Taken together our results suggest an important role of phytoglobins in nitrogen uptake and assimilation.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Reena Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Preeti Rai
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Vijay Sheri
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Sheshshayee Sreeman
- Department of Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ashwani Pareek
- National Agri-Food and Bio Manufacturing Institute, Mohali, Punjab, India
| | | |
Collapse
|
2
|
Lee DS, Das AK, Methela NJ, Yun BW. Interaction Between Nitric Oxide and Silicon on Leghaemoglobin and S-Nitrosothiol Levels in Soybean Nodules. Biomolecules 2024; 14:1417. [PMID: 39595593 PMCID: PMC11592487 DOI: 10.3390/biom14111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, and potential post-translational modifications. At the V1 stage, soybean plants were treated for 2 weeks with 150 µM GSNO, and Si at concentrations of 1 mM, 2 mM, and 4 mM. The results showed that NO and Si enhance the nodulation process by increasing phenylalanine ammonia-lyase activity and Nod factors (NIP2-1), attracting rhizobia and accelerating nodule formation. This leads to a greater number and larger diameter of nodules. Individually, NO and Si support the synthesis of Lb and leghaemoglobin protein (Lba) expression, ferric leghaemoglobin reductases (FLbRs), and S-nitrosoglutathione reductase (GSNOR). However, when used in combination, NO and Si inhibit these processes, leading to elevated levels of S-nitrosothiols in the roots and nodules. This combined inhibition may potentially induce post-translational modifications in FLbRs, pivotal for the reduction of Lb3+ to Lb2+. These findings underscore the critical role of NO and Si in the nodulation process and provide insight into their combined effects on this essential plant function.
Collapse
Affiliation(s)
| | | | | | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (D.-S.L.); (A.K.D.); (N.J.M.)
| |
Collapse
|
3
|
Pathak PK, Yadav N, Kaladhar VC, Jaiswal R, Kumari A, Igamberdiev AU, Loake GJ, Gupta KJ. The emerging roles of nitric oxide and its associated scavengers-phytoglobins-in plant symbiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:563-577. [PMID: 37843034 DOI: 10.1093/jxb/erad399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.
Collapse
Affiliation(s)
- Pradeep Kumar Pathak
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Yadav
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Rekha Jaiswal
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
4
|
Oliveira MS, Santos KFDN, de Paula RM, Vitorino LC, Bessa LA, Greer A, Di Mascio P, de Souza JCP, Martin-Didonet CCG. Nitric Oxide Detection Using a Chemical Trap Method for Applications in Bacterial Systems. Microorganisms 2023; 11:2210. [PMID: 37764053 PMCID: PMC10536504 DOI: 10.3390/microorganisms11092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can be incorporated in biofertilizer formulations, which promote plant growth in different ways, such as fixing nitrogen and producing phytohormones and nitric oxide (NO). NO is a free radical involved in the growth and defense responses of plants and bacteria. NO detection is vital for further investigation in different agronomically important bacteria. NO production in the presence of KNO3 was evaluated over 1-3 days using eight bacterial strains, quantified by the usual Griess reaction, and monitored by 2,3-diaminonaphthalene (DAN), yielding 2,3-naphthotriazole (NAT), as analyzed by fluorescence spectroscopy, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The Greiss and trapping reaction results showed that Azospirillum brasilense (HM053 and FP2), Rhizobium tropici (Br322), and Gluconacetobacter diazotrophicus (Pal 5) produced the highest NO levels 24 h after inoculation, whereas Nitrospirillum amazonense (Y2) and Herbaspirillum seropedicae (SmR1) showed no NO production. In contrast to the literature, in NFbHP-NH4Cl-lactate culture medium with KNO3, NO trapping led to the recovery of a product with a molecular mass ion of 182 Da, namely, 1,2,3,4-naphthotetrazole (NTT), which contained one more nitrogen atom than the usual NAT product with 169 Da. This strategy allows monitoring and tracking NO production in potential biofertilizing bacteria, providing future opportunities to better understand the mechanisms of bacteria-plant interaction and also to manipulate the amount of NO that will sustain the PGPB.
Collapse
Affiliation(s)
- Marilene Silva Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Departamento de Agroquímica, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.A.B.); (J.C.P.d.S.)
- Câmpus Henrique Santillo de Ciências Exatas e Tecnológicas Henrique Santillo, BR 153 n° 3105—Fazenda Barreiro do Meio, Anápolis 75132-903, GO, Brazil; (K.F.D.N.S.); (R.M.d.P.); (C.C.G.M.-D.)
- Simple Agro Corporation, rua Parque General Borges Forte, 400, Jardim Goiás, Rio Verde 75903-421, GO, Brazil
| | - Karina F. D. N. Santos
- Câmpus Henrique Santillo de Ciências Exatas e Tecnológicas Henrique Santillo, BR 153 n° 3105—Fazenda Barreiro do Meio, Anápolis 75132-903, GO, Brazil; (K.F.D.N.S.); (R.M.d.P.); (C.C.G.M.-D.)
| | - Railane Monteiro de Paula
- Câmpus Henrique Santillo de Ciências Exatas e Tecnológicas Henrique Santillo, BR 153 n° 3105—Fazenda Barreiro do Meio, Anápolis 75132-903, GO, Brazil; (K.F.D.N.S.); (R.M.d.P.); (C.C.G.M.-D.)
| | - Luciana C. Vitorino
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Departamento de Agroquímica, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.A.B.); (J.C.P.d.S.)
- Simple Agro Corporation, rua Parque General Borges Forte, 400, Jardim Goiás, Rio Verde 75903-421, GO, Brazil
| | - Layara A. Bessa
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Departamento de Agroquímica, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.A.B.); (J.C.P.d.S.)
- Simple Agro Corporation, rua Parque General Borges Forte, 400, Jardim Goiás, Rio Verde 75903-421, GO, Brazil
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA;
- The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - João C. P. de Souza
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Departamento de Agroquímica, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.A.B.); (J.C.P.d.S.)
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, São Paulo 17033-360, SP, Brazil
| | - Claudia C. G. Martin-Didonet
- Câmpus Henrique Santillo de Ciências Exatas e Tecnológicas Henrique Santillo, BR 153 n° 3105—Fazenda Barreiro do Meio, Anápolis 75132-903, GO, Brazil; (K.F.D.N.S.); (R.M.d.P.); (C.C.G.M.-D.)
| |
Collapse
|
5
|
Rovere M, Pucciariello C, Castella C, Berger A, Forgia M, Guyet TA, Bosseno M, Pacoud M, Brouquisse R, Perata P, Boscari A. Group VII ethylene response factors, MtERF74 and MtERF75, sustain nitrogen fixation in Medicago truncatula microoxic nodules. PLANT, CELL & ENVIRONMENT 2023; 46:607-620. [PMID: 36479691 DOI: 10.1111/pce.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.
Collapse
Affiliation(s)
- Martina Rovere
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claude Castella
- INRAE, UR1115 Plantes et Systèmes de culture Horticoles (PSH), Site Agroparc, Avignon, France
| | - Antoine Berger
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Marco Forgia
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Tran A Guyet
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marc Bosseno
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | | | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
6
|
Free Radicals Mediated Redox Signaling in Plant Stress Tolerance. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010204. [PMID: 36676153 PMCID: PMC9864231 DOI: 10.3390/life13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Abiotic and biotic stresses negatively affect plant cellular and biological processes, limiting their growth and productivity. Plants respond to these environmental cues and biotrophic attackers by activating intricate metabolic-molecular signaling networks precisely and coordinately. One of the initial signaling networks activated is involved in the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Recent research has exemplified that ROS below the threshold level can stimulate plant survival by modulating redox homeostasis and regulating various genes of the stress defense pathway. In contrast, RNS regulates the stress tolerance potential of crop plants by modulating post-translation modification processes, such as S-nitrosation and tyrosine nitration, improving the stability of protein and DNA and activating the expression of downstream stress-responsive genes. RSS has recently emerged as a new warrior in combating plant stress-induced oxidative damage by modulating various physiological and stress-related processes. Several recent findings have corroborated the existence of intertwined signaling of ROS/RNS/RSS, playing a substantial role in crop stress management. However, the molecular mechanisms underlying their remarkable effect are still unknown. This review comprehensively describes recent ROS/RNS/RSS biology advancements and how they can modulate cell signaling and gene regulation for abiotic stress management in crop plants. Further, the review summarizes the latest information on how these ROS/RNS/RSS signaling interacts with other plant growth regulators and modulates essential plant functions, particularly photosynthesis, cell growth, and apoptosis.
Collapse
|
7
|
Minguillón S, Matamoros MA, Duanmu D, Becana M. Signaling by reactive molecules and antioxidants in legume nodules. THE NEW PHYTOLOGIST 2022; 236:815-832. [PMID: 35975700 PMCID: PMC9826421 DOI: 10.1111/nph.18434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Legume nodules are symbiotic structures formed as a result of the interaction with rhizobia. Nodules fix atmospheric nitrogen into ammonia that is assimilated by the plant and this process requires strict metabolic regulation and signaling. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved as signal molecules at all stages of symbiosis, from rhizobial infection to nodule senescence. Also, reactive sulfur species (RSS) are emerging as important signals for an efficient symbiosis. Homeostasis of reactive molecules is mainly accomplished by antioxidant enzymes and metabolites and is essential to allow redox signaling while preventing oxidative damage. Here, we examine the metabolic pathways of reactive molecules and antioxidants with an emphasis on their functions in signaling and protection of symbiosis. In addition to providing an update of recent findings while paying tribute to original studies, we identify several key questions. These include the need of new methodologies to detect and quantify ROS, RNS, and RSS, avoiding potential artifacts due to their short lifetimes and tissue manipulation; the regulation of redox-active proteins by post-translational modification; the production and exchange of reactive molecules in plastids, peroxisomes, nuclei, and bacteroids; and the unknown but expected crosstalk between ROS, RNS, and RSS in nodules.
Collapse
Affiliation(s)
- Samuel Minguillón
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Manuel A. Matamoros
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Manuel Becana
- Departamento de BiologíaVegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasApartado 1303450080ZaragozaSpain
| |
Collapse
|
8
|
Ruiz B, Sauviac L, Brouquisse R, Bruand C, Meilhoc E. Role of Nitric Oxide of Bacterial Origin in the Medicago truncatula-Sinorhizobium meliloti Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:887-892. [PMID: 35762680 DOI: 10.1094/mpmi-05-22-0118-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a small ubiquitous gaseous molecule that has been found in many host-pathogen interactions. NO has been shown to be part of the defense arsenal of animal cells and more recently of plant cells. To fight this molecular weapon, pathogens have evolved responses consisting of adaptation to NO or degradation of this toxic molecule. More recently, it was shown that NO could also be produced by the pathogen and contributes likewise to the success of the host cell infection. NO is also present during symbiotic interactions. Despite growing knowledge about the role of NO during friendly interactions, data on the specificity of action of NO produced by each partner are scarce, partly due to the multiplicity of NO production systems. In the nitrogen-fixing symbiosis between the soil bacterium Sinorhizobium meliloti and the model legume Medicago truncatula, NO has been detected at all steps of the interaction, where it displays various roles. Both partners contribute to NO production inside the legume root nodules where nitrogen fixation occurs. The study focuses on the role of bacterial NO in this interaction. We used a genetic approach to identify bacterial NO sources in the symbiotic context and to test the phenotype in planta of bacterial mutants affected in NO production. Our results show that only denitrification is a source of bacterial NO in Medicago nodules, giving insight into the role of bacteria-derived NO at different steps of the symbiotic interaction. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bryan Ruiz
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech (ISA), INRAE, CNRS, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| |
Collapse
|
9
|
Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H 2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:576-586. [PMID: 34693601 DOI: 10.1111/plb.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
In legumes, waterlogging is a major detrimental factor leading to huge yield losses. Generally, legumes lack tolerance to submergence, and conventional breeding to develop tolerant varieties are limited due to the lack of tolerant germplasm and potential target genes. Moreover, our understanding of the various signalling cascades, their interactions and key pathways induced during waterlogging is limited. Here, we focus on the role of two important plant signalling molecules, viz. hydrogen sulphide (H2 S) and nitric oxide (NO), during waterlogging stress in legumes. Plants and soil microbes produce these signalling molecules both endogenously and exogenously under various stresses, including waterlogging. NO and H2 S are known to regulate key physiological pathways, such as stomatal closure, leaf senescence and regulation of numerous stress signalling pathways, while NO plays a pivotal role in adventitious root formation during waterlogging. The crosstalk between H2 S and NO is synergistic because of the resemblance of their physiological effects and proteomic functions, which mainly operate through cysteine-dependent post-translational modifications via S-nitrosation and persulfidation. Such knowledge has provided novel platforms for researchers to unravel the complexity associated with H2 S-NO signalling and interactions with plant stress hormones. This review provides an overall summary on H2 S and NO, including biosynthesis, biological importance, crosstalk, transporter regulation as well as understanding their role during waterlogging using 'multi-omics' approach. Understanding H2 S and NO signalling will help in deciphering the metabolic interactions and identifying key regulatory genes that could be used for developing waterlogging tolerance in legumes.
Collapse
Affiliation(s)
- A Tyagi
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Sharma
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, Republic of Korea
| | - K Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
10
|
Fukudome M, Shimokawa Y, Hashimoto S, Maesako Y, Uchi-Fukudome N, Niihara K, Osuki KI, Uchiumi T. Nitric Oxide Detoxification by Mesorhizobium loti Affects Root Nodule Symbiosis with Lotus japonicus. Microbes Environ 2021; 36. [PMID: 34470944 PMCID: PMC8446750 DOI: 10.1264/jsme2.me21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Root nodule symbiosis between legumes and rhizobia involves nitric oxide (NO) regulation by both the host plant and symbiotic rhizobia. However, the mechanisms by which the rhizobial control of NO affects root nodule symbiosis in Lotus japonicus are unknown. Therefore, we herein investigated the effects of enhanced NO removal by Mesorhizobium loti on symbiosis with L. japonicus. The hmp gene, which in Sinorhizobium meliloti encodes a flavohemoglobin involved in NO detoxification, was introduced into M. loti to generate a transconjugant with enhanced NO removal. The symbiotic phenotype of the transconjugant with L. japonicus was examined. The transconjugant showed delayed infection and higher nitrogenase activity in mature nodules than the wild type, whereas nodule senescence was normal. This result is in contrast to previous findings showing that enhanced NO removal in L. japonicus by class 1 phytoglobin affected nodule senescence. To evaluate differences in NO detoxification between M. loti and L. japonicus, NO localization in nodules was investigated. The enhanced expression of class 1phytoglobin in L. japonicus reduced the amount of NO not only in infected cells, but also in vascular bundles, whereas that of hmp in M. loti reduced the amount of NO in infected cells only. This difference suggests that NO detoxification by M. loti exerts different effects in symbiosis than that by L. japonicus.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University.,Division of Symbiotic Systems, National Institute for Basic Biology
| | - Yuta Shimokawa
- Graduate School of Science and Engineering, Kagoshima University
| | - Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University
| | - Yusuke Maesako
- Graduate School of Science and Engineering, Kagoshima University
| | - Nahoko Uchi-Fukudome
- Graduate School of Science and Engineering, Kagoshima University.,Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Kota Niihara
- Graduate School of Science and Engineering, Kagoshima University
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
11
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
12
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
13
|
Rhizobia: highways to NO. Biochem Soc Trans 2021; 49:495-505. [PMID: 33544133 DOI: 10.1042/bst20200989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.
Collapse
|
14
|
Valkov VT, Sol S, Rogato A, Chiurazzi M. The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N 2 -fixation activity. THE NEW PHYTOLOGIST 2020; 228:682-696. [PMID: 32542646 DOI: 10.1111/nph.16728] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/27/2020] [Indexed: 05/25/2023]
Abstract
Atmospheric nitrogen (N2) -fixing nodules are formed on the roots of legume plants as result of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of carbon and energy, and therefore legumes have developed finely tuned mechanisms to cope with changing external environmental conditions, including nutrient availability and flooding. The investigation of the role of nitrate as regulator of the symbiotic N2 fixation has been limited to the inhibitory effects exerted by high external concentrations on nodule formation, development and functioning. We describe a nitrate-dependent route acting at low external concentrations that become crucial in hydroponic conditions to ensure an efficient nodule functionality. Combined genetic, biochemical and molecular studies are used to unravel the novel function of the LjNRT2.4 gene. Two independent null mutants are affected by the nitrate content of nodules, consistent with LjNRT2.4 temporal and spatial profiles of expression. The reduced nodular nitrate content is associated to a strong reduction of nitrogenase activity and a severe N-starvation phenotype observed under hydroponic conditions. We also report the effects of the mutations on the nodular nitric oxide (NO) production and content. We discuss the involvement of LjNRT2.4 in a nitrate-NO respiratory chain taking place in the N2 -fixing nodules.
Collapse
Affiliation(s)
- Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Stefano Sol
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| |
Collapse
|
15
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314-1335. [PMID: 31797528 PMCID: PMC7415380 DOI: 10.1111/1751-7915.13517] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022] Open
Abstract
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.
Collapse
Affiliation(s)
- Kristina Lindström
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| | - Seyed Abdollah Mousavi
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| |
Collapse
|
17
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 72:873-884. [PMID: 32240305 DOI: 10.1093/jxb/eraa403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
18
|
Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. THE NEW PHYTOLOGIST 2020; 227:84-98. [PMID: 32003030 PMCID: PMC7317445 DOI: 10.1111/nph.16462] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 05/04/2023]
Abstract
In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen-fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little-known. We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post-inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1-NO couple in the symbiosis. Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1-NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb-NO respiration to maintain the energetic state. This work highlights the regulatory role played by Phytogb1.1-NO couple in the successive stages of symbiosis.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Sophie Guinand
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alexandre Boscari
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alain Puppo
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Renaud Brouquisse
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| |
Collapse
|
19
|
Singh P, Kumari A, Foyer CH, Gupta KJ. The power of the phytoglobin-NO cycle in the regulation of nodulation and symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2020; 227:5-7. [PMID: 32386329 DOI: 10.1111/nph.16615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
20
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Berger A, Boscari A, Horta Araújo N, Maucourt M, Hanchi M, Bernillon S, Rolin D, Puppo A, Brouquisse R. Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Medicago truncatula-Sinorhizobium meliloti Symbiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:1313. [PMID: 33013954 PMCID: PMC7500168 DOI: 10.3389/fpls.2020.01313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (MtNR1, MtNR2, and MtNR3) present in the Medicago truncatula genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between M. truncatula and Sinorhizobium meliloti. Our results show that MtNR1 and MtNR2 gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N2-fixing nodules. Using an in vivo NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N2-fixing symbiosis and provide a first explanation of its role in this process.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Natasha Horta Araújo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Mickaël Maucourt
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Mohamed Hanchi
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Stéphane Bernillon
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Alain Puppo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- *Correspondence: Renaud Brouquisse,
| |
Collapse
|
22
|
A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019; 93:53-70. [DOI: 10.1016/j.niox.2019.09.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
|
23
|
Syska C, Brouquisse R, Alloing G, Pauly N, Frendo P, Bosseno M, Dupont L, Boscari A. Molecular Weapons Contribute to Intracellular Rhizobia Accommodation Within Legume Host Cell. FRONTIERS IN PLANT SCIENCE 2019; 10:1496. [PMID: 31850013 PMCID: PMC6902015 DOI: 10.3389/fpls.2019.01496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The interaction between legumes and bacteria of rhizobia type results in a beneficial symbiotic relationship characterized by the formation of new root organs, called nodules. Within these nodules the bacteria, released in plant cells, differentiate into bacteroids and fix atmospheric nitrogen through the nitrogenase activity. This mutualistic interaction has evolved sophisticated signaling networks to allow rhizobia entry, colonization, bacteroid differentiation and persistence in nodules. Nodule cysteine rich (NCR) peptides, reactive oxygen species (ROS), reactive nitrogen species (RNS), and toxin-antitoxin (TA) modules produced by the host plants or bacterial microsymbionts have a major role in the control of the symbiotic interaction. These molecules described as weapons in pathogenic interactions have evolved to participate to the intracellular bacteroid accommodation by escaping control of plant innate immunity and adapt the functioning of the nitrogen-fixation to environmental signalling cues.
Collapse
Affiliation(s)
- Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | | | | - Nicolas Pauly
- Laboratoire des Interactions Plantes-Microorganismes, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Pierre Frendo
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Marc Bosseno
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Laurence Dupont
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | |
Collapse
|
24
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
25
|
Berger A, Boscari A, Frendo P, Brouquisse R. Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4505-4520. [PMID: 30968126 DOI: 10.1093/jxb/erz159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/28/2019] [Indexed: 05/13/2023]
Abstract
Interactions between legumes and rhizobia lead to the establishment of a symbiotic relationship characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Significant amounts of nitric oxide (NO) accumulate at different stages of nodule development, suggesting that NO performs specific signaling and/or metabolic functions during symbiosis. NO, which regulates nodule gene expression, accumulates to high levels in hypoxic nodules. NO accumulation is considered to assist energy metabolism within the hypoxic environment of the nodule via a phytoglobin-NO-mediated respiration process. NO is a potent inhibitor of the activity of nitrogenase and other plant and bacterial enzymes, acting as a developmental signal in the induction of nodule senescence. Hence, key questions concern the relative importance of the signaling and metabolic functions of NO versus its toxic action and how NO levels are regulated to be compatible with nitrogen fixation functions. This review analyses these paradoxical roles of NO at various stages of symbiosis, and highlights the role of plant phytoglobins and bacterial hemoproteins in the control of NO accumulation.
Collapse
|
26
|
Bruand C, Meilhoc E. Nitric oxide in plants: pro- or anti-senescence. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4419-4427. [PMID: 30868162 DOI: 10.1093/jxb/erz117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Senescence is a regulated process of tissue degeneration that can affect any plant organ and consists of the degradation and remobilization of molecules to other growing tissues. Senescent organs display changes at the microscopic level as well as modifications to internal cellular structure and differential gene expression. A large number of factors influencing senescence have been described including age, nutrient supply, and environmental interactions. Internal factors such as phytohormones also affect the timing of leaf senescence. A link between the senescence process and the production of nitric oxide (NO) in senescing tissues has been known for many years. Remarkably, this link can be either a positive or a negative correlation depending upon the organ. NO can be both a signaling or a toxic molecule and is known to have multiple roles in plants; this review considers the duality of NO roles in the senescence process of two different plant organs, namely the leaves and root nodules.
Collapse
Affiliation(s)
- Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, INSA, Castanet-Tolosan, France
| | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, INSA, Castanet-Tolosan, France
| |
Collapse
|
27
|
Zou H, Zhang NN, Pan Q, Zhang JH, Chen J, Wei GH. Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean-Rhizobia Symbiotic System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:972-985. [PMID: 31204904 DOI: 10.1094/mpmi-01-19-0003-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
Collapse
Affiliation(s)
- Hang Zou
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Ni-Na Zhang
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qing Pan
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Jian-Hua Zhang
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
- 5Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Juan Chen
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Ge-Hong Wei
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
28
|
Silva LS, Alves MQ, Seabra AR, Carvalho HG. Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 2019; 88:73-86. [PMID: 31026500 DOI: 10.1016/j.niox.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non-conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.
Collapse
Affiliation(s)
- Liliana S Silva
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Mariana Q Alves
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ana R Seabra
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Helena G Carvalho
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal.
| |
Collapse
|
29
|
Pucciariello C, Boscari A, Tagliani A, Brouquisse R, Perata P. Exploring Legume-Rhizobia Symbiotic Models for Waterlogging Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:578. [PMID: 31156662 PMCID: PMC6530402 DOI: 10.3389/fpls.2019.00578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Unexpected and increasingly frequent extreme precipitation events result in soil flooding or waterlogging. Legumes have the capacity to establish a symbiotic relationship with endosymbiotic atmospheric dinitrogen-fixing rhizobia, thus contributing to natural nitrogen soil enrichment and reducing the need for chemical fertilization. The impact of waterlogging on nitrogen fixation and legume productivity needs to be considered for crop improvement. This review focuses on the legumes-rhizobia symbiotic models. We aim to summarize the mechanisms underlying symbiosis establishment, nodule development and functioning under waterlogging. The mechanisms of oxygen sensing of the host plant and symbiotic partner are considered in view of recent scientific advances.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Côte d’Azur, Nice, France
| | - Andrea Tagliani
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Côte d’Azur, Nice, France
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
30
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech 2019; 9:109. [PMID: 30863693 DOI: 10.1007/s13205-019-1638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.
Collapse
|
31
|
Salgado MG, van Velzen R, Nguyen TV, Battenberg K, Berry AM, Lundin D, Pawlowski K. Comparative Analysis of the Nodule Transcriptomes of Ceanothus thyrsiflorus (Rhamnaceae, Rosales) and Datisca glomerata (Datiscaceae, Cucurbitales). FRONTIERS IN PLANT SCIENCE 2018; 9:1629. [PMID: 30487804 PMCID: PMC6246699 DOI: 10.3389/fpls.2018.01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Two types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of Datisca glomerata (Datiscaceae, Cucurbitales) and Ceanothus thyrsiflorus (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured Frankia clade, cluster II. The analysis focused on various features. In both species, the expression of orthologs of legume Nod factor receptor genes was elevated in nodules compared to roots. Since arginine has been postulated as export form of fixed nitrogen from symbiotic Frankia in nodules of D. glomerata, the question was whether the nitrogen metabolism was similar in nodules of C. thyrsiflorus. Analysis of the expression levels of key genes encoding enzymes involved in arginine metabolism revealed up-regulation of arginine catabolism, but no up-regulation of arginine biosynthesis, in nodules compared to roots of D. glomerata, while arginine degradation was not upregulated in nodules of C. thyrsiflorus. This new information corroborated an arginine-based metabolic exchange between host and microsymbiont for D. glomerata, but not for C. thyrsiflorus. Oxygen protection systems for nitrogenase differ dramatically between both species. Analysis of the antioxidant system suggested that the system in the nodules of D. glomerata leads to greater oxidative stress than the one in the nodules of C. thyrsiflorus, while no differences were found for the defense against nitrosative stress. However, induction of nitrite reductase in nodules of C. thyrsiflorus indicated that here, nitrite produced from nitric oxide had to be detoxified. Additional shared features were identified: genes encoding enzymes involved in thiamine biosynthesis were found to be upregulated in the nodules of both species. Orthologous nodule-specific subtilisin-like proteases that have been linked to the infection process in actinorhizal Fagales, were also upregulated in the nodules of D. glomerata and C. thyrsiflorus. Nodule-specific defensin genes known from actinorhizal Fagales and Cucurbitales, were also found in C. thyrsiflorus. In summary, the results underline the variability of nodule metabolism in different groups of symbiotic plants while pointing at conserved features involved in the infection process.
Collapse
Affiliation(s)
- Marco G. Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Calvo-Begueria L, Rubio MC, Martínez JI, Pérez-Rontomé C, Delgado MJ, Bedmar EJ, Becana M. Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3703-3714. [PMID: 29701804 PMCID: PMC6022593 DOI: 10.1093/jxb/ery159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a signaling molecule with multiple functions in plants. Given its critical importance and reactivity as a gaseous free radical, we have examined NO production in legume nodules using electron paramagnetic resonance (EPR) spectroscopy and the specific fluorescent dye 4,5-diaminofluorescein diacetate. Also, in this context, we critically assess previous and current views of NO production and detection in nodules. EPR of intact nodules revealed that nitrosyl-leghemoglobin (Lb2+NO) was absent from bean or soybean nodules regardless of nitrate supply, but accumulated in soybean nodules treated with nitrate that were defective in nitrite or nitric oxide reductases or that were exposed to ambient temperature. Consequently, bacteroids are a major source of NO, denitrification enzymes are required for NO homeostasis, and Lb2+NO is not responsible for the inhibition of nitrogen fixation by nitrate. Further, we noted that Lb2+NO is artifactually generated in nodule extracts or in intact nodules not analyzed immediately after detachment. The fluorescent probe detected NO formation in bean and soybean nodule infected cells and in soybean nodule parenchyma. The NO signal was slightly decreased by inhibitors of nitrate reductase but not by those of nitric oxide synthase, which could indicate a minor contribution of plant nitrate reductase and supports the existence of nitrate- and arginine-independent pathways for NO production. Together, our data indicate that EPR and fluorometric methods are complementary to draw reliable conclusions about NO production in plants.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado, Zaragoza, Spain
| | - Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado, Zaragoza, Spain
| | - Jesús I Martínez
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Pedro Cerbuna, Zaragoza, Spain
| | - Carmen Pérez-Rontomé
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado, Zaragoza, Spain
| | - Maria J Delgado
- Departamento de Microbiología y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda, Granada, Spain
| | - Eulogio J Bedmar
- Departamento de Microbiología y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda, Granada, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado, Zaragoza, Spain
- Correspondence:
| |
Collapse
|
33
|
Berger A, Brouquisse R, Pathak PK, Hichri I, Singh I, Bhatia S, Boscari A, Igamberdiev AU, Gupta KJ. Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules: missing links and future directions. PLANT, CELL & ENVIRONMENT 2018. [PMID: 29351361 DOI: 10.1111/pce.13151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
The interaction between legumes and rhizobia leads to the establishment of a beneficial symbiotic relationship. Recent advances in legume - rhizobium symbiosis revealed that various reactive oxygen and nitrogen species including nitric oxide (NO) play important roles during this process. Nodule development occurs with a transition from a normoxic environment during the establishment of symbiosis to a microoxic environment in functional nodules. Such oxygen dynamics are required for activation and repression of various NO production and scavenging pathways. Both the plant and bacterial partners participate in the synthesis and degradation of NO. However, the pathways of NO production and degradation as well as their cross-talk and involvement in the metabolism are still a matter of debate. The plant-originated reductive pathways are known to contribute to the NO production in nodules under hypoxic conditions. Non-symbiotic hemoglobin (phytoglobin) (Pgb) possesses high NO oxygenation capacity, buffers and scavenges NO. Its operation, through a respiratory cycle called Pgb-NO cycle, leads to the maintenance of redox and energy balance in nodules. The role of Pgb/NO cycle under fluctuating NO production from soil needs further investigation for complete understanding of NO regulatory mechanism governing nodule development to attain optimal food security under changing environment.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Imène Hichri
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Inderjit Singh
- Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B3X9, Canada
| | | |
Collapse
|
34
|
Nitric Oxide as a Signaling Molecule in Plant-Bacterial Interactions. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation. Appl Environ Microbiol 2017; 83:AEM.01488-17. [PMID: 28916558 DOI: 10.1128/aem.01488-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions.IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system.
Collapse
|
36
|
Chembazhi UV, Patil VV, Sah S, Reeve W, Tiwari RP, Woo E, Varshney U. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity. Nucleic Acids Res 2017; 45:5863-5876. [PMID: 28369586 PMCID: PMC5449639 DOI: 10.1093/nar/gkx209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023] Open
Abstract
Repair of uracils in DNA is initiated by uracil DNA glycosylases (UDGs). Family 1 UDGs (Ung) are the most efficient and ubiquitous proteins having an exquisite specificity for uracils in DNA. Ung are characterized by motifs A (GQDPY) and B (HPSPLS) sequences. We report a novel dimeric UDG, Blr0248 (BdiUng) from Bradyrhizobium diazoefficiens. Although BdiUng contains the motif A (GQDPA), it has low sequence identity to known UDGs. BdiUng prefers single stranded DNA and excises uracil, 5-hydroxymethyl-uracil or xanthine from it. BdiUng is impervious to inhibition by AP DNA, and Ugi protein that specifically inhibits family 1 UDGs. Crystal structure of BdiUng shows similarity with the family 4 UDGs in its overall fold but with family 1 UDGs in key active site residues. However, instead of a classical motif B, BdiUng has a uniquely extended protrusion explaining the lack of Ugi inhibition. Structural and mutational analyses of BdiUng have revealed the basis for the accommodation of diverse substrates into its substrate binding pocket. Phylogenetically, BdiUng belongs to a new UDG family. Bradyrhizobium diazoefficiens presents a unique scenario where the presence of at least four families of UDGs may compensate for the absence of an efficient family 1 homologue.
Collapse
Affiliation(s)
- Ullas Valiya Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wayne Reeve
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ravi P Tiwari
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Euijeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
37
|
Tang G, Wang S, Lu D, Huang L, Li N, Luo L. Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress. Microbiol Res 2017; 198:1-7. [DOI: 10.1016/j.micres.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
38
|
Pucciariello C, Perata P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. PLANT, CELL & ENVIRONMENT 2017; 40:473-482. [PMID: 26799776 DOI: 10.1111/pce.12715] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 05/10/2023]
Abstract
Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O2 ). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O2 -dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO - low O2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances.
Collapse
|
39
|
Dupuy P, Gourion B, Sauviac L, Bruand C. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. MICROBIOLOGY-SGM 2017; 163:333-342. [PMID: 27902438 DOI: 10.1099/mic.0.000400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double-strand breaks (DSBs). In particular, the reactive oxygen species (ROS) and the reactive nitrogen species (RNS) produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSBs. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, an S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis or that DSBs are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.
Collapse
Affiliation(s)
- Pierre Dupuy
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
40
|
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci 2016; 17:E815. [PMID: 27240350 PMCID: PMC4926349 DOI: 10.3390/ijms17060815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| | - Valérie Murset
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18080 Granada, Spain.
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
41
|
Hichri I, Boscari A, Meilhoc E, Catalá M, Barreno E, Bruand C, Lanfranco L, Brouquisse R. Nitric Oxide: A Multitask Player in Plant–Microorganism Symbioses. GASOTRANSMITTERS IN PLANTS 2016. [DOI: 10.1007/978-3-319-40713-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Abstract
Nitric oxide is a free radical signal molecule. Various methods are available for measurement of NO. Out of all methods, fluorescent probes to localize NO is very widely used method. Diaminofluorescein in diacetate form (DAF-2DA) is most widely probe for NO measurement. This method is based on application of 4,5-diaminofluorescein diacetate (DAF-2DA) which is actively diffused into cells, once taken up by cells cytoplasmic esterases cleave the acetate groups to generate 4,5-diaminofluorescein; DAF-2. The generated DAF-2 can readily react with N2O3, which is an oxidation product of NO to generate the highly fluorescent DAF-2T (triazolofluorescein). There are various advantages and disadvantages associated with this method, but to its advantage in diffusion closely to NO producing sites, it is widely used for localization studies. Here, we describe method to make sections of the roots and localization of NO in roots subjected to hypoxic stress.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 110067, India
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 110067, India.
| |
Collapse
|
43
|
Blanquet P, Silva L, Catrice O, Bruand C, Carvalho H, Meilhoc E. Sinorhizobium meliloti Controls Nitric Oxide-Mediated Post-Translational Modification of a Medicago truncatula Nodule Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1353-63. [PMID: 26422404 DOI: 10.1094/mpmi-05-15-0118-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.
Collapse
Affiliation(s)
- Pauline Blanquet
- 1 Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- 2 Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France; and
| | - Liliana Silva
- 3 Laboratório de Biologia Molecular da Assimilação do Azoto, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Olivier Catrice
- 1 Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- 2 Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France; and
| | - Claude Bruand
- 1 Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- 2 Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France; and
| | - Helena Carvalho
- 3 Laboratório de Biologia Molecular da Assimilação do Azoto, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Eliane Meilhoc
- 1 Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- 2 Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France; and
| |
Collapse
|
44
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Corpas FJ, Barroso JB. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. PLANTS 2015; 4:240-52. [PMID: 27135326 PMCID: PMC4844326 DOI: 10.3390/plants4020240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain.
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
46
|
Österman J, Mousavi SA, Koskinen P, Paulin L, Lindström K. Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes. BMC Genomics 2015; 16:348. [PMID: 25933608 PMCID: PMC4417242 DOI: 10.1186/s12864-015-1576-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background The symbiotic phenotype of Neorhizobium galegae, with strains specifically fixing nitrogen with either Galega orientalis or G. officinalis, has made it a target in research on determinants of host specificity in nitrogen fixation. The genomic differences between representative strains of the two symbiovars are, however, relatively small. This introduced a need for a dataset representing a larger bacterial population in order to make better conclusions on characteristics typical for a subset of the species. In this study, we produced draft genomes of eight strains of N. galegae having different symbiotic phenotypes, both with regard to host specificity and nitrogen fixation efficiency. These genomes were analysed together with the previously published complete genomes of N. galegae strains HAMBI 540T and HAMBI 1141. Results The results showed that the presence of an additional rpoN sigma factor gene in the symbiosis gene region is a characteristic specific to symbiovar orientalis, required for nitrogen fixation. Also the nifQ gene was shown to be crucial for functional symbiosis in both symbiovars. Genome-wide analyses identified additional genes characteristic of strains of the same symbiovar and of strains having similar plant growth promoting properties on Galega orientalis. Many of these genes are involved in transcriptional regulation or in metabolic functions. Conclusions The results of this study confirm that the only symbiosis-related gene that is present in one symbiovar of N. galegae but not in the other is an rpoN gene. The specific function of this gene remains to be determined, however. New genes that were identified as specific for strains of one symbiovar may be involved in determining host specificity, while others are defined as potential determinant genes for differences in efficiency of nitrogen fixation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1576-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janina Österman
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland. .,Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, 00790, Helsinki, Finland.
| | - Seyed Abdollah Mousavi
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland. .,Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, 00790, Helsinki, Finland.
| | - Patrik Koskinen
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Kristina Lindström
- Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, 00790, Helsinki, Finland.
| |
Collapse
|
47
|
Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2877-87. [PMID: 25732535 DOI: 10.1093/jxb/erv051] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The specific interaction between legumes and Rhizobium-type bacteria leads to the establishment of a symbiotic relationship characterized by the formation of new differentiated organs named nodules, which provide a niche for bacterial nitrogen (N2) fixation. In the nodules, bacteria differentiate into bacteroids with the ability to fix atmospheric N2 via nitrogenase activity. As nitrogenase is strongly inhibited by oxygen, N2 fixation is made possible by the microaerophilic conditions prevailing in the nodules. Increasing evidence has shown the presence of NO during symbiosis, from early interaction steps between the plant and the bacterial partners to N2-fixing and senescence steps in mature nodules. Both the plant and the bacterial partners participate in NO synthesis. NO was found to be required for the optimal establishment of the symbiotic interaction. Transcriptomic analysis at an early stage of the symbiosis showed that NO is potentially involved in the repression of plant defence reactions, favouring the establishment of the plant-microbe interaction. In mature nodules, NO was shown to inhibit N2 fixation, but it was also demonstrated to have a regulatory role in nitrogen metabolism, to play a beneficial metabolic function for the maintenance of the energy status under hypoxic conditions, and to trigger nodule senescence. The present review provides an overview of NO sources and multifaceted effects from the early steps of the interaction to the senescence of the nodule, and presents several approaches which appear to be particularly promising in deciphering the roles of NO in N2-fixing symbioses.
Collapse
Affiliation(s)
- Imène Hichri
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| | - Alexandre Boscari
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| | - Claude Castella
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| | - Martina Rovere
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| | - Alain Puppo
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| | - Renaud Brouquisse
- INRA, Institut Sophia Agrobiotech (ISA), UMR 1355, BP 167, 06903, Sophia Antipolis cedex, France CNRS, Institut Sophia Agrobiotech (ISA), UMR 7254, BP 167, 06903, Sophia Antipolis cedex, France Université Nice Sophia Antipolis, Institut Sophia Agrobiotech (ISA), BP 167, 06903, Sophia Antipolis cedex, France
| |
Collapse
|
48
|
Corpas FJ, Barroso JB. Nitric oxide from a "green" perspective. Nitric Oxide 2015; 45:15-9. [PMID: 25638488 DOI: 10.1016/j.niox.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The molecule nitric oxide (NO) which is involved in practically all biochemical and physiological plant processes has become a subject for plant research. However, there remain many unanswered questions concerning how, where and when this molecule is enzymatically generated in higher plants. This mini-review aims to provide an overview of NO in plants for those readers unfamiliar with this field of research. The review will therefore discuss the importance of NO in higher plants at the physiological and biochemical levels, its involvement in designated nitro-oxidative stresses in response to adverse abiotic and biotic environmental conditions, NO emission/uptake from plants, beneficial plant-microbial interactions, and its potential application in the biotechnological fields of agriculture and food nutrition.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", Jaén E-23071, Spain
| |
Collapse
|
49
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
50
|
Gupta KJ, Mur LAJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:307-314. [PMID: 24283937 DOI: 10.1094/mpmi-06-13-0160-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.
Collapse
|