1
|
Wei S, Zheng B, Wang S, Yang X, Chen Y, Yin T. Integrated analysis of Populus deltoides PR1 genes uncovered a PdePR1 as a defense marker against foliar rust. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109769. [PMID: 40101467 DOI: 10.1016/j.plaphy.2025.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Pathogenesis-related protein 1 (PR1), a hallmark of plant disease resistance, plays pivotal roles in defense signaling. In this study, we identified 16 intronless PR1 genes in Populus deltoides, all classified within the CAP superfamily (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1) and characterized by conserved N-terminal signal peptides, caveolin-binding motifs, and CAP-derived peptides. Phylogenomic reconstruction of 231 PR1 homologs across 15 plant species traced their origin to Chara braunii, with lineage-specific expansions driven by gene duplication. Evolutionary analyses revealed strong purifying selection acting on ancestral PR1 paralogs to confer a selective advantage for disease resistance. Integrated transcriptomic profiling and quantitative RT-PCR analyses identified PdePR1_10 as a key marker gene for defense activation, exhibiting significant induction at two days post-inoculation in resistant poplars. Co-expression network analysis indicated that PdePR1_10 interacts with several defense-related genes, including NBS-LRR resistance genes, signaling kinases, and hormone biosynthesis enzymes. Specifically, the W-box cis-regulatory element in the PdePR1_10 promoter is hypothesized to interact with WRKY transcription factors, activating PdePR1_10 expression through a salicylic acid (SA)-dependent signaling pathway. Transgenic poplars overexpressing PdePR1_10 exhibited significantly enhanced rust resistance, confirming its critical in defense response. In summary, we thoroughly elucidated the biological functions and regulatory mechanisms of PR1 genes in rust resistance and provided a valuable transgenic poplar line for future studies.
Collapse
Affiliation(s)
- Suyun Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Baoyu Zheng
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyu Wang
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Yang
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
3
|
Zeng Y, Song H, Xia L, Yang L, Zhang S. The responses of poplars to fungal pathogens: A review of the defensive pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1107583. [PMID: 36875570 PMCID: PMC9978395 DOI: 10.3389/fpls.2023.1107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-lived tree species need to cope with changing environments and pathogens during their lifetime. Fungal diseases cause damage to trees growth and forest nurseries. As model system for woody plants, poplars are also hosts of a large variety of fungus. The defense strategies to fungus are generally associated with the type of fungus, therefore, the defense strategies of poplar against necrotrophic and biotrophic fungus are different. Poplars initiate constitutive defenses and induced defenses based on recognition of the fungus, hormone signaling network cascades, activation of defense-related genes and transcription factors and production of phytochemicals. The means of sensing fungus invasion in poplars are similar with herbs, both of which are mediated by receptor proteins and resistance (R) proteins, leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), but poplars have evolved some unique defense mechanisms compared with Arabidopsis due to their longevity. In this paper, current researches on poplar defensive responses to necrotrophic and biotrophic fungus, which mainly include the physiological and genetic aspects, and the role of noncoding RNA (ncRNA) in fungal resistance are reviewed. This review also provides strategies to enhance poplar disease resistance and some new insights into future research directions.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haifeng Song
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ahmad S, Chen G, Huang J, Yang K, Hao Y, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Beauty and the pathogens: A leaf-less control presents a better image of Cymbidium orchids defense strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1001427. [PMID: 36176684 PMCID: PMC9513425 DOI: 10.3389/fpls.2022.1001427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Biological control is a safe way of combating plant diseases using the living organisms. For the precise use of microbial biological control agents, the genetic information on the hypersensitive response (HR), and defense-related gene induction pathways of plants are necessary. Orchids are the most prominent stakeholders of floriculture industry, and owing to their long-awaited flowering pattern, disease control is imperative to allow healthy vegetative growth that spans more than 2 years in most of the orchids. We observed leaf-less flowering in three orchid species (Cymbidium ensifolium, C. goeringii and C. sinense). Using these materials as reference, we performed transcriptome profiling for healthy leaves from non-infected plants to identify genes specifically involved in plant-pathogen interaction pathway. For this pathway, a total of 253 differentially expressed genes (DEGs) were identified in C. ensifolium, 189 DEGs were identified in C. goeringii and 119 DEGs were found in C. sinense. These DEGs were mainly related to bacterial secretion systems, FLS2, CNGCs and EFR, regulating HR, stomatal closure and defense-related gene induction. FLS2 (LRR receptor-like serine/threonine kinase) contained the highest number of DEGs among three orchid species, followed by calmodulin. Highly upregulated gene sets were found in C. sinense as compared to other species. The great deal of DEGs, mainly the FLS2 and EFR families, related to defense and immunity responses can effectively direct the future of biological control of diseases for orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Advanced Breeding for Biotic Stress Resistance in Poplar. PLANTS 2022; 11:plants11152032. [PMID: 35956510 PMCID: PMC9370193 DOI: 10.3390/plants11152032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022]
Abstract
Poplar is one of the most important forest trees because of its high economic value. Thanks to the fast-growing rate, easy vegetative propagation and transformation, and availability of genomic resources, poplar has been considered the model species for forest genetics, genomics, and breeding. Being a field-growing tree, poplar is exposed to environmental threats, including biotic stresses that are becoming more intense and diffused because of global warming. Current poplar farming is mainly based on monocultures of a few elite clones and the expensive and long-term conventional breeding programmes of perennial tree species cannot face current climate-change challenges. Consequently, new tools and methods are necessary to reduce the limits of traditional breeding related to the long generation time and to discover new sources of resistance. Recent advances in genomics, marker-assisted selection, genomic prediction, and genome editing offer powerful tools to efficiently exploit the Populus genetic diversity and allow enabling molecular breeding to support accurate early selection, increasing the efficiency, and reducing the time and costs of poplar breeding, that, in turn, will improve our capacity to face or prevent the emergence of new diseases or pests.
Collapse
|
6
|
Zamora-Ballesteros C, Pinto G, Amaral J, Valledor L, Alves A, Diez JJ, Martín-García J. Dual RNA-Sequencing Analysis of Resistant ( Pinus pinea) and Susceptible ( Pinus radiata) Hosts during Fusarium circinatum Challenge. Int J Mol Sci 2021; 22:5231. [PMID: 34063405 PMCID: PMC8156185 DOI: 10.3390/ijms22105231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Fusarium circinatum causes one of the most important diseases of conifers worldwide, the pine pitch canker (PPC). However, no effective field intervention measures aiming to control or eradicate PPC are available. Due to the variation in host genetic resistance, the development of resistant varieties is postulated as a viable and promising strategy. By using an integrated approach, this study aimed to identify differences in the molecular responses and physiological traits of the highly susceptible Pinus radiata and the highly resistant Pinus pinea to F. circinatum at an early stage of infection. Dual RNA-Seq analysis also allowed to evaluate pathogen behavior when infecting each pine species. No significant changes in the physiological analysis were found upon pathogen infection, although transcriptional reprogramming was observed mainly in the resistant species. The transcriptome profiling of P. pinea revealed an early perception of the pathogen infection together with a strong and coordinated defense activation through the reinforcement and lignification of the cell wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired perception of the fungal infection that led to a reduced downstream defense signaling. Fusarium circinatum showed a different transcriptomic profile depending on the pine species being infected. While in P. pinea, the pathogen focused on the degradation of plant cell walls, active uptake of the plant nutrients was showed in P. radiata. These findings present useful knowledge for the development of breeding programs to manage PPC.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain;
| | - Artur Alves
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Julio J. Diez
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Jorge Martín-García
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
7
|
dos Santos KCG, Pelletier G, Séguin A, Guillemette F, Hawkes J, Desgagné-Penix I, Germain H. Unrelated Fungal Rust Candidate Effectors Act on Overlapping Plant Functions. Microorganisms 2021; 9:microorganisms9050996. [PMID: 34063040 PMCID: PMC8148019 DOI: 10.3390/microorganisms9050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.
Collapse
Affiliation(s)
- Karen Cristine Goncalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - François Guillemette
- Centre for Research on Aquatic Ecosystem Interactions (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada;
| | - Jeffrey Hawkes
- Department of Chemistry—BMC, Analytical Chemistry, Uppsala University, VJ2J+92 Uppsala, Sweden;
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
- Correspondence:
| |
Collapse
|
8
|
Wei S, Wu H, Li X, Chen Y, Yang Y, Dai M, Yin T. Identification of Genes Underlying the Resistance to Melampsora larici-populina in an R Gene Supercluster of the Populus deltoides Genome. PLANT DISEASE 2020; 104:1133-1143. [PMID: 32049587 DOI: 10.1094/pdis-08-19-1699-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Identification of the particular genes in an R genes supercluster underlying resistance to the rust fungus Melampsora larici-populina in poplar genome remains challenging. Based on the de novo assembly of the Populus deltoides genome, all of the detected major genetic loci conferring resistance to M. larici-populina were confined to a 3.5-Mb region on chromosome 19. The transcriptomes of the resistant and susceptible genotypes were sequenced for a timespan from 0 to 168 hours postinoculation. By mapping the differentially expressed genes to the target genomic region, we identified two constitutive expression R genes and one inducible expression R gene that might confer resistance to M. larici-populina. Nucleotide variations were predicted based on the reconstructed haplotypes for each allele of the candidate genes. We also confirmed that salicylic acid was the phytohormone mediating signal transduction pathways, and PR-1 was identified as a key gene inhibiting rust reproduction. Finally, quantitative reverse transcription PCR assay revealed consistent expressions with the RNA-sequencing data for the detected key genes. This study presents an efficient approach for the identification of particular genes underlying phenotype of interest by the combination of genetic mapping, transcriptome profiling, and candidate gene sequences dissection. The identified key genes would be useful for host resistance diagnosis and for molecular breeding of elite poplar cultivars exhibiting resistance to M. larici-populina infection. The detected R genes are also valuable for testing whether the combination of individual R genes can induce durable quantitative resistance.
Collapse
Affiliation(s)
- Suyun Wei
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Huaitong Wu
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoping Li
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingnan Chen
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Meili Dai
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Tao SQ, Auer L, Morin E, Liang YM, Duplessis S. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:444-461. [PMID: 31765287 DOI: 10.1094/mpmi-07-19-0208-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University
| | - Sébastien Duplessis
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
10
|
Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y. Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:237-248. [PMID: 31494994 DOI: 10.1111/tpj.14526] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 05/19/2023]
Abstract
High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.
Collapse
Affiliation(s)
- Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfei Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Godbout J, Gros-Louis M, Lamothe M, Isabel N. Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides. Evol Appl 2020; 13:176-194. [PMID: 31892951 PMCID: PMC6935597 DOI: 10.1111/eva.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.
Collapse
Affiliation(s)
- Julie Godbout
- Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestièreQuébecQCCanada
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | | | - Manuel Lamothe
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| | - Nathalie Isabel
- Canadian Forest Service, Laurentian Forestry CentreNatural Resources CanadaQuébecQCCanada
| |
Collapse
|
12
|
Abraham N, Chitrampalam P, Nelson B, Sharma Poudel R, Chittem K, Borowicz P, Brueggeman R, Jain S, LeBoldus JM. Microscopic, Biochemical, and Molecular Comparisons of Moderately Resistant and Susceptible Populus Genotypes Inoculated with Sphaerulina musiva. PHYTOPATHOLOGY 2019; 109:2074-2086. [PMID: 31483223 DOI: 10.1094/phyto-03-19-0105-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sphaerulina musiva, the causal agent of Septoria leaf spot and stem canker, is responsible for mortality and yield loss in Populus plantations. However, little is known about the mode of infection and the mechanisms of resistance in this pathosystem. To characterize these phenomena, microscopic, biochemical, and transcriptome comparisons were performed between leaves of moderately resistant and susceptible genotypes of Populus inoculated with S. musiva conidia. Using scanning electron, cryofracture, and laser-scanning confocal microscopy, the infection and colonization of Populus leaves by S. musiva were examined across five time points (48 h, 96 h, 1 week, 2 weeks, and 3 weeks). The infection process was similar regardless of the host genotype. Differences in host colonization between susceptible and moderately resistant genotypes were apparent by 1 week postinoculation. However, the germination of conidia was greater on the susceptible than on the moderately resistant genotype (P < 0.008). Diaminobenzidine staining, a measure of hydrogen peroxide accumulation, was different (P < 0.001) between the host genotypes by 2 weeks postinoculation. Transcriptome differences between genotypes indicated that the speed and amplitude of the defense response were faster and more extensive in the moderately resistant genotype. Changes in gene expression support the microscopic and biochemical observations.
Collapse
Affiliation(s)
- Nivi Abraham
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | | | - Berlin Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | | | - Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Pawel Borowicz
- Department of Animal Science, North Dakota State University, Fargo, ND 58105
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Jared Michael LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Department of Forest Engineering Resources and Management, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
13
|
Ullah C, Tsai C, Unsicker SB, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. THE NEW PHYTOLOGIST 2019; 221:960-975. [PMID: 30168132 PMCID: PMC6585937 DOI: 10.1111/nph.15396] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Chung‐Jui Tsai
- School of Forestry and Natural ResourcesDepartment of GeneticsDepartment of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Liangjiao Xue
- Key Laboratory of Forest Genetics and BiotechnologyCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingJiangsu210037China
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
14
|
Yang C, Liang Y, Qiu D, Zeng H, Yuan J, Yang X. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato. BMC PLANT BIOLOGY 2018; 18:103. [PMID: 29866036 DOI: 10.1186/s12870-018-1319-1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND BcGs1, a cell wall-degrading enzyme (CWDE), was originally derived from Botrytis cinerea. Our previous study revealed that BcGs1 could trigger defense responses and protect plants against various pathogens. We researched the defense response mechanism underlying this BcGs1 elicitation in tomato. RESULTS We revealed that the two domains were required for BcGs1's full necrosis activity. According to analysis and quantitative real-time PCR of the up-regulated proteins and genes filtered by iTRAQ-based quantitative proteome approach, oxidative metabolism and phenylpropanoid metabolism were speculated to be involved in BcGs1-triggered defense response in tomato. Furthermore, experimental evidence showed that BcGs1 triggered reactive oxygen species (ROS) burst and increased the level of phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity, as well as lignin accumulation. Moreover, histochemical analysis revealed that infiltration of BcGs1 in tomato leaves exhibited cell wall thickening compared with untreated plants. CONCLUSIONS The results suggested that BcGs1 activated the basal defense response included lignin metabolism contributed to BcGs1-induced resistance to Botrytis. cinerea infection in tomato.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081, China.
| |
Collapse
|
15
|
Yang C, Liang Y, Qiu D, Zeng H, Yuan J, Yang X. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato. BMC PLANT BIOLOGY 2018; 18:103. [PMID: 29866036 PMCID: PMC5987389 DOI: 10.1186/s12870-018-1319-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/24/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND BcGs1, a cell wall-degrading enzyme (CWDE), was originally derived from Botrytis cinerea. Our previous study revealed that BcGs1 could trigger defense responses and protect plants against various pathogens. We researched the defense response mechanism underlying this BcGs1 elicitation in tomato. RESULTS We revealed that the two domains were required for BcGs1's full necrosis activity. According to analysis and quantitative real-time PCR of the up-regulated proteins and genes filtered by iTRAQ-based quantitative proteome approach, oxidative metabolism and phenylpropanoid metabolism were speculated to be involved in BcGs1-triggered defense response in tomato. Furthermore, experimental evidence showed that BcGs1 triggered reactive oxygen species (ROS) burst and increased the level of phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity, as well as lignin accumulation. Moreover, histochemical analysis revealed that infiltration of BcGs1 in tomato leaves exhibited cell wall thickening compared with untreated plants. CONCLUSIONS The results suggested that BcGs1 activated the basal defense response included lignin metabolism contributed to BcGs1-induced resistance to Botrytis. cinerea infection in tomato.
Collapse
Affiliation(s)
- Chenyu Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests/ Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture Institute of Plant protection, Chinese Academy of Agricultural science, No. 12 Zhong-guan-cun South Street, Beijing, 100081 China
| |
Collapse
|
16
|
Gortari F, Guiamet JJ, Graciano C. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae). TREE PHYSIOLOGY 2018; 38:925-935. [PMID: 29370416 DOI: 10.1093/treephys/tpx174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/19/2017] [Indexed: 05/27/2023]
Abstract
Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms.
Collapse
Affiliation(s)
- Fermín Gortari
- INFIVE (CONICET-Universidad Nacional de La Plata), Diag 113 n° 495, CC 327, 1900 La Plata, Argentina
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Bertoni 124, 3380 Eldorado, Misiones, Argentina
| | - Juan José Guiamet
- INFIVE (CONICET-Universidad Nacional de La Plata), Diag 113 n° 495, CC 327, 1900 La Plata, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, calle 60 y 122, 1900 La Plata, Argentina
- CCT CONICET La Plata, calle 8 n° 1467, 1900 La Plata, Argentina
| | - Corina Graciano
- INFIVE (CONICET-Universidad Nacional de La Plata), Diag 113 n° 495, CC 327, 1900 La Plata, Argentina
- CCT CONICET La Plata, calle 8 n° 1467, 1900 La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, calle 60 y 118, 1900 La Plata, Argentina
| |
Collapse
|
17
|
Hsieh JF, Chuah A, Patel HR, Sandhu KS, Foley WJ, Külheim C. Transcriptome Profiling of Melaleuca quinquenervia Challenged by Myrtle Rust Reveals Differences in Defense Responses Among Resistant Individuals. PHYTOPATHOLOGY 2018; 108:495-509. [PMID: 29135360 DOI: 10.1094/phyto-09-17-0307-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plants have developed complex defense mechanisms to protect themselves against pathogens. A wide-host-range fungus, Austropuccinia psidii, which has caused severe damage to ecosystems and plantations worldwide, is a major threat to Australian ecosystems dominated by members of the family Myrtaceae. In particular, the east coast wetland foundation tree species Melaleuca quinquenervia, appears to be variably susceptible to this pathogen. Understanding the molecular basis of host resistance would enable better management of this rust disease. We identified resistant and susceptible individuals of M. quinquenervia and explored their differential gene expression in order to discover the molecular basis of resistance against A. psidii. Rust screening of germplasm showed a varying degree of response, with fully resistant to highly susceptible individuals. We used transcriptome profiling in samples collected before and at 5 days postinoculation (dpi). Differential gene expression analysis showed that numerous defense-related genes were induced in susceptible plants at 5 dpi. Mapping reads against the A. psidii genome showed that only susceptible plants contained fungal-derived transcripts. Resistant plants exhibited an overexpression of candidate A. psidii resistance-related genes such as receptor-like kinases, nucleotide-binding site leucine-rich repeat proteins, glutathione S-transferases, WRKY transcriptional regulators, and pathogenesis-related proteins. We identified large differences in the expression of defense-related genes among resistant individuals.
Collapse
Affiliation(s)
- Ji-Fan Hsieh
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Aaron Chuah
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Hardip R Patel
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Karanjeet S Sandhu
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - William J Foley
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| | - Carsten Külheim
- First, fifth, and sixth authors: Research School of Biology, The Australian National University, 116 Daley Road, Canberra 2601, ACT, Australia; second and third authors: The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra 2601, ACT, Australia; and fourth author: Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty 2570, NSW, Australia
| |
Collapse
|
18
|
La Mantia J, Unda F, Douglas CJ, Mansfield SD, Hamelin R. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. TREE PHYSIOLOGY 2018; 38:457-470. [PMID: 28981890 DOI: 10.1093/treephys/tpx100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Plants respond to pathogens through an orchestration of signaling events that coordinate modifications to transcriptional profiles and physiological processes. Resistance to necrotrophic pathogens often requires jasmonic acid, which antagonizes the salicylic acid dependent biotrophic defense response. Recently, myo-inositol has been shown to negatively impact salicylic acid (SA) levels and signaling, while galactinol enhances jasmonic acid (JA)-dependent induced systemic resistance to necrotrophic pathogens. To investigate the function of these compounds in biotrophic pathogen defense, we characterized the defense response of Populus alba × grandidentata overexpressing Arabidopsis GALACTINOL SYNTHASE3 (AtGolS) and Cucumber sativus RAFFINOSE SYNTHASE (CsRFS) challenged with Melampsora aecidiodes, a causative agent of poplar leaf rust disease. Relative to wild-type leaves, the overexpression of AtGolS3 and CsRFS increased accumulation of galactinol and raffinose and led to increased leaf rust infection. During the resistance response, inoculated wild-type leaves displayed reduced levels of galactinol and repressed transcript abundance of two endogenous GolS genes compared to un-inoculated wild-type leaves prior to the up-regulation of NON-EXPRESSOR OF PR1 and PATHOGENESIS-RELATED1. Transcriptome analysis and qRT-PCR validation also revealed the repression of genes participating in calcium influx, phosphatidic acid biosynthesis and signaling, and salicylic acid signaling in the transgenic lines. In contrast, enhanced tolerance to H2O2 and up-regulation of antioxidant biosynthesis genes were exhibited in the overexpression lines. Thus, we conclude that overexpression of AtGolS and CsRFS antagonizes the defense response to poplar leaf rust disease through repressing reactive oxygen species and attenuating calcium and phosphatidic acid signaling events that lead to SA defense.
Collapse
Affiliation(s)
- Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- United States Department of Agriculture, Wooster, OH 44691, USA
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Natural Resources Canada, Laurentian Forestry Center 1055 rue du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|
19
|
Eberl F, Perreca E, Vogel H, Wright LP, Hammerbacher A, Veit D, Gershenzon J, Unsicker SB. Rust Infection of Black Poplar Trees Reduces Photosynthesis but Does Not Affect Isoprene Biosynthesis or Emission. FRONTIERS IN PLANT SCIENCE 2018; 9:1733. [PMID: 30538714 PMCID: PMC6277707 DOI: 10.3389/fpls.2018.01733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Poplar (Populus spp.) trees are widely distributed and play an important role in ecological communities and in forestry. Moreover, by releasing high amounts of isoprene, these trees impact global atmospheric chemistry. One of the most devastating diseases for poplar is leaf rust, caused by fungi of the genus Melampsora. Despite the wide distribution of these biotrophic pathogens, very little is known about their effects on isoprene biosynthesis and emission. We therefore infected black poplar (P. nigra) trees with the rust fungus M. larici-populina and monitored isoprene emission and other physiological parameters over the course of infection to determine the underlying mechanisms. We found an immediate and persistent decrease in photosynthesis during infection, presumably caused by decreased stomatal conductance mediated by increased ABA levels. At the same time, isoprene emission remained stable during the time course of infection, consistent with the stability of its biosynthesis. There was no detectable change in the levels of intermediates or gene transcripts of the methylerythritol 4-phosphate (MEP) pathway in infected compared to control leaves. Rust infection thus does not affect isoprene emission, but may still influence the atmosphere via decreased fixation of CO2.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Louwrance P. Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Zeiselhof Research Farm, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Sybille B. Unsicker,
| |
Collapse
|
20
|
Meirmans PG, Godbout J, Lamothe M, Thompson SL, Isabel N. History rather than hybridization determines population structure and adaptation inPopulus balsamifera. J Evol Biol 2017; 30:2044-2058. [DOI: 10.1111/jeb.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023]
Affiliation(s)
- P. G. Meirmans
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | - J. Godbout
- Laurentian Forestry Centre; Canadian Forest Service, Natural Resources Canada; Québec QC Canada
| | - M. Lamothe
- Laurentian Forestry Centre; Canadian Forest Service, Natural Resources Canada; Québec QC Canada
| | - S. L. Thompson
- Laurentian Forestry Centre; Canadian Forest Service, Natural Resources Canada; Québec QC Canada
| | - N. Isabel
- Laurentian Forestry Centre; Canadian Forest Service, Natural Resources Canada; Québec QC Canada
| |
Collapse
|
21
|
Xia W, Yu H, Cao P, Luo J, Wang N. Identification of TIFY Family Genes and Analysis of Their Expression Profiles in Response to Phytohormone Treatments and Melampsora larici-populina Infection in Poplar. FRONTIERS IN PLANT SCIENCE 2017; 8:493. [PMID: 28424731 PMCID: PMC5380741 DOI: 10.3389/fpls.2017.00493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/21/2017] [Indexed: 05/22/2023]
Abstract
The TIFY domain contains approximately 36 conserved amino acids that form the core motif TIF[F/Y]XG, and they were reported to play important roles in plant growth, tissue development and defense regulation. Moreover, more and more evidence has shown that some members of the TIFY gene family perform their functions by modulating plant hormone signaling pathways. Poplar trees are found worldwide, and they comprise approximately 30 species. Benefit from the importance of poplar and its advanced platform, this tree is considered to be the model perennial plant. Here, we conducted a genome-wide identification of TIFY genes in poplar, and 24 TIFY genes were found. These 24 TIFY genes were assigned to different subfamilies according to the presence or absence of domains and motifs that they harbored. Careful analyses of their locations, structures, evolution and duplication patterns revealed an overview of this gene family in poplar. The expression profiles of these 24 TIFY genes were then analyzed in different tissues using publicly available expression data; their expression profiles following different JA/SA treatments and infection with leaf rust pathogen were also carefully examined by qRT-PCR assays. Based on their expression profiles, the functions of a number of TIFY genes could be predicted. By performing this study, we have provided valuable information for further functional characterisation of TIFY genes in poplar and candidate genes for the improvement of poplar disease resistance.
Collapse
|
22
|
Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. BMC Genomics 2016; 17:822. [PMID: 27769171 PMCID: PMC5075214 DOI: 10.1186/s12864-016-3155-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.
Collapse
Affiliation(s)
- Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Huasong Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| |
Collapse
|
23
|
Baldacci-Cresp F, Sacré PY, Twyffels L, Mol A, Vermeersch M, Ziemons E, Hubert P, Pérez-Morga D, El Jaziri M, de Almeida Engler J, Baucher M. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:560-572. [PMID: 27135257 DOI: 10.1094/mpmi-01-16-0015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Pierre-Yves Sacré
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Laure Twyffels
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Adeline Mol
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Eric Ziemons
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Philippe Hubert
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - David Pérez-Morga
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
- 4 Laboratoire de Parasitologie Moléculaire, Université libre de Bruxelles; and
| | - Mondher El Jaziri
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Janice de Almeida Engler
- 5 INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, F-06900 Sophia Antipolis, France
| | - Marie Baucher
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
24
|
Foster AJ, Pelletier G, Tanguay P, Séguin A. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp. PLoS One 2015; 10:e0138162. [PMID: 26378446 PMCID: PMC4575021 DOI: 10.1371/journal.pone.0138162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.
Collapse
Affiliation(s)
- Adam J. Foster
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Gervais Pelletier
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Philippe Tanguay
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
| | - Armand Séguin
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Canada
- * E-mail:
| |
Collapse
|
25
|
Gramig GG, Harris MO. Plant Photosynthetic Responses During Insect Effector-Triggered Plant Susceptibility and Immunity. ENVIRONMENTAL ENTOMOLOGY 2015; 44:601-609. [PMID: 26313966 DOI: 10.1093/ee/nvv028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Gall-inducing insects are known for altering source-sink relationships within plants. Changes in photosynthesis may contribute to this phenomenon. We investigated photosynthetic responses in wheat [Triticum aestivum L. (Poaceae: Triticeae)] seedlings attacked by the Hessian fly [Mayetiola destructor (Say) (Diptera: Cecidomyiidae], which uses a salivary effector-based strategy to induce a gall nutritive tissue in susceptible plants. Resistant plants have surveillance systems mediated by products of Resistance (R) genes. Detection of a specific salivary effector triggers downstream responses that result in a resistance that kills neonate larvae. A 2 × 2 factorial design was used to study maximum leaf photosynthetic assimilation and stomatal conductance rates. The plant treatments were-resistant or susceptible wheat lines expressing or not expressing the H13 resistance gene. The insect treatments were-no attack (control) or attack by larvae killed by H13 gene-mediated resistance. Photosynthesis was measured for the second and third leaves of the seedling, the latter being the only leaf directly attacked by larvae. We predicted effector-based attack would trigger increases in photosynthetic rates in susceptible but not resistant plants. For susceptible plants, attack was associated with increases (relative to controls) in photosynthesis for the third but not the second leaf. For resistant plants, attack was associated with increases in photosynthesis for both the second and third leaves. Mechanisms underlying the increases appeared to differ. Resistant plants exhibited responses suggesting altered source-sink relationships. Susceptible plants exhibited responses suggesting a mechanism other than altered source-sink relationships, possibly changes in water relations that contributed to increased stomatal conductance.
Collapse
Affiliation(s)
- Greta G Gramig
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102.
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58102
| |
Collapse
|
26
|
Naidoo S, Külheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, Wilken FE, Mamni TB, Myburg AA. Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. TREE PHYSIOLOGY 2014; 34:931-43. [PMID: 25261123 DOI: 10.1093/treephys/tpu075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus, such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered.
Collapse
Affiliation(s)
- Sanushka Naidoo
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa;
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lizahn Zwart
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Ronishree Mangwanda
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Caryn N Oates
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Erik A Visser
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Febé E Wilken
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Thandekile B Mamni
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
27
|
Liao W, Ji L, Wang J, Chen Z, Ye M, Ma H, An X. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct Integr Genomics 2014; 14:517-29. [PMID: 24870810 DOI: 10.1007/s10142-014-0379-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 01/31/2023]
Abstract
Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data.
Collapse
Affiliation(s)
- Weihua Liao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory, College of Biological Sciences and Biotechnology, Beijing Forestry University, P.O. Box 118, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-013-0273-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Pégeot H, Koh CS, Petre B, Mathiot S, Duplessis S, Hecker A, Didierjean C, Rouhier N. The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1. FRONTIERS IN PLANT SCIENCE 2014; 5:712. [PMID: 25566286 PMCID: PMC4274894 DOI: 10.3389/fpls.2014.00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 05/20/2023]
Abstract
Glutathione transferases (GSTs) constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs), require a conserved catalytic serine residue to perform glutathione (GSH)-conjugation reactions. Genomic analyses revealed that terrestrial plants have around ten GSTFs, eight in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds) and vegetative organs (leaves, petioles). Here, we show that the recombinant poplar GSTF1 (PttGSTF1) possesses peroxidase activity toward cumene hydroperoxide and GSH-conjugation activity toward model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance with analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or 2-(N-morpholino)ethanesulfonic acid molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs.
Collapse
Affiliation(s)
- Henri Pégeot
- Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres - Microorganismes, UMR1136Champenoux, France
| | - Cha San Koh
- Faculté des Sciences et Technologies, Université de Lorraine, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
- Faculté des Sciences et Technologies, CNRS, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
| | - Benjamin Petre
- Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres - Microorganismes, UMR1136Champenoux, France
| | - Sandrine Mathiot
- Faculté des Sciences et Technologies, Université de Lorraine, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
- Faculté des Sciences et Technologies, CNRS, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres - Microorganismes, UMR1136Champenoux, France
| | - Arnaud Hecker
- Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres - Microorganismes, UMR1136Champenoux, France
| | - Claude Didierjean
- Faculté des Sciences et Technologies, Université de Lorraine, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
- Faculté des Sciences et Technologies, CNRS, CRM, Equipe BioMod, UMR 7036Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres - Microorganismes, UMR1136Champenoux, France
- *Correspondence: Nicolas Rouhier, Interactions Arbres - Microorganismes, Université de Lorraine, UMR1136, Boulevard des aiguilettes, Faculté des sciences et technologies, F-54500 Vandoeuvre-lès-Nancy, France e-mail:
| |
Collapse
|
30
|
Busby PE, Zimmerman N, Weston DJ, Jawdy SS, Houbraken J, Newcombe G. Leaf endophytes andPopulusgenotype affect severity of damage from the necrotrophic leaf pathogen,Drepanopeziza populi. Ecosphere 2013. [DOI: 10.1890/es13-00127.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Poplar genetic engineering: promoting desirable wood characteristics and pest resistance. Appl Microbiol Biotechnol 2013; 97:5669-79. [DOI: 10.1007/s00253-013-4940-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
32
|
Naidoo R, Ferreira L, Berger DK, Myburg AA, Naidoo S. The identification and differential expression of Eucalyptus grandis pathogenesis-related genes in response to salicylic acid and methyl jasmonate. FRONTIERS IN PLANT SCIENCE 2013; 4:43. [PMID: 23508356 PMCID: PMC3589731 DOI: 10.3389/fpls.2013.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Two important role players in plant defence response are the phytohormones salicylic acid (SA) and jasmonic acid (JA); both of which have been well described in model species such as Arabidopsis thaliana. Several pathogenesis related (PR) genes have previously been used as indicators of the onset of SA and JA signaling in Arabidopsis. This information is lacking in tree genera such as Eucalyptus. The aim of this study was to characterize the transcriptional response of PR genes (EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX) identified in Eucalyptus grandis to SA and methyl jasmonate (MeJA) treatment as well as to qualify them as diagnostic for the two signaling pathways. Using the genome sequence of E. grandis, we identified candidate Eucalyptus orthologs EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX based on a co-phylogenetic approach. The expression of these genes was investigated after various doses of SA and MeJA (a derivative of JA) treatment as well as at various time points. The transcript levels of EgrPR2 were decreased in response to high concentrations of MeJA whereas the expression of EgrPR3 and EgrLOX declined as the concentrations of SA treatment increased, suggesting an antagonistic relationship between SA and MeJA. Our results support EgrPR2 as potentially diagnostic for SA and EgrPR3, EgrPR4, and EgrLOX as indicators of MeJA signaling. To further validate the diagnostic potential of the PR genes we challenged E. grandis clones with the fungal necrotrophic pathogen Chrysoporthe austroafricana. The tolerant clone showed high induction of EgrPR2 and decreased transcript abundance of EgrPR4. Pre-treatment of the susceptible genotype with 5 mM SA resulted in lesion lengths comparable to the tolerant genotype after artificial inoculation with C. austroafricana. Thus expression profiling of EgrPR2 and EgrPR4 genes could serve as a useful diagnostic approach to determine which of the two signaling pathways are activated against various pathogens in Eucalyptus.
Collapse
Affiliation(s)
- Ronishree Naidoo
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Linda Ferreira
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
- Department of Plant Science, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, University of PretoriaPretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
33
|
Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:221-44. [PMID: 23682916 DOI: 10.1146/annurev-phyto-082712-102307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Forest Pathology Research Laboratory, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
34
|
Pfabel C, Eckhardt KU, Baum C, Struck C, Frey P, Weih M. Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa x deltoides). TREE PHYSIOLOGY 2012; 32:1357-64. [PMID: 23065191 DOI: 10.1093/treephys/tps093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fungal colonization can significantly affect the secondary metabolism of the host plants. We tested the impact of a common below-ground symbiosis, i.e., ectomycorrhiza formation, on poplar leaf chemical components that are involved in the defence against a common disease, i.e., rust fungi, in N-deficient soil. A rust-susceptible poplar clone (Populus trichocarpa × deltoides 'Beaupré') was (a) non-associated with ectomycorrhizal fungus (EM) Hebeloma mesophaeum (Pers.) Quélet MÜN and non-infected with rust fungus Melampsora larici-populina Kleb. (isolate 98AG31), (b) associated with EM, (c) inoculated with rust fungus and (d) associated with EM and inoculated with rust fungus. Poplar leaves were analysed by photometric and mass spectrometric techniques (liquid chromatography-tandem mass spectrometry (LC-MS/MS), pyrolysis-field ionization mass spectrometry (Py-FIMS)). Both rust infection and mycorrhiza formation led to increased proportions of condensed tannins in relation to total phenolics (13% in the control, 18-19% in the fungal treatments). In contrast, salicylic acid concentration (6.8 µg g(-1) in the control) was higher only in the rust treatments (17.9 and 25.4 µg g(-1) with rust infection). The Py-FIMS analysis revealed that the rust-infected treatments were significantly separated from the non-rust-infected treatments on the basis of six flavonoids and one lipid. The relative abundance of these components, which have known functions in plant defence, was decreased after rust infection of non-mycorrhizal plants, but not in mycorrhizal plants. The results indicate that the ectomycorrhizal formation compensated the rust infection by a decrease in the flavonoid syntheses. The study provides new evidence for an interactive response of mycorrhizal colonization and infection with rust fungi in the metabolism of poplar.
Collapse
Affiliation(s)
- Cornelia Pfabel
- Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J, Delaruelle C, Martin F, Rouhier N, Kohler A, Duplessis S. RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLoS One 2012; 7:e44408. [PMID: 22952974 PMCID: PMC3431362 DOI: 10.1371/journal.pone.0044408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biotroph pathogens establish intimate interactions with their hosts that are conditioned by the successful secretion of effectors in infected tissues and subsequent manipulation of host physiology. The identification of early-expressed pathogen effectors and early-modulated host functions is currently a major goal to understand the molecular basis of biotrophy. Here, we report the 454-pyrosequencing transcriptome analysis of early stages of poplar leaf colonization by the rust fungus Melampsora larici-populina. Among the 841,301 reads considered for analysis, 616,879 and 649 were successfully mapped to Populus trichocarpa and M. larici-populina genome sequences, respectively. From a methodological aspect, these results indicate that this single approach is not appropriate to saturate poplar transcriptome and to follow transcript accumulation of the pathogen. We identified 19 pathogen transcripts encoding early-expressed small-secreted proteins representing candidate effectors of interest for forthcoming studies. Poplar RNA-Seq data were validated by oligoarrays and quantitatively analysed, which revealed a highly stable transcriptome with a single transcript encoding a sulfate transporter (herein named PtSultr3;5, POPTR_0006s16150) showing a dramatic increase upon colonization by either virulent or avirulent M. larici-populina strains. Perspectives connecting host sulfate transport and biotrophic lifestyle are discussed.
Collapse
Affiliation(s)
- Benjamin Petre
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emmanuelle Morin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emilie Tisserant
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Stéphane Hacquard
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | | | - Julie Poulain
- CEA-Genoscope, Centre National de Séquençage, Evry, France
| | - Christine Delaruelle
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Francis Martin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Nicolas Rouhier
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Annegret Kohler
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Sébastien Duplessis
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
- * E-mail:
| |
Collapse
|
36
|
Oblessuc PR, Borges A, Chowdhury B, Caldas DGG, Tsai SM, Camargo LEA, Melotto M. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLoS One 2012; 7:e43161. [PMID: 22912818 PMCID: PMC3422333 DOI: 10.1371/journal.pone.0043161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022] Open
Abstract
Background The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.
Collapse
Affiliation(s)
| | - Aline Borges
- CENA, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bablu Chowdhury
- Department of Biology, University of Texas, Arlington, Texas, United States of America
| | | | - Siu Mui Tsai
- CENA, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Maeli Melotto
- Department of Biology, University of Texas, Arlington, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
38
|
Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5607-21. [PMID: 21862479 PMCID: PMC3223054 DOI: 10.1093/jxb/err245] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32,774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
39
|
Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Séguin A. Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome. PLANT PHYSIOLOGY 2011; 157:1379-93. [PMID: 21873571 PMCID: PMC3252155 DOI: 10.1104/pp.111.178343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/25/2011] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.
Collapse
|
40
|
Hacquard S, Petre B, Frey P, Hecker A, Rouhier N, Duplessis S. The poplar-poplar rust interaction: insights from genomics and transcriptomics. J Pathog 2011; 2011:716041. [PMID: 22567338 PMCID: PMC3335510 DOI: 10.4061/2011/716041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/28/2011] [Indexed: 11/28/2022] Open
Abstract
Poplars are extensively cultivated worldwide, and their susceptibility to the leaf rust fungus Melampsora larici-populina leads to considerable damages in plantations. Despite a good knowledge of the poplar rust life cycle, and particularly the epidemics on poplar, the perennial status of the plant host and the obligate biotrophic lifestyle of the rust fungus are bottlenecks for molecular investigations. Following the completion of both M. larici-populina and Populus trichocarpa genome sequences, gene families involved in poplar resistance or in rust fungus virulence were investigated, allowing the identification of key genetic determinants likely controlling the outcome of the interaction. Specific expansions of resistance and defense-related genes in poplar indicate probable innovations in perennial species in relation with host-pathogen interactions. The genome of M. Larici-populina contains a strikingly high number of genes encoding small secreted proteins (SSPs) representing hundreds of candidate effectors. Transcriptome analyses of interacting partners in compatible and incompatible interactions revealed conserved set of genes involved in poplar defense reactions as well as timely regulated expression of SSP transcripts during host tissues colonisation. Ongoing functional studies of selected candidate effectors will be achieved mainly on the basis of recombinant protein purification and subsequent characterisation.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Institut National de la Recherche Agronomique (INRA), Nancy Université, Unité Mixte de Recherche 1136, "Interactions Arbres/Micro-organismes," Centre INRA de Nancy, 54280 Champenoux, France
| | | | | | | | | | | |
Collapse
|
41
|
Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P, Martin F, Kohler A. Melampsora larici-populina transcript profiling during germination and timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:808-18. [PMID: 21644839 DOI: 10.1094/mpmi-01-11-0006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Melampsora larici-populina is responsible for poplar leaf rust disease and causes severe epidemics in poplar plantations in Europe. The poplar rust genome has been recently sequenced and, in order to find the genetic determinants associated with its biotrophic lifestyle, we generated a whole-genome custom oligoarray and analyzed transcript profiles of M. larici-populina during the infection timecourse in poplar leaves. Different stages were investigated during the asexual development of the rust fungus, including resting and germinating urediniospores and seven in planta stages in the telial host. In total, 76% of the transcripts were detected during leaf infection as well as in urediniospores, whereas 20% were only detected in planta, including several transporters and many small secreted proteins (SSP). We focused our analysis on gene categories known to be related to plant colonization and biotrophic growth in rust pathogens, such as SSP, carbohydrate active enzymes (CAZymes), transporters, lipases, and proteases. Distinct sets of SSP transcripts were expressed all along the infection process, suggesting highly dynamic expression of candidate rust effectors. In contrast, transcripts encoding transporters and proteases were mostly expressed after 48 h postinoculation, when numerous haustoria are already formed in the leaf mesophyll until uredinia formation, supporting their role in nutrient acquisition during biotrophic growth. Finally, CAZymes and lipase transcripts were predominantly expressed at late stages of infection, highlighting their importance during sporulation.
Collapse
|
42
|
Abstract
Over the past two decades, research in forest tree genomics has lagged behind that of model and agricultural systems. However, genomic research in forest trees is poised to enter into an important and productive phase owing to the advent of next-generation sequencing technologies, the enormous genetic diversity in forest trees and the need to mitigate the effects of climate change. Research on long-lived woody perennials is extending our molecular knowledge of complex life histories and adaptations to the environment - enriching a field that has traditionally drawn biological inference from a few short-lived herbaceous species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
43
|
Petre B, Major I, Rouhier N, Duplessis S. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC PLANT BIOLOGY 2011; 11:33. [PMID: 21324123 PMCID: PMC3048497 DOI: 10.1186/1471-2229-11-33] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/15/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR) proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs), which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. RESULTS Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling). CONCLUSION Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem to be universal among eukaryotes, with some exceptions likely attributable to atypical protein structures. In the perennial plant model Populus, we unravelled the TLPs likely involved in leaf rust resistance, which will provide the foundation for further functional investigations.
Collapse
Affiliation(s)
- Benjamin Petre
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| | - Ian Major
- Plant Research Laboratory, 122 Plant Biology Laboratory, Michigan State University, East Lansing, Michigan, 48864, USA
| | - Nicolas Rouhier
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| | - Sébastien Duplessis
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| |
Collapse
|
44
|
Abstract
The perennial plant model species Populus trichocarpa has received considerable attention in the last 5 yr because of its potential use as a bioenergy crop. The completion of its genome sequence revealed extensive homologies with the herbaceous annual species Arabidopsis thaliana. This review highlights the similarities and differences at the qualitative defence response components level, notably in putative NBS-LRR protein content and downstream defence regulators. With almost a twofold NBS-LRR gene complement compared with A. thaliana, P. trichocarpa also encodes some putative R-proteins with unusual architectures and possible DNA-binding capacity. P. trichocarpa also possesses all the known main components characteristic of TIR-NB-LRR and CC-NB-LRR signalling. However, very little has been done with regard to the components involved in the poplar qualitative response to pathogens. In addition, the relationship between plant-biotroph perception/signalling and the role of salicylic acid, an important defence compound, remains uncertain. This review aims to identify the genomic components present in poplar that could potentially participate in the qualitative response and highlights where efforts should be devoted to obtain a better understanding of the poplar qualitative defence response.
Collapse
Affiliation(s)
- Hugo Germain
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn Sainte-Foy, Québec, QC, G1V 4C7, Canada
| |
Collapse
|
45
|
Brochu V, Girard-Martel M, Duval I, Lerat S, Grondin G, Domingue O, Beaulieu C, Beaudoin N. Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis. BMC PLANT BIOLOGY 2010; 10:272. [PMID: 21143977 PMCID: PMC3016406 DOI: 10.1186/1471-2229-10-272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/10/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Thaxtomin A (TA), a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides) cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA. RESULTS Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications. CONCLUSIONS We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally different inhibitors of cellulose synthesis that were found to target different proteins. Enhanced resistance was associated with major changes in the expression of numerous genes, including some genes that are involved in DNA and chromatin modifications, suggesting that epigenetic changes might be involved in this process.
Collapse
Affiliation(s)
- Viviane Brochu
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Marie Girard-Martel
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada V8Z 1M5
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada G1V 4C7
| | - Sylvain Lerat
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Gilles Grondin
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Olivier Domingue
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Carole Beaulieu
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Nathalie Beaudoin
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| |
Collapse
|
46
|
Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 2010; 11:674. [PMID: 21114852 PMCID: PMC3091788 DOI: 10.1186/1471-2164-11-674] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. RESULTS We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. CONCLUSION These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.
Collapse
Affiliation(s)
- Olga Pechanova
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Chuan-Yu Hsu
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Joshua P Adams
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Tibor Pechan
- Life Sciences and Biotechnology Institute, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762 USA
| | - Lindsay Vandervelde
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, IL 61801 USA
| | - Sara Jawdy
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | - Amanda M Lawrence
- Electron Microscopy Center, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec G1V 4C7, Canada
| | - Cetin Yuceer
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
47
|
Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids 2010; 42:295-308. [PMID: 21082203 DOI: 10.1007/s00726-010-0807-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the regulation of this pathway.
Collapse
|
48
|
Joly DL, Feau N, Tanguay P, Hamelin RC. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 2010; 11:422. [PMID: 20615251 PMCID: PMC2996950 DOI: 10.1186/1471-2164-11-422] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/08/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors. RESULTS We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome. CONCLUSION We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.
Collapse
Affiliation(s)
- David L Joly
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Nicolas Feau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Unité Mixte de Recherche 1202, Institut National de la Recherche Agronomique-Université Bordeaux I, Biodiversité, Génes et Communautés (BioGeCo), INRA Bordeaux-Aquitaine, 33612 Cestas Cedex, France
| | - Philippe Tanguay
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Richard C Hamelin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Department of Forest Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Toome M, Randjärv P, Copolovici L, Niinemets U, Heinsoo K, Luik A, Noe SM. Leaf rust induced volatile organic compounds signalling in willow during the infection. PLANTA 2010; 232:235-243. [PMID: 20419383 DOI: 10.1007/s00425-010-1169-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/07/2010] [Indexed: 05/27/2023]
Abstract
Plants are known to emit volatile organic compounds (VOC) in response to various biotic or abiotic stresses. Although the VOC emission in the case of insect attacks is well described, there is only little known about the impact of pathogens on plant emission. In the present study, we used a willow-leaf rust system to describe the effects of a biotrophic fungal infection on the VOC emission pattern of willow leaves. We detected that isoprene emissions from rust-infected leaves decreased threefold compared to control. The total monoterpene emissions did not change although a stress-signalling compound (Z)-beta-ocimene showed an increase in infected plants on several days. The infection also increased the emission of sesquiterpenes and lipoxygenase products (LOX) by factors of 175-fold and 10-fold, respectively. The volatile emission signals showed two clear peaks during the experiment. At 6, 7 and 12 days post-infection (dpi), the relative volatile emission signal increased to about sixfold compared to uninfected plants. These time points are directly connected to rust infection since at 6 dpi the first rust pustules appeared on the leaves and at 12 dpi necrosis had developed around several pustules. We present correlations between LOX and sesquiterpene emission signals, which suggest at least two different steps in eliciting the volatile emission.
Collapse
Affiliation(s)
- Merje Toome
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
50
|
Major IT, Nicole MC, Duplessis S, Séguin A. Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. PHOTOSYNTHESIS RESEARCH 2010; 104:41-8. [PMID: 20012201 DOI: 10.1007/s11120-009-9507-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/13/2009] [Indexed: 05/20/2023]
Abstract
Poplars are challenged by a wide range of pathogens during their lifespan, and have an innate immunity system that activates defence responses to restrict pathogen growth. Large-scale expression studies of poplar-rust interactions have shown concerted transcriptional changes during defence responses, as in other plant pathosystems. Detailed analysis of expression profiles of metabolic pathways in these studies indicates that photosynthesis and respiration are also important components of the poplar response to rust infection. This is consistent with our current understanding of plant pathogen interactions as defence responses impose substantive demands for resources and energy that are met by reorganization of primary metabolism. This review applies the results of poplar transcriptome analyses to current research describing how plants divert energy from plant primary metabolism for resistance mechanisms.
Collapse
Affiliation(s)
- Ian T Major
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Quebec, QC, Canada.
| | | | | | | |
Collapse
|